Process Modeling in Impression-Die Forging Using Finite-Element Analysis

Size: px
Start display at page:

Download "Process Modeling in Impression-Die Forging Using Finite-Element Analysis"

Transcription

1 CHAPTER 16 Process Modeling in Impression-Die Forging Using Finite-Element Analysis Manas Shirgaokar Gracious Ngaile Gangshu Shen 16.1 Introduction Development of finite-element (FE) process simulation in forging started in the late 1970s. At that time, automatic remeshing was not available, and therefore, a considerable amount of time was needed to complete a simple FE simulation [Ngaile et al., 2002]. However, the development of remeshing methods and the advances in computational technology have made the industrial application of FE simulation practical. Commercial FE simulation software is gaining wide acceptance in the forging industry and is fast becoming an integral part of the forging design and development process. The main objectives of the numerical process design in forging are to [Vasquez et al., 1999]: Develop adequate die design and establish process parameters by: a. Process simulation to assure die fill b. Preventing flow-induced defects such as laps and cold shuts c. Predicting processing limits that should not be exceeded so that internal and surface defects are avoided d. Predicting temperatures so that part properties, friction conditions, and die wear can be controlled Improve part quality and complexity while reducing manufacturing costs by: a. Predicting and improving grain flow and microstructure b. Reducing die tryouts and lead times c. Reducing rejects and improving material yield Predict forging load and energy as well as tool stresses and temperatures so that: a. Premature tool failure can be avoided. b. The appropriate forging machines can be selected for a given application. Process modeling of closed-die forging using finite-element modeling (FEM) has been applied in aerospace forging for a couple of decades [Howson et al., 1989, and Oh, 1982]. The goal of using computer modeling in closed-die forging is rapid development of right-the-first-time processes and to enhance the performance of components through better process understanding and control. In its earlier application, process modeling helped die design engineers to preview the metal flow and possible defect formation in a forging. After the forging simulation is done, the contours of state variables, such as effective strain, effective strain rate, and temperature at any instant of time during a forging, can be generated. The thermomechanical histories of selected individual locations within a forging can also be tracked [Shen et al., 1993]. These functions of process modeling provided an insight into the forging process that was not available in the old days. Integrated with the process modeling, microstructure modeling is a new area that has a bright future [Sellars, 1990, and Shen et al., 2000]. Microstructure modeling allows the right-the-first-time optimum metallurgical features of the forging to be previewed on the computer. Metallurgical aspects of forging, such as

2 194 / Cold and Hot Forging: Fundamentals and Applications grain size and precipitation, can be predicted with reasonable accuracy using computational tools prior to committing the forging to shop trials. Some of the proven practical applications of process simulation in closed-die forging include: Design of forging sequences in cold, warm, and hot forging, including the prediction of forming forces, die stresses, and preform shapes Prediction and optimization of flash dimensions in hot forging from billet or powder metallurgy preforms Prediction of die stresses, fracture, and die wear; improvement in process variables and die design to reduce die failure Prediction and elimination of failures, surface folds, or fractures as well as internal fractures Investigation of the effect of friction on metal flow Prediction of microstructure and properties, elastic recovery, and residual stresses 16.2 Information Flow in Process Modeling It is a well-known fact that product design activity represents only a small portion, 5 to 15%, of the total production costs of a part. However, decisions made at the design stage determine the overall manufacturing, maintenance, and support costs associated with the specific product. Once the part is designed for a specific process, the following steps lead to a rational process design: 1. Establish a preliminary die design and select process parameters by using experiencebased knowledge. 2. Verify the initial design and process conditions using process modeling. For this purpose it is appropriate to use well-established commercially available computer codes. 3. Modify die design and initial selection of process variables, as needed, based on the results of process simulation. 4. Complete the die design phase and manufacture the dies. 5. Conduct die tryouts on production equipment. 6. Modify die design and process conditions, if necessary, to produce quality parts. Hopefully, at this stage little or no modification will be necessary, since process modeling is expected to be accurate and sufficient to make all the necessary changes before manufacturing the dies. Information flow in process modeling is shown schematically in Fig [Shen et al., 2001]. The input of the geometric parameters, process parameters, and material parameters sets up a unique case of a closed-die forging. The modeling is then performed to provide information on the metal flow and thermomechanical history of the forging, the distribution of the state variables at any stage of the forging, and the equipment response during forging. The histories of the state variables, such as strain, strain rate, temperature, etc., are then input to the microstructure model for microstructural feature prediction. All of the information generated is used for judging the closed-die forging case. The nonsatisfaction in any of these areas will require a new model with a set of modified process parameters until the satisfied results are obtained. Then, the optimum process is selected for shop practice Process Modeling Input Preparing correct input for process modeling is very important. There is a saying in computer modeling: garbage in and garbage out. Sometimes, a time-consuming process modeling is useless because of a small error in input preparation. Process modeling input is discussed in terms of geometric parameters, process parameters, and material parameters [SFTC, 2002] Geometric Parameters The starting workpiece geometry and the die geometry need to be defined in a closed-die forging modeling. Depending on its geometrical complexity, a forging process can be simulated either as a two-dimensional, axisymmetric or plane-strain, or a three-dimensional problem. If the process involves multiple stations, the die geometry of each station needs to be provided. A typical starting workpiece geometry for a closed-die forging is a cylinder with or without chamfers. The diameter and the height of the cylinder are defined in the preprocessing stage. A lot of closed-die forgings are axisymmetric, which need a two-dimensional geometry handling. Boundary conditions on specific segments

3 Process Modeling in Impression-Die Forging Using Finite-Element Analysis / 195 of the workpiece and dies that relate to deformation and heat transfer need to be defined. For example, for an axisymmetric cylinder to be forged in a pair of axisymmetric dies, the nodal velocity in the direction perpendicular to the centerline should be defined as zero, and the heat flux in that direction should also be defined as zero Process Parameters The typical process parameters to be considered in a closed-die forging include [SFTC, 2002]: The environment temperature The workpiece temperature The die temperatures The coefficients of heat transfer between the dies and the billet and the billet and the atmosphere The time used to transfer the workpiece from the furnace to the dies The time needed to have the workpiece resting on the bottom die The workpiece and die interface heat-transfer coefficient during free resting The workpiece and die interface heat-transfer coefficient during deformation The workpiece and die interface friction, etc. The die velocity is a very important parameter to be defined in the modeling of a closed-die forging. If a hydraulic press is used, depending on the actual die speed profiles, the die velocity can be defined as a constant or series of velocities that decrease during deformation. The actual die speed recorded from the forging can also be used to define the die velocity profile. If a mechanical press is used, the rpm of the flywheel, the press stroke, and the distance from the bottom dead center when the upper die touches the part need to be defined. If a screw press is used, the total energy, the efficiency, and the ram displacement need to be defined. If a hammer is used, the blow energy, the blow efficiency, the mass of the moving ram and die, the number of blows, and the time interval between blows must be defined. Forgings performed in different machines, with unique velocity versus stroke characteristics, have been simulated successfully using the commercial FE software DEFORM (Scientific Forming Technologies Corp.) [SFTC, 2002]. Fig Flow chart of modeling of closed-die forging [Shen et al., 2001]

4 196 / Cold and Hot Forging: Fundamentals and Applications Tool and Workpiece Material Properties In order to accurately predict the metal flow and forming loads, it is necessary to use reliable input data. The stress-strain relation or flow curve is generally obtained from a compression test. However, the test is limited in achievable strains. In order to obtain the flow stress at large strains and strain rates, the torsion test can be used or, alternatively, the compression data is extrapolated with care. In most simulations, the tools are considered rigid; thus, die deformation and stresses are neglected. However, in precision forging operations, the relatively small elastic deformations of the dies may influence the thermal and mechanical loading conditions and the contact stress distribution at the die/workpiece interface. Thus, die stress analysis is a crucial part of process simulation to verify the die design and the forging process parameters Interface Conditions (Friction and Heat Transfer) The friction and heat-transfer conditions at the interface between the die and the billet have a significant effect on the metal flow and the loads required to produce the part. In forging simulations, due to the high contact stresses at the interface between the workpiece and the die, the constant shear friction factor gives better results than the coulomb friction coefficient. The most common way to determine the shear friction factor in forging is to perform ring compression tests. From these tests, it is possible to estimate the heat-transfer coefficient, flow stress and friction as a function of temperature, strain rate, strain, and forming pressure, as discussed in Chapter 6, Temperatures and Heat Transfer. Friction factors measured with the ring compression test, however, are not valid for precision forging processes (hot, warm, and cold) where the interface pressure is very high and the surface generation is large. The friction conditions change during the process due to changes in the lubricant and the temperature at the die/ workpiece interface. In such applications, the double cup extrusion test is recommended for estimation of the friction factor, as discussed in Chapter 7, Friction and Lubrication Material Parameters The closed-die hot forging modeling is a coupled heat-transfer and deformation simulation. Material parameters that relate to both heat transfer and deformation need to be defined. The material parameters commonly used for heattransfer modeling are the thermal conductivity, heat capacity, and emissivity of the workpiece and die materials. These parameters are usually defined as a function of temperature, The flow stress of the workpiece material is very important for the correct prediction of metal flow behavior. It is usually defined as a function of strain, strain rate, temperature, and possible starting microstructures. The Young s modulus, the Poisson s ratio as a function of temperature, and the thermal expansion of the die materials are important parameters for die stress analysis Characteristics of the Simulation Code Mesh Generation and Automatic Remeshing In forging processes, the workpiece generally undergoes large plastic deformation, and the relative motion between the deforming material and the die surface is significant. In the simulation of such processes, the starting mesh is well defined and can have the desired mesh density distribution. As the simulation progresses, the mesh tends to get distorted significantly. Hence, it is necessary to generate a new mesh and interpolate the simulation data from the old mesh to the new one to obtain accurate results. Automated mesh generation (AMG) schemes have been incorporated in commercial FE codes for metal forming simulations. In DEFORM, there are two tasks in AMG: 1) determination of optimal mesh density distribution and 2) generation of the FE mesh based on the given density. The mesh density should conform to the geometrical features of the workpiece at each step of deformation [Wu et al., 1992]. In order to maximize the geometric conformity, it is necessary to consider mesh densities that take into account the boundary curvature and local thickness. In DEFORM, two-dimensional (2-D) simulations use quadrilateral elements, whereas three-dimensional (3-D) simulations use tetrahedral elements for meshing and automatic remeshing [Wu et al., 1996]. With this automatic remeshing capability, it is possible to set up a simulation model and run it to the end with very little interaction with the user.

5 Process Modeling in Impression-Die Forging Using Finite-Element Analysis / Reliability and Computational Time Several FE simulation codes are commercially available for numerical simulation of forging processes, such as DEFORM (2-D and 3-D), FORGE (2-D and 3-D) (Ternion Corp.), Qform (2-D and 3-D), etc. In addition to a reliable FE solver, the accurate and efficient use of metal flow simulations require [Knoerr et al., 1992]: Interactive preprocessing to provide the user with control over the initial geometry, mesh generation, and input data; automatic remeshing to allow the simulation to continue when the distortion of the old mesh is excessive; interactive postprocessing that provides more advanced data analysis, such as point tracking and flow line calculation Appropriate input data describing the thermal and physical properties of die and billet material the heat transfer and friction at the die/workpiece interface under the processing conditions investigated, and the flow behavior of the deforming material at the relatively large strains that occur in practical forging operations Analysis capabilities that are able to perform the process simulation with rigid dies to reduce calculation time and to use contact stresses and temperature distribution estimated with the process simulation using rigid dies to perform elastic-plastic die stress analysis The time required to run a simulation depends on the computer used and the amount of memory and workload the computer has. However, with today s computers, it is possible to run a 2-D simulation in a couple of hours, while a 3-D simulation can take anywhere between a day to a week, depending on the part complexity [Wu et al., 1996]. duces defects in the forging. In real closed-die forging, it is necessary to wait until the forging is finished to see the forged part and the defect, if there is one. The advantage of computer simulation of forging is that the entire forging process is stored in a database file in the computer and can be tracked. Whether there is a defect formed and how it is formed can be previewed before the actual forging. Figure 16.2 shows the lap formation for a rejected process in the design stage. The lap formation can be eliminated by changing the workpiece geometry (the billet or preform), or the die geometry, or both. The computer modeling can again indicate if the corrective measure works or not Distribution and History of State Variables The distribution of the state variables, such as the strain, strain rate, and temperature, at any stage of a closed-die forging can be plotted from the database file saved for the forging simulation. The history of these state variables can also be tracked. Figure 16.3(a) shows the effective strain distribution of a closed-die forging forged in an isothermal press. The effective strain has a value of 0.4 to 0.9 in the bore die lock region. The region that is in contact with the upper die has an effective strain value of 0.4 to 0.9, and the region that is in contact with the lower die, a value of 0.7 to 0.9. With an effective strain of 2.0 to 2.8, the bore rim transition region has the largest strain. The effective strain value is approximately 1.5 for both the rim and the midheight of the bore region. From the state variable distribution plot, the state variable at a specific stage of the forging is known. This specific stage, 16.5 Process Modeling Output The process modeling provides extensive information of the forging process. The output of process modeling can be discussed in terms of the metal flow, the distribution and history of state variables, the equipment response during forging, and the microstructure of the forging Metal Flow The information on metal flow is very important for die design. Improper metal flow pro- Fig Lap prediction using process modeling tool

6 198 / Cold and Hot Forging: Fundamentals and Applications shown in Fig. 16.3(a), is the end of the forging. The distribution of the state variables can be plotted for any other stages of forging as well. Figure 16.3(b) shows the effective strain versus time of a material point located at midheight of the bore section of the forging, as shown in Fig. 16.3(a). In this isothermal forging case, a 20 min deformation time was used, as shown in Fig (a) Effective strain distribution and (b) the effective strain history of the center location of a closed-die forging the figure. The final strain value, 1.5, shown in Fig. 16.3(b) is in agreement with the value shown in the distribution plot in Fig. 16.3(a). The history plot of state variables (strain, strain rate, and temperature) provides valuable information on the thermomechanical history of the forging that determines its mechanical properties Equipment Response/Hammer Forging Process modeling also provides the information regarding the response of the equipment. Examples of equipment response discussed here are forging load and ram velocity of hammer forging. The information is usually not available in the hammer shop. However, it is useful for understanding the hammer response to a forging process. Figure 16.4 shows the load versus stroke predicted for a hammer forging operation. The figure shows that there are eight blows in the hammer operation. Each ends with a zero load. The stroke in the figure is the stroke of the ram/die. The zero stroke refers to the position of the die, where the first die/workpiece contact occurs during forging. This zero position is the same for all of the eight hammer blows. With the increase in the number of blows, the load increases and the stroke per blow decreases. The last blow of the sequence has the shortest stroke. This behavior is very real for hammer forging operations. During a hammer forging operation, the workpiece increases its contact area with the dies, which increases the forging load. The total available blow energy is fixed for a hammer. With the increase in forging load, the length of Fig Load versus stroke obtained from a hammer forging simulation Fig Ram velocity versus stroke obtained from a hammer forging simulation

7 Process Modeling in Impression-Die Forging Using Finite-Element Analysis / 199 stroke is reduced. Moreover, the blow efficiency, which is the ratio between the energy used for deformation and the total blow energy, is also Fig Prediction of the distribution of the size (lm) of gamma prime for a Rene 88 experimental forging reduced with the increase in forging load. Thus, a smaller amount of energy is available toward the end of a blow sequence and with the decrease in the stroke per blow. Figure 16.5 gives the ram velocity versus stroke obtained from a simulation of another hammer forging process. There are nine blows for this hammer operation. The velocity of the first blow was smaller than the other eight blows, because a soft blow was used initially to locate the workpiece. In a soft blow, there is only a portion of blow energy applied to the workpiece. Thus, the first blow has a smaller starting ram velocity. After the first blow, full energy was applied to the forging. Thus, the starting ram ve- Fig Comparisons of hot-die forging and mechanical press forging of an experimental part using process modeling Fig Rene 88 experimental part out of forging press [Hardwicke et al., 2000] Fig Predicted model and optically measured grain sizes in the three developmental René 88DT disks with (a) coarse, (b) medium, and (c) fine grains [Hardwicke et al., 2000]

8 200 / Cold and Hot Forging: Fundamentals and Applications locity for the rest of the blows was the same. There is always an energy loss to surroundings in a hammer blow. Therefore, blow efficiency needs to be factored in for each hammer blow. However, the blow efficiency only has an effect after the ram/die workpiece are in contact. Hence, blow efficiency does not influence the starting velocity of the ram/die. It is factored in during the blow. The decay in ram velocity in each blow is a result of both the energy consumption in deforming the workpiece and the energy lost to the surroundings Microstructures in Superalloys Microstructure and property modeling is now the major emphasis in advanced forging process design and improvement, especially in forging aerospace alloys such as nickel and titanium superalloys. The development and utilization of physical metallurgy-based microstructure models and the integration of the models with finiteelement analysis has allowed for microstructure prediction by computer. Two important microstructural features of superalloy forgings are the grain size and the gamma-prime precipitation. The grain size modeling is discussed in detail in Chapter 19, Microstructure Modeling in Superalloy Forging. The prediction of gammaprime distribution is discussed here. Gamma prime is a very important precipitation phase in strengthening superalloys. The size and spacing are two features of interest in gamma-prime precipitation. Figure 16.6 shows the prediction of the distribution of the size of gamma prime of an experimental nickel-base superalloy forging, Rene 88, coupled with a few measurement points. The measurement made is in the range of 0.07 to 0.21 lm. The model predicts a range of 0.08 to 0.14 lm. The fine gamma prime was correctly predicted and the coarser gamma prime was underpredicted, which pointed out the need for further improvement of the gamma-prime model. The microstructure prediction feature is useful for the process development for closeddie forging Examples of Modeling Applications One of the major concerns in the research of manufacturing processes is to find the optimum production conditions in order to reduce production costs and lead-time. In order to optimize a process, the effect of the most important process parameters has to be investigated. Conducting experiments can be a very time-consuming and expensive process. It is possible to reduce the number of necessary experiments by using FEM-based simulation of metal forming processes. Fig Investigation of defects in ring gear forging using FEM [Jenkins et al., 1989]

IN SUPERALLOY FORGING PROCESS DESIGN. T. E. Howson and H. E. Delgado. Wyman-Gordon Company North Grafton, Massachusetts

IN SUPERALLOY FORGING PROCESS DESIGN. T. E. Howson and H. E. Delgado. Wyman-Gordon Company North Grafton, Massachusetts UTILIZATION OF COMPUTER MODELING IN SUPERALLOY FORGING PROCESS DESIGN T. E. Howson and H. E. Delgado Wyman-Gordon Company North Grafton, Massachusetts 01536 Summary The forging of a superalloy high pressure

More information

NUMERICAL MODELLING OF HOT FORMING AND HEAT-TREATMENT OF ANNULAR GEARS

NUMERICAL MODELLING OF HOT FORMING AND HEAT-TREATMENT OF ANNULAR GEARS Production Processes and Systems, Volume 5. No. 1. (2012) pp. 115-126. NUMERICAL MODELLING OF HOT FORMING AND HEAT-TREATMENT OF ANNULAR GEARS Prof. Dr. Miklós Tisza 1 Zsolt Lukács 2 Gaszton Gál 3 1 Professor,

More information

Determination of Optimal Preform Part for Hot Forging Process of the Manufacture Axle Shaft by Finite Element Method

Determination of Optimal Preform Part for Hot Forging Process of the Manufacture Axle Shaft by Finite Element Method AIJSTPME (2013) 6(1): 35-42 Determination of Optimal Preform Part for Hot Forging Process of the Manufacture Axle Shaft by Finite Element Method Sukjantha V. Department of Production Engineering, the Sirindhorn

More information

The Relationship between Constant Friction Factor and Coefficient of Friction in Metal Forming Using Finite Element Analysis

The Relationship between Constant Friction Factor and Coefficient of Friction in Metal Forming Using Finite Element Analysis IJMF, Iranian Journal of Materials Forming, Vol. 1, No. 2, pp 14-22 Printed in The Islamic Republic of Iran, 2014 Shiraz University The Relationship between Constant Friction Factor and Coefficient of

More information

BMM3643 Manufacturing Processes Bulk Metal Forming Processes (Forging Operations)

BMM3643 Manufacturing Processes Bulk Metal Forming Processes (Forging Operations) BMM3643 Manufacturing Processes Bulk Metal Forming Processes (Forging Operations) by Dr Mas Ayu Bt Hassan Faculty of Mechanical Engineering masszee@ump.edu.my Chapter Synopsis This chapter will introduced

More information

A CRITICAL EVALUATION OF THE DOUBLE CUP EXTRUSION TEST FOR SELECTION OF COLD FORGING LUBRICANTS

A CRITICAL EVALUATION OF THE DOUBLE CUP EXTRUSION TEST FOR SELECTION OF COLD FORGING LUBRICANTS A CRITICAL EVALUATION OF THE DOUBLE CUP EXTRUSION TEST FOR SELECTION OF COLD FORGING LUBRICANTS Timothy Schrader, Manas Shirgaokar, Taylan Altan ERC for Net Shape Manufacturing, the Ohio State University,

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

QForm. Form3D. Advanced software for forging simulation

QForm. Form3D. Advanced software for forging simulation QForm Form3D Advanced software for forging simulation The goals of forging technology : Make the parts of the required shape Provide required properties Do it in time and at the lowest cost Forging process

More information

Fundamentals of Metal Forming

Fundamentals of Metal Forming Fundamentals of Metal Forming Chapter 15 15.1 Introduction Deformation processes have been designed to exploit the plasticity of engineering materials Plasticity is the ability of a material to flow as

More information

FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY

FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY M. Vidya Sagar a and A. Chennakesava Reddy b a Associate Professor, Department of Mechanical Engineering, JNTUH College of Engineering,

More information

FINITE ELEMENT ANALYSIS OF FRICTION PARAMETERS ON 6060 ALUMINIUM ALLOY IMPRESSION DIE COLD FORGING PROCESS

FINITE ELEMENT ANALYSIS OF FRICTION PARAMETERS ON 6060 ALUMINIUM ALLOY IMPRESSION DIE COLD FORGING PROCESS STUDIA UBB PHYSICA, Vol. 61 (LXI), 1, 2016, pp. 35-46 (RECOMMENDED CITATION) Dedicated to Professor Dr. Cozar Onuc on His 70 th Anniversary FINITE ELEMENT ANALYSIS OF FRICTION PARAMETERS ON 6060 ALUMINIUM

More information

PROGRESS TOWARD A DEFORMATION MAP FOR FINE GRAIN ALLOY 718 BILLET. T. E. Howson and W. H. Couts, Jr.

PROGRESS TOWARD A DEFORMATION MAP FOR FINE GRAIN ALLOY 718 BILLET. T. E. Howson and W. H. Couts, Jr. PROGRESS TOWARD A DEFORMATION MAP FOR FINE GRAIN ALLOY 718 BILLET T. E. Howson and W. H. Couts, Jr. Wyman-Gordon Company North Grafton, Massachusetts 01536 Abstract A deformation map, or microstructural

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working Forging & Rolling Mechanical Working of Metals In this method no machining process is carried out, but it is used to achieve optimum mechanical properties

More information

INDEX. forging Axisymmetric isothermal forging, cabbaging, compression of cylinders,

INDEX. forging Axisymmetric isothermal forging, cabbaging, compression of cylinders, INDEX Accuracy of simulation, 333 Air bending, 21, 141-147 Air rounding, 21 ALPID program, 136 Analysis in metal forming, 26-52 closed-die forging, 34, 35-36, 37 cold extrusion, 39-41 cold forging, 39-41

More information

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FORGING PROCESS OF A CV JOINT OUTER RACE

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FORGING PROCESS OF A CV JOINT OUTER RACE NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FORGING PROCESS OF A CV JOINT OUTER RACE 1 M.M. MOHAMMADI and 2 M.H.SADEGHI. 1 CAD/CAM Laboratory, Manufacturing Engineering Division, School of Engineering,

More information

EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD

EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD A.Ε. Lontos 1, F.A. Soukatzidis 2, D.A. Demosthenous 1, A.K. Baldoukas 2 1. Mechanical Engineering

More information

Compare with Rolling process which generally produces continuous plates, sheets, shapes

Compare with Rolling process which generally produces continuous plates, sheets, shapes 1 One of oldest and most important metal working processes 4000 BC First used to make jewelry, coins, implements by hammering metals with stone Now: Large rotors for turbines Gears Bolts and rivets Cutlery

More information

A method for evaluating friction using a backward extrusion-type forging

A method for evaluating friction using a backward extrusion-type forging Journal of Materials Processing Technology, 33 (1992) 19-123 Elsevier 13-9';)- J/ 19 A method for evaluating friction using a backward extrusion-type forging G. Shen Department of ndustrial and Systems

More information

CHAPTER 2: LITERATURE SURVEY

CHAPTER 2: LITERATURE SURVEY 7 CHAPTER 2: LITERATURE SURVEY 2.1. Introduction The powder metallurgy processing is one of the oldest and economic routes for producing critical and complex shaped products [1-3]. P/M is one of the most

More information

Hydraulic crimping: application to the assembly of tubular components

Hydraulic crimping: application to the assembly of tubular components Journal of Materials Processing Technology 146 (2004) 44 51 Hydraulic crimping: application to the assembly of tubular components Manas Shirgaokar a, Gracious Ngaile a, Taylan Altan a,, Jang-Horng Yu b,

More information

/0 II, (11 t Co Ii 'PO ('j /J'lj (O-"'j f'lf1 go 00

/0 II, (11 t Co Ii 'PO ('j /J'lj (O-'j f'lf1 go 00 /0 II, (11 t Co Ii 'PO ('j /J'lj (O"'j f'lf1 go 00 r~ /1/~ 2~tJ. fful/jd rt Prediction and Elimination of Defects in Cold Forging Using Process Simulation Taylan Altan, Professor & Director, ERC for Net

More information

ISOTHERMAL FORGING OF P/M FeAl ALLOYS. T. ŚLEBOD, S. BEDNAREK, A. Łukaszek-SOLEK

ISOTHERMAL FORGING OF P/M FeAl ALLOYS. T. ŚLEBOD, S. BEDNAREK, A. Łukaszek-SOLEK ISOTHERMAL FORGING OF P/M FeAl ALLOYS T. ŚLEBOD, S. BEDNAREK, A. Łukaszek-SOLEK AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza

More information

Computer Simulation of Forging Using the Slab Method Analysis

Computer Simulation of Forging Using the Slab Method Analysis International Journal of Scientific & Engineering Research Volume 2, Issue 6, June-2011 1 Computer Simulation of Forging Using the Slab Method Analysis S. B. Mehta, D. B. Gohil Abstract Forging is a very

More information

Simulation of microstructure development and formation of mechanical properties in metal forming technology.

Simulation of microstructure development and formation of mechanical properties in metal forming technology. Simulation of microstructure development and formation of mechanical properties in metal forming technology. Dr. Nikolay Biba, QuantorForm Ltd. Abstract. The paper presents an approach that combines the

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 8: Forming Processes (Rolling, Extrusion, Forging, Drawing) DR. SOTIRIS L. OMIROU Forming Processes - Definition & Types - Forming processes are those in which

More information

Application of The Finite Volume Method to Upset Forging of Cylinders. Introduction. Nomenclature. Arjaan J. Buijk

Application of The Finite Volume Method to Upset Forging of Cylinders. Introduction. Nomenclature. Arjaan J. Buijk Arjaan J. Buijk Manufacturing Division MSC.Software Corporation arjaan.buijk@mscsoftware.com Presented at: Forging Fair 2000 April 13, 2000 Columbus, Ohio Application of The Finite Volume Method to Upset

More information

Modelling and Experimental Research in Hot Precision Forging of Duplicate Gear Blank Zhi Li1, a, Baoyu Wang1, b

Modelling and Experimental Research in Hot Precision Forging of Duplicate Gear Blank Zhi Li1, a, Baoyu Wang1, b 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2015) Modelling and Experimental Research in Hot Precision Forging of Duplicate Gear Blank Zhi Li1,

More information

EXPERIMENTAL AND NUMERICAL ASPECTS REGARDING LEAD ALLOY PLASTIC DEFORMATION

EXPERIMENTAL AND NUMERICAL ASPECTS REGARDING LEAD ALLOY PLASTIC DEFORMATION EXPERIMENTAL AND NUMERICAL ASPECTS REGARDING LEAD ALLOY PLASTIC DEFORMATION MARIANA POP *, DAN FRUNZA *, ADRIANA NEAG * Abstract. The aim of this paper is to present an experimental and finite element

More information

Advances in the State-of-the-Art of Hammer Forged Alloy 718 Aerospace Components

Advances in the State-of-the-Art of Hammer Forged Alloy 718 Aerospace Components Advances in the State-of-the-Art of Hammer Forged Alloy 718 Aerospace Components Gangshu Shen, Dan Kahlke, Robb Denkenberger, and David Furrer Ladish Co., Inc. 548 1 South Packard Avenue Cudahy, WI 53

More information

Manufacturing Process - I

Manufacturing Process - I Manufacturing Process - I UNIT II Metal Forming Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP S Karmaveer Baburao Thakare College of Engg. Nashik

More information

Manufacturing Process II. Forging

Manufacturing Process II. Forging Manufacturing Process II Forging Introduction Forging is a deformation process in which the work is compressed between two dies, using either impact or gradual pressure to form the part. It is the oldest

More information

Chapter 2: Mechanical Behavior of Materials

Chapter 2: Mechanical Behavior of Materials Chapter : Mechanical Behavior of Materials Definition Mechanical behavior of a material relationship - its response (deformation) to an applied load or force Examples: strength, hardness, ductility, stiffness

More information

Hail University College of Engineering Department of Mechanical Engineering. Metal-Forging Processes and Equipment. Ch 14

Hail University College of Engineering Department of Mechanical Engineering. Metal-Forging Processes and Equipment. Ch 14 Hail University College of Engineering Department of Mechanical Engineering Metal-Forging Processes and Equipment Ch 14 Metal-Forging Forging is a basic process in which the work piece is shaped by compressive

More information

Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator

Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator Journal of Materials Processing Technology 141 (2003) 337 342 Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator Young-Sang Na a,, Jong-Taek Yeom a, Nho-Kwang Park a, Jai-Young

More information

Optimizing a Hammer Forging Progression for a Large Hand Tool

Optimizing a Hammer Forging Progression for a Large Hand Tool Marquette University e-publications@marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Optimizing a Hammer Forging Progression for a Large Hand Tool Edgar Espinoza Marquette

More information

Frictional Condition Evaluation in Hot Magnesium Forming Using T- Shape and Ring Compression Tests

Frictional Condition Evaluation in Hot Magnesium Forming Using T- Shape and Ring Compression Tests College of Engineering Society of Manufacturing University of Tehran Engineering of Iran 3 rd International Conference on Manufacturing Engineering ICME211, Tehran, Iran 27-29 December 211 Frictional Condition

More information

FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY

FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY 1 SIMULATION IN SHEET METAL FORMING Simulation is an essential part of the development chain, especially

More information

Available online at ScienceDirect. Procedia Materials Science 6 (2014 )

Available online at   ScienceDirect. Procedia Materials Science 6 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 6 (2014 ) 674 681 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014) Deformation Behavior

More information

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017)

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Modelling the influence of friction coefficient on materials process by Equal Channel Angular Press technique

More information

METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN

METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN New York Oxford OXFORD UNIVERSITY PRESS 1989 CONTENTS Symbols, xiii 1. Introduction, 1 1.1 Process Modeling, 1 1.2 The

More information

Hot Forming. Kalpakjian

Hot Forming. Kalpakjian Hot Forming Kalpakjian Hot Working: Forging Open Die Forging www.smeedwerkunica.nl Paul Berenson, www.paulb.com T.Green, WIT Forging: Heat Loss Metal near die surfaces are coolest, flow less www.freedomalloysusa.com

More information

A Study on the Powder Forging of Aluminum Alloy Pistons

A Study on the Powder Forging of Aluminum Alloy Pistons International Journal of the Korean Society of Precision Engineering Vol. 2, No. 4, November 2001. A Study on the Powder Forging of Aluminum Alloy Pistons Jong-Ok Park 1,Chul-WooPark 1 and Young-Ho Kim

More information

Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances

Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances Journal of Mechanics Engineering and Automation 6 (216) 59-65 doi: 1.17265/2159-5275/216.2.1 D DAVID PUBLISHING Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances Ryo

More information

Bulk Deformation Processes

Bulk Deformation Processes Bulk Deformation Processes Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What is Bulk Deformation? Classification of Bulk Deformation Processes Types

More information

Finite Element Simulation of Flashless Radial Extrusion Process

Finite Element Simulation of Flashless Radial Extrusion Process IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 79-83 www.iosrjournals.org Finite Element Simulation of

More information

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS Dr.S.Shamasundar ProSIM, 21/B. 9 th main Shankara Nagara, Mahalakshmipuram Bangalore-560096 Email: shama@pro-sim.com Web: www.pro-sim.com

More information

Forging Dr. B Gharaibeh Production Processes 1

Forging Dr. B Gharaibeh Production Processes 1 Forging Dr. B Gharaibeh Production 1 Deformation Operations that induce shape changes on the workpiece by plastic deformation under forces applied by various tools and dies - Primary working processes

More information

This is a published version of a paper published in Materials Sciences and Applications.

This is a published version of a paper published in Materials Sciences and Applications. Dalarna University This is a published version of a paper published in Materials Sciences and Applications. Citation for the published paper: Ssemakula, H. (2013) "Minimization of stock weight during close-die

More information

Chapter 14 Forging of Metals

Chapter 14 Forging of Metals Introduction Chapter 14 Forging of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and Schmid What is

More information

ME 333 Manufacturing Processes II

ME 333 Manufacturing Processes II ME 333 Manufacturing Processes II Chapter 5 Metal Working Processes Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana www.gantep.edu.tr/~bozdana Introduction Metal forming involves large

More information

18 FUNDAMENTALS OF METAL FORMING. Metal Forming and Sheet Metalworking 18.1 OVERVIEW OF METAL FORMING. Chapter Contents

18 FUNDAMENTALS OF METAL FORMING. Metal Forming and Sheet Metalworking 18.1 OVERVIEW OF METAL FORMING. Chapter Contents Part V Metal Forming and Sheet Metalworking 18 FUNDAMENTALS OF METAL FORMING Chapter Contents 18.1 Overview of Metal Forming 18.2 Material Behavior in Metal Forming 18.3 Temperature in Metal Forming 18.4

More information

MODELLING OF NEAR-NET FORGING OF THIN-WALLED PARTS OF STRAIN RATE SENSITIVE ALLOY

MODELLING OF NEAR-NET FORGING OF THIN-WALLED PARTS OF STRAIN RATE SENSITIVE ALLOY METALLURGY AND FOUNDRY ENGINEERING Vol. 31, 2005, No. 1 Sylwia Bednarek *, Jan Siñczak **, Piotr Skubisz * MODELLING OF NEAR-NET FORGING OF THIN-WALLED PARTS OF STRAIN RATE SENSITIVE ALLOY 1. INTRODUCTION

More information

Finite element simulation of magnesium alloy sheet forming at elevated temperatures

Finite element simulation of magnesium alloy sheet forming at elevated temperatures Journal of Materials Processing Technology 146 (2004) 52 60 Finite element simulation of magnesium alloy sheet forming at elevated temperatures Hariharasudhan Palaniswamy, Gracious Ngaile, Taylan Altan

More information

CASE 3: Analysis of tooling failure

CASE 3: Analysis of tooling failure CASE 3: Analysis of tooling failure Product: Valve spring retainer Product Material: 34Cr4 Tool Type: Rigid for the plastic analysis / elastic for the punch analysis Process Type: 2D Axi-symmetric, Isothermal,

More information

Deformation and Fatigue Characteristics of Large Welded Bellows with Inclined External Edge*

Deformation and Fatigue Characteristics of Large Welded Bellows with Inclined External Edge* Materials Transactions, Vol. 49, No. 6 (2008) pp. 1249 to 1255 #2008 The Japan Society for Technology of Plasticity Deformation and Fatigue Characteristics of Large Welded Bellows with Inclined External

More information

Flash Gap Optimization in Precision Blade Forging

Flash Gap Optimization in Precision Blade Forging Flash Gap Optimization in Precision Blade Forging S. Javid Mirahmadi MAPNA Group, R&D Department, Tehran, Iran Email: mirahmadi_j@mapnagroup.com Mohsen Hamedi Faculty of Mechanical Engineering, University

More information

Computer Simulation of the Forging of Fine Grain IN-718. R. Srinivasan, V. Ramnarayanr, U. Deshpande, V. Jain2, and I. Weiss

Computer Simulation of the Forging of Fine Grain IN-718. R. Srinivasan, V. Ramnarayanr, U. Deshpande, V. Jain2, and I. Weiss Computer Simulation of the Forging of Fine Grain IN-718 R. Srinivasan, V. Ramnarayanr, U. Deshpande, V. Jain2, and I. Weiss Mechanical and Materials Engineering Department Wright State University, Dayton,

More information

Preform design for forging and extrusion processes based on geometrical resemblance

Preform design for forging and extrusion processes based on geometrical resemblance Preform design for forging and extrusion processes based on geometrical resemblance C Yang and G Ngaile* Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North

More information

Finite Element Investigation of Friction Condition in a Backward Extrusion of Aluminum Alloy

Finite Element Investigation of Friction Condition in a Backward Extrusion of Aluminum Alloy Yong-Taek Im Professor, Fellow ASME E-mail: ytim@mail.kaist.ac.kr Seong-Hoon Kang Jae-Seung Cheon Computer Aided Materials Processing Laboratory, Department of Mechanical Engineering, ME3227, Korea Advanced

More information

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL 142 CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL The main objective of this chapter is to predict the temperature distribution on a turning tool by using the following methods: Build

More information

Forging Simulation of Flywheel using AFDEX software

Forging Simulation of Flywheel using AFDEX software ABSTRACT The purpose of this paper is to simulate the closed die forging process, prediction of defect and eliminating it to increase the product life. The task is to simulate the flywheel using AFDEX

More information

Forging die design and Forging defects

Forging die design and Forging defects Forging die design and Forging defects 1.1 Forging die-design aspects: Die design is more empirical and requires experience. Design of die depends on the processing steps, nature of work piece material,

More information

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining. Traditional Manufacturing Processes Casting Forming Sheet metal processing Powder- and Ceramics Processing Plastics processing Cutting Joining Surface treatment FUNDAMENTALS OF METAL FORMING Overview of

More information

Metal extrusion. Metal stamping

Metal extrusion. Metal stamping Metal extrusion Answer the following questions 1. In which of the following extrusion operation is friction a factor in determining the extrusion force (one best answer): (a) direct extrusion or (b) indirect

More information

CHAPTER 14. Forging of Metals

CHAPTER 14. Forging of Metals CHAPTER 14 Forging of Metals 2 3 4 5 6 Forging (a) (b) (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association. (b) Landing-gear components

More information

CHAPTER 5 FINITE ELEMENT ANALYSIS AND AN ANALYTICAL APPROACH OF WARM DEEP DRAWING OF AISI 304 STAINLESS STEEL SHEET

CHAPTER 5 FINITE ELEMENT ANALYSIS AND AN ANALYTICAL APPROACH OF WARM DEEP DRAWING OF AISI 304 STAINLESS STEEL SHEET 97 CHAPTER 5 FINITE ELEMENT ANALYSIS AND AN ANALYTICAL APPROACH OF WARM DEEP DRAWING OF AISI 304 STAINLESS STEEL SHEET 5.1 INTRODUCTION Nowadays, the finite element based simulation is very widely used

More information

Modeling Component Assembly of a Bearing Using Abaqus

Modeling Component Assembly of a Bearing Using Abaqus Modeling Component Assembly of a Bearing Using Abaqus Bisen Lin, Ph.D., P.E. and Michael W. Guillot, Ph.D., P.E. Stress Engineering Services, Inc. Abstract: Assembly process of a bearing considered in

More information

AUTOMATED DESIGN AND FINITE ELEMENT SIMULATION OF REDUCER ROLLING TECHNOLOGY

AUTOMATED DESIGN AND FINITE ELEMENT SIMULATION OF REDUCER ROLLING TECHNOLOGY AUTOMATED DESIGN AND FINITE ELEMENT SIMULATION OF REDUCER ROLLING TECHNOLOGY Nikolay Biba 1, Alexey Vlasov 2, Sergei Stebounov 1 1 QuantorForm Ltd. P.O. Box 39, 119049, Moscow, Russia, e-mail: info@qform3d.com

More information

Assistant Professor, Mechanical Engineering Department, Orissa Engineering College, Bhubaneswar, Orissa, India 2

Assistant Professor, Mechanical Engineering Department, Orissa Engineering College, Bhubaneswar, Orissa, India 2 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Finite Element Method Based Analysis into Rotary Forging of AXI-Symmetric Aluminium Disc Debabrata Rath *1, Samir Kumar Panda

More information

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Takashi CHODA *1, Dr. Hideto OYAMA *2, Shogo MURAKAMI *3 *1 Titanium Research & Development Section, Titanium Div., Iron & Steel

More information

THE ANALYSIS OF FORGING INCONEL 718 ALLOY. Aneta ŁUKASZEK-SOŁEK, Janusz KRAWCZYK, Piotr BAŁA, Marek WOJTASZEK

THE ANALYSIS OF FORGING INCONEL 718 ALLOY. Aneta ŁUKASZEK-SOŁEK, Janusz KRAWCZYK, Piotr BAŁA, Marek WOJTASZEK THE ANALYSIS OF FORGING INCONEL 718 ALLOY Aneta ŁUKASZEK-SOŁEK, Janusz KRAWCZYK, Piotr BAŁA, Marek WOJTASZEK AGH University of Science and Technology, 30-059 Krakow, 30 Mickiewicza Av., e-mail address:

More information

Numerical Simulation of Hydro-mechanical Deep Drawing - A Study on the Effect of Process Parameters on Drawability and Thickness Variation

Numerical Simulation of Hydro-mechanical Deep Drawing - A Study on the Effect of Process Parameters on Drawability and Thickness Variation Numerical Simulation of Hydro-mechanical Deep Drawing - A Study on the Effect of Process Parameters on Drawability and Thickness Variation Swadesh Kumar Singh and D. Ravi Kumar* Department of Mechanical

More information

where n is known as strain hardening exponent.

where n is known as strain hardening exponent. 5.1 Flow stress: Flow stress is the stress required to sustain a certain plastic strain on the material. Flow stress can be determined form simple uniaxial tensile test, homogeneous compression test, plane

More information

Simulation of finite volume of hot forging process of industrial gear

Simulation of finite volume of hot forging process of industrial gear 2012 International Conference on Networks and Information (ICNI 2012) IPCSIT vol. 57 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V57.21 Simulation of finite volume of hot forging process

More information

Chapter 15 Extrusion and Drawing of Metals

Chapter 15 Extrusion and Drawing of Metals Introduction Chapter 15 Extrusion and Drawing of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and

More information

NUMERICAL SIMULATION OF MULTI-DIRECTIONAL HOT FORGING FOR THE REDUCTION OF FORGING DEFECTS

NUMERICAL SIMULATION OF MULTI-DIRECTIONAL HOT FORGING FOR THE REDUCTION OF FORGING DEFECTS Numerical simulation of multi-directional hot forging for the reduction of forging defects XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII E. Oñate,

More information

Quality of Simulation Packages for Flashless Hot Forging Operations

Quality of Simulation Packages for Flashless Hot Forging Operations 363 Simulation of Materials Processing: Theory, Methods and Applications, Mori (ed.) 2001 Swets & Zeitlinger; Lisse, ISBN 90 2651 822 6 Quality of Simulation Packages for Flashless Hot Forging Operations

More information

Research Article Optimization of Preform Die Shape for Forging AA2017 Turbine Disk Using Electrostatic Field Theory

Research Article Optimization of Preform Die Shape for Forging AA2017 Turbine Disk Using Electrostatic Field Theory Research Journal of Applied Sciences, Engineering and Technology 7(22): 4817-4823, 2014 DOI:10.19026/rjaset.7.870 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS

PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS Ken-ichiro Mori Department of Mechanical Engineering, Toyohashi University of Technology, Japan Summary Plate forging processes for

More information

Expert system for hot forging design

Expert system for hot forging design Journal of Materials Processing Technology 80 81 (1998) 131 135 Expert system for hot forging design A ngelo Caporalli a,b, Luciano Antonio Gileno a,sérgio Tonini Button a, * a School of Mechanical Engineering,

More information

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability Ajitkumar Gaikwad 1-a, Shreyas Kirwai 1, Provat Koley 2, Dr. G. Balachandran 3 and Dr. Rajkumar Singh 1 1 Kalyani

More information

The die failure prediction and prevention of the orbital forging process

The die failure prediction and prevention of the orbital forging process journal of materials processing technology 201 (2008) 9 13 journal homepage: www.elsevier.com/locate/jmatprotec The die failure prediction and prevention of the orbital forging process J.J. Sheu, C.H.

More information

Photos courtesy of Clifford-Jacobs Forging Co., except where noted.

Photos courtesy of Clifford-Jacobs Forging Co., except where noted. Know Your Photos courtesy of Clifford-Jacobs Forging Co., except where noted. 32 Gear Product News February 2006 Forgings William R. Stott, Managing Editor With fluctuating material prices and often long

More information

9 th International & 6 th European ROLLING Conference 2013 June 10-12, 2013 Venice, Italy

9 th International & 6 th European ROLLING Conference 2013 June 10-12, 2013 Venice, Italy 9 th International & 6 th European ROLLING Conference 2013 June 10-12, 2013 Venice, Italy INTEGRATED FEM CASTING AND ROLLING SIMULATION: PROCESS CHAINING APPROACH ABSTRACT Valente Lorenzo (1) Viscardi

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 ) Rotary swaging forming process of tube workpieces

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) Rotary swaging forming process of tube workpieces Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 2336 2341 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Determination of Flow Stress Data Using a Combination of Uniaxial Tensile and Biaxial Bulge Tests

Determination of Flow Stress Data Using a Combination of Uniaxial Tensile and Biaxial Bulge Tests Determination of Flow Stress Data Using a Combination of Uniaxial Tensile and Biaxial Bulge Tests By Ali Fallahiarezoodar, and Taylan Altan Editor s Note: This article describes a new methodology for accurate

More information

Preform and Process Design of Ti-6Al-4V Compressor Blade using Equipotential Lines and 3D FE Simulation

Preform and Process Design of Ti-6Al-4V Compressor Blade using Equipotential Lines and 3D FE Simulation Int J Advanced Design and Manufacturing Technology, Vol. 11/ No. 1/ March - 2018 43 Preform and Process Design of Ti-6Al-4V Compressor Blade using Equipotential Lines and 3D FE Simulation Mahdi Soleimanzadeh

More information

Experimental and FEM Simulation Analysis of Lateral Extrusion Process on Bimetal Cross Fitting

Experimental and FEM Simulation Analysis of Lateral Extrusion Process on Bimetal Cross Fitting Advances in Materials 2018; 7(3): 67-72 http://www.sciencepublishinggroup.com/j/am doi: 10.11648/j.am.20180703.12 ISSN: 2327-2503 (Print); ISSN: 2327-252X (Online) Experimental and FEM Simulation Analysis

More information

Thermal effects and friction in forming

Thermal effects and friction in forming Thermal effects and friction in forming R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1.Thermal

More information

Increasing of tool life in cold forging by means of fem simulation

Increasing of tool life in cold forging by means of fem simulation Increasing of tool life in cold forging by means of fem simulation Dr. Nikolai Biba QuantorForm Ltd. Moscow Dipl.-Ing. Hendrik Muntinga Industrieberatung Ingenierburo, Ludenschied Dr. Sergey Stebunov QuantorForm

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Finite Element Study on Thermal Fatigue Depth of Aluminum Alloy Die Casting Die

Finite Element Study on Thermal Fatigue Depth of Aluminum Alloy Die Casting Die 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Finite Element Study on Thermal Fatigue Depth of Aluminum Alloy Die Casting Die C. G. Pan,

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing Materials & Processes in Manufacturing ME 151 Chapter 18 Hot Working Processes 1 Introduction Forming of materials their recrystallization temperature Higher temperatures weaken the metal making it more

More information

The Effect of Corner Radii and Part Orientation on Stress Distribution of Cold Forging Die

The Effect of Corner Radii and Part Orientation on Stress Distribution of Cold Forging Die merican Journal of pplied Sciences 5 (4): 296-300, 2008 ISSN 1546-9239 2008 Science Publications The Effect of Corner Radii and Part Orientation on Stress Distribution of Cold Forging Die hmad aharuddin

More information

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability MATEC Web of Conferences 80, Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability Ajitkumar Gaikwad 1-a, Shreyas Kirwai 1, Provat Koley 2, Dr. G. Balachandran 3 and

More information

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 15 Fundamentals of Metal Forming Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing Chapters

More information

ADVANCED NUMERICAL AND PHYSICAL SIMULATION OF THE RING ROLLING PROCESS

ADVANCED NUMERICAL AND PHYSICAL SIMULATION OF THE RING ROLLING PROCESS ADVANCED NUMERICAL AND PHYSICAL SIMULATION OF THE RING ROLLING PROCESS S. Andrietti 1, J.-L. Chenot 1,2, P. Lasne 1, 1 Transvalor SA, France 2 CEMEF - Mines ParisTech, France 1 Outline Introduction Thermo-mechanical

More information

Analysis of plastic penetration in process of groove ball-section ring rolling

Analysis of plastic penetration in process of groove ball-section ring rolling Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1374~1382 www.springerlink.com/content/1738-494x Analysis of plastic penetration in process of groove

More information

Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b

Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016) Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b 1 Research

More information