CaCO 3 CaO + CO 2 MgCO 3 MgO + CO 2 CaCO 3 MgCO 3 CaO MgO + 2 CO 2 FeCO 3 FeO + CO 2 FeO + CO Fe +CO 2

Size: px
Start display at page:

Download "CaCO 3 CaO + CO 2 MgCO 3 MgO + CO 2 CaCO 3 MgCO 3 CaO MgO + 2 CO 2 FeCO 3 FeO + CO 2 FeO + CO Fe +CO 2"

Transcription

1 A. Fundamentals 1. Introduction 1.1 Principle mechanism Shaft kilns and cupola furnaces are used for the mass conversion and melting of granular and coarse materials. The material is transported through the vertical shaft by gravity. The hot gas flows in a counter current to the material. Typical processes are summarized in Table 1-1. For calcination processes mainly the name shaft kiln is used and for melting processes mainly the name cupola furnace. For the reduction of iron ore the name blast furnace is common. In the following for the general description the designation shaft kiln is used. Calcination of calcite Calcination of magnesite Calcination of dolomite Calcination of iron ore Reduction of iron ore Reduction of lead ore Sintering of fireclay Melting of cast iron scrap Melting of copper scrap and anodes Melting of zinc scrap and ingots Melting of lead scrap Melting of aluminium scrap and ingots Melting of rock for mineral wood Melting of solid waste Table 1-1: Typical processes in shaft kilns CaCO 3 CaO + CO 2 MgCO 3 MgO + CO 2 CaCO 3 MgCO 3 CaO MgO + 2 CO 2 FeCO 3 FeO + CO 2 FeO + CO Fe +CO 2 Table 1-2 summarizes typical characteristic values of cupola furnaces and blast furnaces and Table 1-3 presents those values of common shaft kilns. From the two tables it can be seen that blast furnaces are the biggest one in size and max. outflow. However, the outflow in relation to cross section is only a little bit larger than that of normal shaft kilns. Pure melting furnaces have the highest output flux. Here, the material has only to heat up and to supply with the melting enthalpy. In lime calcination and iron ore reduction the material needs a lot of reaction enthalpy for the mass conversion. This results in a higher energy consumption and a lower outflow flux. The energy supply is relatively high in the coke fired melting furnaces. The air has to be burnt with an excess air number lower than one that CO is produced to protect the iron from oxidation. The flue gas leaving the furnace contains a CO concentration of %. This gas is after burnt to preheat the combustion air. Coke must be used as fuel because it builds a carrier framework for the material and the hot melt flow. Figure 1-1 shows schematically a shaft kiln as an example for the calcination of limestone. Limestone particles are filled in a container, weighed on a balance, lifted to the top of the kiln and then poured into the shaft. The material passes a sluice 101

2 before it falls on the packed bed. The gas has to be separated for cleaning. On the way down the particles are initially preheated from the hot gas and after reaching the reaction temperature calcinated. For the supply with energy fuel and air are injected with burners placed in the wall. The jet hits immediately after leaving the burner against particles and is converted into the vertical direction. The penetration depth of the burner jet in horizontal direction is therefore very low. As a consequence burners inside the bed are necessary. Characteristics Cupola furnaces Blast furnaces Process iron scrap mineral copper iron ore melting melting melting reduction Max. diameter in m Cross sectional area in m Shape cross section round rectangular round round round Height of packed bed in m Max. working volume in m Size of particles in mm scrap scrap irregular Max. output in t/d Output flux in t/d/m Production rate in t/d/m 3 1, Mean solid velocity in m/h Air flux in mstp / m / s Gas pressure at top in bar Gas press. at bottom in bar Hot blast temperature in C Max. solid temp. in C Max. gas temp. in C Mean kind of fuel coke natural gas coke natural gas coke Fuel energy supply in kiln MJ/kg output Table 1-2: Typical characteristics of Cupola and Blast furnaces 102

3 Characteristics Normal shaft Mixed-Feed Annular PFR Output capacity, t/d Inner diameter, m * Cross-sect. area, m * Height of solid bed, m Output flux, t/d/m * Solid velocity, m/h Air flux, m 3 STP/m 2 /s Min. particle size, mm Max. particle size, mm Total press., drop, mbar Mean kind of fuel Energy supply natural/lean gas lignite anthracite coke natural/lean gas coal/oil natural/lean gas lignite/pet coke MJ/kg lime kcal/kg lime Max. solid temp., C Max. gas temp., C Lime type hard-burnt hard/middle middle/soft soft-burnt reactivity low low/medium medium/high high * Data given for one shaft Table 1-3: Typical characteristics of common shaft kilns 103

4 The figure shows a central burner with axial supply. A lot more designs exist to improve the horizontal mixing in the cross section. The basic constructions are discussed later in a separate chapter. The homogenization of the temperature and concentration in the cross section is a main problem in shaft kilns. Above the burners the calcination takes place. Below the burners the lime has to be cooled down. Therefore, a part of the combustion air flows from the bottom in counter current through the packed bed. The output of the material is managed in different ways, e. g. by moving plates. The gas leaving the shaft contains a lot of dust which is formed by the friction between the particles, by cracking of particles and from the ash of coal firings. Therefore a filter system is necessary. All openings at the top of the kiln for charging stone and the bottom of the shaft for discharging lime are sealed by hydraulically operated traps. Figure 1-2 shows for a normal shaft kiln as an example the typical profile of the mean temperature of the solid and of the gas. For the explanation of the process it makes sense to divide the kiln into zones. After inserting the particles with ambient temperature these are heated up by the hot combustion gas in counter current. The decomposition of the limestone according CaCO 3 CaO + CO 2 can start after reaching temperatures of 810 C 840 C depending on the CO 2 -concentration of the gas because of equilibrium conditions. This is the end of the preheating zone and the beginning of the reaction zone. The end of this zone has to be reached before the injection level of the fuel. Behind this injection lies the cooling zone. Here the particles have to be cooled down to temperatures of about 50 C 80 C. The ambient air in counter current serves as a cooling agent. Above the level of the fuel injection the temperature of the gas increases rapidly. After exceeding the particle temperature heat can be transferred for the endothermic reaction. The mass flow of the gas and of the solid changes along the kiln as it is depicted principally in the below part of Figure 1-2. The input flow of the solid (limestone) is about 1.7 times higher than the output flow (lime) because of the CO 2 separation. The total mass flow of the air for combustion is up to 1.4 to 1.8 times higher as the mass flow of the lime depending on the kind of fuel. Necessary for the cooling in counter current is a mass flow ratio of almost one because the specific heat capacities of lime and air are similar. So a part at the air can also be injected into the kiln together with the fuel which has advantage for the cross sectional homogenisation of the gas. Beginning at the fuel injection level the gas flow increases due to the CO 2 separation and due to the fuel conversion if the fuel is a solid. To calculate the energy consumption for the process energy balances have to be conducted for every zone. This is necessary to ensure that the temperature of the gas at the transition between preheating and reaction zone is always higher than the temperature of the solid. If only the total kiln would be balanced a flue gas temperature could be the result belonging to the dotted line shown in the figure. But this profile is impossible due to the second law of thermodynamics. Such critical positions are named in chemical process engineering as pinch points. 104

5 The process shown in Figure 1-2 is totally in counter current. Therefore, the lime reaches at the end of the calcination a relativity high temperature which gives a so called hard burnt lime with a low reactivity. If a so called soft burnt lime with a high reactively has to be produced calcination in co current is necessary. In this case the cooling air is sucked off at the end of the cooling zone and injected again in the kiln together with the fuel at the beginning of the calcination zone. At the end of this zone the hot combustion gas is sucked off and injected into the preheating zone. The different calcination processes will be discussed later in separate chapters in more detail. Figure 1-3 depicts schematically a cupola furnace for the melting of cast iron. Scrap, coke and lime are weighed, transported to the top and fall in the furnace passing again a sluice. Near the bottom hot air is injected through several nozzles, which are distributed on the circumference. The distribution to the single nozzles occurs by a big annular tube. With the air a little bit of an additional fuel can be injected. This fuel can be coal powder, heavy oil or residue derived fuel. The air burns with the coke mainly to CO 2. On the way up CO 2 reacts with coke to CO according to the Boudouard reaction C + CO 2 2CO. The produced CO prevents the oxidizing of the iron. That is the reason that coke has to be used as fuel. In the case of the blast furnace the CO reduces the iron ore according FeO + CO Fe + CO 2. The CO 2 reacts again with the coke to give CO. Therefore the top gas contains about Vol. % of CO. The top gas is cleaned and then used as lean fuel gas in other processes. For example it can be burnt in combustion chambers to generate steam or it is burnt in regenerators to preheat the air. In modern processes the air can be preheated up to 1200 C. In the range of the nozzles the scrap melts and flows down above a bed of pure coke. The liquid iron flows out through one or two horizontal orifices. Above the iron melt the slag, which has a lower density than the metal, flows out. To lower the melting temperature of the slag lime is added to the crap and the coke. Figure 1.4 shows typical profiles of the temperature and the mass flow of gas and solid. The solids are preheated from the gas again in counter current. When the coke comes in contact with oxygen it begins to burn and its temperature exceeds that of the scrap. In the melting zone the scrap remains almost at melting temperature. The combustion air is preheated mostly to 1100 C 1300 C. It burns immediately after injection with the coke. At the high temperatures the reaction products are CO 2 and CO. Until down to temperatures of about 900 C the CO 2 reacts with the coke to give 2CO (Boudouard-reaction). That is the limit for the pure preheating zone of the solids. The melting process in cupola furnaces will later be considered more intensively as well. In the following of this chapter an overview will be given about specialities and problems which are mentioned generally. These will be discussed later in separated chapters in detail. 105

6 1.2 Gas flow Pressure drop The gas flow through the packed bed causes a high pressure drop. Therefore, a classifying of the solid is necessary to keep the pressure drop as low as possible. The pressure drop is influenced by the reciprocal value of the void fraction with the power of three and by the reciprocal particle size. The void fraction is the fraction of the gas volume to the volume of the kiln. In a packed bed with particles of different size the small particles fall into the gap between the large particles and reduce the void fraction. A packed bed with particles of equal size has the lowest pressure drop. As a consequence, the particles have to be sieved and classified before inserting in kilns. The ratio between the diameters of the largest and the smallest particle in a kiln should be lower than two. In lime calcinating, for example, some shaft kilns were operated parallel, each kiln with another stone size. For the production of pig iron in blast furnaces, the powdered and concentrated iron ore has to be sintered in a sintering machine at temperatures of about 1200 C. The sinter is then broken and classified. In another way fine iron ore is granulized to pellets. The different materials used, sinter, pellets, coke and lime, are given as layers in the furnace. Packed beds with layers of materials with different size have a lower pressure drop than mixtures. The lower limit of the particle size for an economic pressure drop is about 30 mm. In lime production, where the lower particles from the grinding cannot be enlarged by sintering, these small particles have to be calcinated in rotary kilns. Particles greater than about 150 mm are not used because their calcinating time would be too long. Radial homogenisation The penetration depth of radial injected gas jets is relatively low, as already mentioned before. From industrial experience it is known that the penetration depth is some what in the range of 1 to 1.5 m. Therefore, the diameter of cupola furnaces, in which only radial injection is possible, is limited to 3 or 3.5 m. If higher throughputs are wanted, furnaces with rectangular cross sections are built. The width of this furnace is than limited to 3 or 3.5 m. The problem of rectangular shapes is the strength of the wall due to the thermal expansion. Cylindrical cross sections possess principally a higher strength than other shapes. In blast furnaces with the greatest diameters up to 14 m an un-reacted cone forms around the axis because of the limited penetration depth. In lime shaft kilns internal burners are common to improve the fuel distribution. Lances can be arranged from the top or form the bottom into the bed. Another design is burner beams which are arranged in horizontal direction. Normally they have to be cooled to ensure a sufficient strength. Some lime kilns have an annular cross section. That is for an internal recirculation of gas. In cupola furnaces no internal beams are possible because of the reactions between melt and refractory. 106

7 Limit of gas amount The limit of the gas amount in the kiln is given by the velocity at which particles on the top of the bed are begin to be fluidised and are no more fixed with the bed. This velocity is determined by the smallest particle. 1.3 Solid flow Strength of particles A high strength of the particles is necessary that they do not burst under the big weight of the high packed bed. If particles would crack the small pieces lower the void fraction and disturb the gas flow. Also dust is produced during cracking which leaves the kiln with the gas flow. Above the packed bed the velocity of the gas is much lower as in the bed because the cross section area for the gas flow is reduced in the packed bed. As a result bigger dust particles can not be transported any more and fall down on the packed bed. An enrichment of dust particles follows. The dust layer disturbs considerably the gas flow. The particles lose partly mass because of the reaction, e.g. limestone CaCO 3 CaO + CO 2, iron ore FeO + CO Fe + CO 2, coke C + CO 2 2 CO. Thus, also the reacted particles must have a sufficient strength. Gluing and sticking of particles At high temperatures particles can become soft on their surfaces. They can cling together and form thus heaps. If there are bridges or burner beams in the kiln these heaps can not pass through and block the kiln. Particles can stick to the wall so that the slipping is handicapped. This gluing reduces the cross section. As a consequence the velocity in the middle of the shaft is increased and more dust is contained in the top gas. Because of abrasion and crushing the bed in the lower part of the furnace can be compressed. Then the gas flow is disturbed and the pressure drop increases. Below the hangings zone gaps are formed. 1.4 Control The controlling of such kilns is very difficult, because of the limited possibilities of measuring. In the kiln it is nearly impossible to measure temperatures and concentrations. Through the wall no thermocouples can be stuck into the bed, because of the moving bed they would be cut off. For transient measuring of temperatures small pipes with thermocouples inside could be set on the top of the packed bed and transported between the particles through the kiln. But in the hot region of the kiln, where the temperatures are of greatest interest, the pipes mostly crush. The thermocouple measures only a mixture of the gas and solid temperature. Measurements of the temperature and the concentration of the gas are possible behind the sluice and before injection in the kiln. The problem is to get representative 107

8 values of the cross section. The distribution above the bed cannot be always assumed as homogeneous. An error of the measurements occurs because of false air and leakages. If the material comes out in the solid state, e.g. in lime calcinations, it is difficult to measure the particles temperature. The particles have no uniform temperature. The core is hotter than the surface. The temperatures depend on size and shape. A controlling of the kilns is therewith possible only with input and output data. Another problem for the controlling is the time lag of the kiln. The way through the kiln needs more than one day. The thick wall of the kiln needs some days to reach the steady state. So, the kiln needs a few days to reach new stationary conditions after changing parameters. For a better control mathematical simulations of the processes are required. 1.5 Refractory Lining Requirements for refractory are: - high temperature resistance, no melting or softening at high temperatures - no reaction with the solid and gas - high abrasion resistance for the moving bed - low conductivity to reduce heat loss through the wall. Because one refractory material cannot fulfil all requirements the kiln wall consists of linings and of zones of different materials. Figure 1-5 illustrates a lining of a wall. The inside wear lining has a high strength and abrasion resistance. The outer lining has a high insulation effect. Zones with high temperature need a better quality than zones of low temperature. Especially liquid metals act a high erosion effect on the refractory material. Therefore, in cupola furnaces the refractory in the melting zone has to be replaced after some days of operating. Walls of blast furnaces consist in the melting zone of cooled graphite and corundum stones. All kilns operate under pressure. Therefore an outer steel shell is necessary which must be sealed air tight. Lime shaft kilns have a wear lining in the calcinating zone made of high quality magnetite bricks and backed secondary insulating lining made from light fireclay bricks and calcium silicate boards. The refractory material has to be selected very sensitively for every temperature range and process. 108

9 Fuel Figure 1-1: Scheme of a lime shaft kiln. 109

10 Preheating Combustion Calcination Reaction Cooling Temperature T gas T solid T eq T solid T gas T Lime T e Furnace height Fuel and secondary air T air Preheating zone Reaction zone Cooling zone Mass flow solid gas solid Furnace height gas Fuel and secondary air Cooling air Figure 1-2: Typical temperature and mass flow profiles of solid and gas in a normal shaft kiln. 110

11 Lime Top gas Hot air (wind) 4%C Figure 1-3: Principle of a copula furnace 111

12 Preheating zone Preheating and coke reaction zone Melting zone gas Temperature coke scrap Wind injection gas Mass flow coke scrap Furnace height Figure 1-4: Principle of temperature and mass flow profiles in a cupola furnace 112

13 Preheating zone wear line working line insulation Burning zone Cooling zone Figure 1-5: Lining of a wall of a lime shaft kiln 113

Manufacture of Pig Iron Concentration Calcination Smelting Blast furnace Chemistry of reactions in Blast furnace. 15CY101: Chemistry SRM University 2

Manufacture of Pig Iron Concentration Calcination Smelting Blast furnace Chemistry of reactions in Blast furnace. 15CY101: Chemistry SRM University 2 Manufacture of Pig Iron Concentration Calcination Smelting Blast furnace Chemistry of reactions in Blast furnace. 15CY101: Chemistry SRM University Iron is very reactive and is found in nature in form

More information

Manufacture of Iron & Steel. Prepared By: John Cawley

Manufacture of Iron & Steel. Prepared By: John Cawley Manufacture of Iron & Steel Prepared By: John Cawley Presentation Objectives Identify the basic steps in the production of steel. Identify the properties and uses of iron ore and pig iron. Differentiate

More information

PYROMETALLURGY OF IRON

PYROMETALLURGY OF IRON Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Pyrometallurgy of Iron Common sources of iron-bearing ores: PYROMETALLURGY OF IRON Oxide Ores Stoicheometry Iron Content (wt%) Magnetite

More information

CEMENT MANUFACTURING PROCESS

CEMENT MANUFACTURING PROCESS CEMENT MANUFACTURING PROCESS Definition: Defined as a product material obtained by calcination of calcareous (a material containing lime) and argillaceous (a material which contain silica) materials. According

More information

Development of the Process for Producing Pre-reduced Agglomerates

Development of the Process for Producing Pre-reduced Agglomerates Development of the Process for Producing Pre-reduced Agglomerates JFE TECHNICAL REPORT No. 13 (May 9) MACHIDA Satoshi *1 SATO Hideaki * TAKEDA Kanji *3 Abstract: The Japanese steel industry, accounting

More information

Granular material for use in the construction industry. Aggregates can be natural, industrially manufactured

Granular material for use in the construction industry. Aggregates can be natural, industrially manufactured SLAG VON A Z A AGGREGATES Granular material for use in the construction industry. Aggregates can be natural, industrially manufactured or recycled. AIR-COOLED BLAST FURNACE SLAG During slow cooling of

More information

Power Engineering II. Technological circuits of thermal power plants

Power Engineering II. Technological circuits of thermal power plants Technological circuits of thermal power plants Lay out scheme of coal power plant climatetechwiki.com Technological circuits 2 Coal and ash circuit Air and gas circuit Feed water and steam circuit Cooling

More information

Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries

Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries EUROPEAN COMMISSION Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the December 2001 Executive Summary EXECUTIVE SUMMARY This Reference Document

More information

Pelletizing technologies for iron ore

Pelletizing technologies for iron ore Pelletizing technologies for iron ore The Outokumpu partnership As one of the world s leading developers and suppliers of technology, Outokumpu Technology designs and delivers plants, processes and equipment

More information

Shaun Moss Mars Society Australia June 2006

Shaun Moss Mars Society Australia June 2006 Shaun Moss Mars Society Australia shaunmoss@yahoo.com.au June 2006 Steel is Good! Arguably the most useful material on Earth:! Cheap! Strong! Lightweight! Recyclable! Versatile! The basic material for

More information

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

Pyrometallurgy of iron is still the most important pyrometallurgical process economically. 1 Pyrometallurgy of iron is still the most important pyrometallurgical process economically. Prehistorically, iron was prepared by simply heating it with charcoal in a fired clay pot. Coke is coal that

More information

Metallurgy and lining life in basic oxygen converters

Metallurgy and lining life in basic oxygen converters Metallurgy and lining life in basic oxygen converters Good control of slag development, oxygen flow and lance practice, and use of bottom stirring and re-blow practice are key aspects of the metallurgical

More information

Technology Specification

Technology Specification Technology Specification GENERAL DESCRIPTION OF PROCESS FEEDSTOCK CORE TECHNOLOGY COMPONENTS DESCRIPTION OF THE MODULES Introduction KENTEC Energy is a technology company supplying and developing gasification

More information

EFFECT OF LIMESTONE ADDITION ON THE METALLURGICAL PROPERTIES OF IRON ORE PELLETS

EFFECT OF LIMESTONE ADDITION ON THE METALLURGICAL PROPERTIES OF IRON ORE PELLETS 1 EFFECT OF LIMESTONE ADDITION ON THE METALLURGICAL PROPERTIES OF IRON ORE PELLETS CASR SEMINAR Mikko Iljana Doctoral student, M.Sc. (Tech.) Research Group of Process Metallurgy University of Oulu CONTENTS

More information

Chapter 2.6: FBC Boilers

Chapter 2.6: FBC Boilers Part-I: Objective type questions and answers Chapter 2.6: FBC Boilers 1. In FBC boilers fluidization depends largely on --------- a) Particle size b) Air velocity c) Both (a) and (b) d) Neither (a) nor

More information

REFRACTORIES. Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks

REFRACTORIES. Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks Topics REFRACTORIES Definition Classification Properties Manufacture of refractory bricks Properties and applications of Refractory bricks Definition Substances which can with stand high temperature without

More information

Wet granulation of blast furnace slag has been

Wet granulation of blast furnace slag has been INBA slag granulation system with environmental control of water and emissions As the demand for granulated BF slag continues to grow and environmental constraints become more severe, improvements to slag

More information

PYREJET A MULTI-FUNCTION COMBUSTION/INJECTION SYSTEM FOR EAF STEELMAKING

PYREJET A MULTI-FUNCTION COMBUSTION/INJECTION SYSTEM FOR EAF STEELMAKING PYREJET A MULTI-FUNCTION COMBUSTION/INJECTION SYSTEM FOR EAF STEELMAKING ACI has developed a PyrJet a new proprietary multi-functional burner/injection system for the Electric Arc Furnace (EAF). The new

More information

Sintering studies of Iron Ore Fines of Hospet-Sandur-Bellary sector, Karnataka, India

Sintering studies of Iron Ore Fines of Hospet-Sandur-Bellary sector, Karnataka, India 744 Sintering studies of Iron Ore Fines of Hospet-Sandur-Bellary sector, Karnataka, India Anand V.Kulkarni*, H.M.Jayasheela** *(Manager-Geology, Hospet Steel Limited, Koppal, Karnataka. Email: dravk1309@gmail.com)

More information

Design Innovation and Practice of Laiwu. Steel 3 # 4,000 m³ Blast Furnace

Design Innovation and Practice of Laiwu. Steel 3 # 4,000 m³ Blast Furnace Design Innovation and Practice of Laiwu Steel 3 # 4,000 m³ Blast Furnace Abstract By Mr. Wang Bing, Mr. Yuguohua, Mr. Zhang Xiangguo Shandong Province Metallurgical Engineering Co. Ltd. Jinan 250101, Shandong.

More information

Development of a method for evaluating raw materials for use in iron ore sinter in terms of lime assimilation

Development of a method for evaluating raw materials for use in iron ore sinter in terms of lime assimilation Development of a method for evaluating raw materials for use in iron ore sinter in terms of lime assimilation by W. Ferreira*, R. Cromarty*, and J. de Villiers* Paper written on project work carried out

More information

CEMENT, LIME AND MAGNESIUM OXIDE

CEMENT, LIME AND MAGNESIUM OXIDE IMPEL PROJECT: ENERGY EFFICIENCY IN PERMITTING AND INSPECTION, EXCHANGE OF EXPERIENCES ON HOW THE ISSUES OF ENERGY EFFICIENCY AND REDUCTION OF GREENHOUSE GASES ARE DEALT WITH IN PERMIT PROCEDURES AND INSPECTIONS

More information

ASR - FROM WASTE TO PRODUCTS

ASR - FROM WASTE TO PRODUCTS ASR - FROM WASTE TO PRODUCTS Sattler, H.-Peter and Laage, Bernd LSD Umwelt- und Recyclingtechnologie GmbH, Hanau and R-plus Recycling GmbH, Eppingen Germany The paper will explain WESA-SLF, a dry-mechanical

More information

Services to Technology Providers

Services to Technology Providers Services to Technology Providers Training and Capacity building activities with HP boiler manufacturers Session 3: firing systems Trainer: Frans Baltussen Date: first half 2015 Overview combustion technology

More information

Fire Clay Brick. Pyrophylite Brick. Pyrophylite -SiC-C brick. Pyrophylite -SiC brick. High Alumina Brick. Alumina-SiC-C Brick.

Fire Clay Brick. Pyrophylite Brick. Pyrophylite -SiC-C brick. Pyrophylite -SiC brick. High Alumina Brick. Alumina-SiC-C Brick. Fire Clay Brick Pyrophylite Brick Pyrophylite -SiC-C brick Pyrophylite -SiC brick High Alumina Brick Phosphate unbuned High alumina Brick Mullite brick for dry quenching device Alumina-SiC-C Brick Silica

More information

Production of Iron and Steels

Production of Iron and Steels MME 131: Lecture 24 Production of Iron and Steels Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Topics to discuss 1. Importance of iron and steels 2. The smelting of iron in Blast Furnace 3. The

More information

ThyssenKrupp Industrial Solutions. Our new name is. Maerz Lime Burning Technology

ThyssenKrupp Industrial Solutions. Our new name is.  Maerz Lime Burning Technology Our new name is ThyssenKrupp Industrial Solutions www.thyssenkrupp-industrial-solutions.com Maerz Lime Burning Technology Our Company Maerz Ofenbau AG was established in 1950 in Zurich, Switzerland, by

More information

self evaluation 1.Stannite deposits constitute an important source for which of the following metal

self evaluation 1.Stannite deposits constitute an important source for which of the following metal self evaluation self evaluation 1.Stannite deposits constitute an important source for which of the following metal a) Thorium b) Titanium c) Molybdenum d) Tin 2. In mineral beneficiation a) Mineral is

More information

// WEAR PROTECTION PRODUCTS

// WEAR PROTECTION PRODUCTS // WEAR PROTECTION PRODUCTS // TUBES AND ELBOWS WITH CERAMIC PROTECTION FOR PNEUMATIC TRANSPORT // CERAMIC LINING FOR LARGE SURFACE CONVEYOR NOZZLE Conveyor nozzles are used to accelerate transport with

More information

Special Electrically Resistant Heated Furnaces

Special Electrically Resistant Heated Furnaces Special Electrically Resistant Heated Furnaces Drying of Ceramic Components Autor: Roland Waitz, Malte Möller Many ceramic masses are fabricated in plastic or liquid condition by addition of water. In

More information

MANUFACTURE OF IRON OR STEEL (preliminary treatment of ferrous ores or scrap C22B 1/00; electric heating H05B)

MANUFACTURE OF IRON OR STEEL (preliminary treatment of ferrous ores or scrap C22B 1/00; electric heating H05B) CPC - C21B - 2017.08 C21B MANUFACTURE OF IRON OR STEEL (preliminary treatment of ferrous ores or scrap C22B 1/00; electric heating H05B) The production of iron or steel starting from iron ores, e.g. the

More information

Development of EAF Dust Recycling and Melting Technology Using the Coal-based FASTMELT Process

Development of EAF Dust Recycling and Melting Technology Using the Coal-based FASTMELT Process Development of Recycling and Melting Technology Using the -based FASTMELT Process By M. Tateishi, H. Fujimoto, T. Harada, H. Sugitatsu Kobe Steel, Ltd. Editor s note: this article was adapted from a paper

More information

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA Kuang-di Xu Chinese Academy of Engineering, China ABSTRACT China s iron and steel industry enjoys accelerated development thanks

More information

Effect of Using Oxygen-Enriched Gas during Induration Process of Iron Ore Pellets Containing Solid Fuel

Effect of Using Oxygen-Enriched Gas during Induration Process of Iron Ore Pellets Containing Solid Fuel , pp. 27-31 Effect of Using Oxygen-Enriched Gas during Induration Process of Iron Ore Pellets Containing Solid Fuel M. Alizadeh* 1 Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Tehran,

More information

HOW A BLAST FURNACE WORKS

HOW A BLAST FURNACE WORKS HOW A BLAST FURNACE WORKS Introduction The purpose of a blast furnace is to chemically reduce and physically convert iron oxides into liquid iron called "hot metal". The blast furnace is a huge, steel

More information

Industrial Gas Analyzers in Applications Information

Industrial Gas Analyzers in Applications Information Industrial Gas Analyzers in Applications Information Engine and Diesel Testing www.eurotron.co.kr Thousands of internal combustion engines are located throughout the world. They range in size from small

More information

How iron ore pelletizing has recently gained new kiln efficiencies

How iron ore pelletizing has recently gained new kiln efficiencies How iron ore pelletizing has recently gained new kiln efficiencies More stable kilns, improved productivity and enhanced process control are delivering more for the industry than ever before. Extract from

More information

Heat Balance in Pyrometallurgical Processes

Heat Balance in Pyrometallurgical Processes Heat Balance in Pyrometallurgical Processes The heat balance shows the important sources of heat energy and their relative contribution to the total energy usage in a process The heat balance in general

More information

Lecture ( 2 ) Clay Brick. Bricks. Classification of Bricks

Lecture ( 2 ) Clay Brick. Bricks. Classification of Bricks Bricks One of the oldest building material brick continues to be a most popular and leading construction material because of being cheap, durable and easy to handle and work with. Clay bricks are used

More information

TSR. Kilns. Lime Technologies

TSR. Kilns. Lime Technologies TSR Kilns Lime Technologies Contents Page LIMESTONE... TO LIME 4 Twin shaft regenerative process TSR KILN MODELS 8 Cim-RT kiln rectangular section Cim-TD kiln «twin-d» section Cim-RD kiln round section

More information

Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 353 PYROMETALLURGY Course Objectives Understand the fundamental concepts of pyrometallurgy Understand the concepts of materials and energy

More information

Environmentally Friendly Process Technology at Hirohata Works

Environmentally Friendly Process Technology at Hirohata Works Technology Environmentally Friendly Process Technology at Hirohata Works UDC 669. 054. 83 : 629. 11. 012. 5 Masao IGUCHI* Kazutaka MATSUMOTO Tsuyoshi YAMAZAKI Abstract In 1993, Nippon Steel Corporation

More information

General Principle of Isolation of Elements (NCERT)

General Principle of Isolation of Elements (NCERT) Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

EAF Technology and process

EAF Technology and process EAF Technology and process In the last 100 years,the EAF technology has evolved to meet the demands of higher productivity, improved quality of product and flexibility of metallic inputs. The product mix

More information

CHAPTER-6: SUMMARY AND CONCLUSIONS

CHAPTER-6: SUMMARY AND CONCLUSIONS CHAPTER-6: SUMMARY AND CONCLUSIONS 190 6. SUMMARY AND CONCLUSIONS 6.1 Summary of laboratory test work Based on the entire laboratory test work, findings are summarized as following; 6.1.1 Characterization

More information

Casting & Welding Engineering (IE 203)

Casting & Welding Engineering (IE 203) Casting & Welding Engineering (IE 203) Second Year, Industrial Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Furnaces 2 What is a Furnace? Introduction Equipment

More information

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS INTEXT QUESTIONS GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS Question 6.1: Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method? If the ore or the gangue

More information

R A S C H K A. Compact -Fluidized Bed Incinerator

R A S C H K A. Compact -Fluidized Bed Incinerator R A S C H K A Compact -Fluidized Bed Incinerator Lonza Engineering Ltd Muenchensteinerstrasse 38,CH-4002 Basel, Switzerland phone: +41 61 316 8606 fax:+41 61 316 9606 e-mail: info.engineering@lonza.com

More information

HYL III: Status And Trends

HYL III: Status And Trends HYL III: Status And Trends by Raúl Quintero, President HYL Technology Division, Hylsa, S.A. de C.V. presented at the Gorham/Intertech Conference on Iron & Steel Scrap, Scrap Substitutes and Direct Steel

More information

ABOUT SLRM. SLRMetaliksiscertifiedbyQMSISO9001:2008, EMS ISO14001:2004andOHSAS 18001:2007 in 2015

ABOUT SLRM. SLRMetaliksiscertifiedbyQMSISO9001:2008, EMS ISO14001:2004andOHSAS 18001:2007 in 2015 1 ABOUT SLRM SLRMetaliksiscertifiedbyQMSISO9001:2008, EMS ISO14001:2004andOHSAS 18001:2007 in 2015 Located near Hospet, World heritage center and steel city of Karnataka, spread out in more than 200 acres

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

NATIONAL CERTIFICATE (VOCATIONAL) NQF LEVEL 3 NOVEMBER

NATIONAL CERTIFICATE (VOCATIONAL) NQF LEVEL 3 NOVEMBER MARKING GUIDELINE NATIONAL CERTIFICATE (VOCATIONAL) NQF LEVEL 3 NOVEMBER 2009 This memorandum consists of 5 pages. MARKING GUIDELINE -2- NC1520(E)(N3)/V QUESTION 1: GENERAL 1.1.1 True 1.1.2 True 1.1.3

More information

FURNACES. A furnace is a device used for heating. The name derives from Latin Fornax; oven.

FURNACES. A furnace is a device used for heating. The name derives from Latin Fornax; oven. FURNACES A furnace is a device used for heating. The name derives from Latin Fornax; oven. The Oxford English Dictionary defines a furnace as an enclosed structure for intense heating by fire, esp. of

More information

Materials engineering. Iron and steel making

Materials engineering. Iron and steel making Materials engineering Iron and steel making Metals: rarely exist in pure state mostly in ores Ore: Metallic and other compounds, mostly oxides Metallic content: Iron ores: 30-70% Fe Copper ores: 0.1-0.8

More information

Results of declining coal quality on boiler remnant life T Vosloo/K McIntyre

Results of declining coal quality on boiler remnant life T Vosloo/K McIntyre Results of declining coal quality on boiler remnant life T Vosloo/K McIntyre July 2014 Results of declining coal quality on boiler remnant life Watertube Boilers Package Boilers Water tube Coal size Inhibition

More information

Energy Saving Measures in. Cement Industry

Energy Saving Measures in. Cement Industry CH2356 Energy Engineering Energy Saving Measures in Cement Industry Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Concrete Technology. 1- Neville, AM and Brooks J.J." Concrete Technology" Second Edition, 2010.

Concrete Technology. 1- Neville, AM and Brooks J.J. Concrete Technology Second Edition, 2010. Syllabus. Introduction 2. Cement 3. Aggregate 4. Fresh Concrete 5. Strength of Concrete 6. Elasticity, Shrinkage and Creep 7. Concrete Durability 8. Concrete Mix Design 9. Special Concretes Text Book -

More information

Modelling and Simulation of Thermodynamic Processes of Vertical Shaft Kiln in Magnesia Plant Using CFD Code Fluent

Modelling and Simulation of Thermodynamic Processes of Vertical Shaft Kiln in Magnesia Plant Using CFD Code Fluent Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 85 Modelling and Simulation of Thermodynamic Processes of Vertical

More information

REDESIGN OF SECONDARY MAGNESIUM METALLURGY IN THE COMPLEX MG SERBIEN

REDESIGN OF SECONDARY MAGNESIUM METALLURGY IN THE COMPLEX MG SERBIEN REDESIGN OF SECONDARY MAGNESIUM METALLURGY IN THE COMPLEX MG SERBIEN Jelena ULJAREVIĆ Innovation Center of the Faculty of Technology and Metallurgy in Belgrade Željko KAMBEROVIĆ, Gordana KOKEZA, Darko

More information

CZ.1.07/2.3.00/

CZ.1.07/2.3.00/ NEW CREATIVE TEAMS IN PRIORITIES OF SCIENTIFIC RESEARCH CZ.1.07/2.3.00/30.0055 This project is funded by Structural Funds of the European Union (ESF) and state budget of the Czech Republic Theme: Experimental

More information

Investigating the Effect of Coal Mineral Matter on Blast Furnace Coal Injection

Investigating the Effect of Coal Mineral Matter on Blast Furnace Coal Injection Investigating the Effect of Coal Mineral Matter on Blast Furnace Coal Injection 12 th ECCRIA Conference 5-7 th September 2018 Julian Herbert (3 rd Year PhD Student) Supervisors: Richard Marsh, Julian Steer

More information

Coal Quality & Combustion

Coal Quality & Combustion Coal Quality & Combustion Member: American Society of Mechanical Engineers American Chemical Society Society for Mining, Metallurgy, and Exploration North Carolina Coal Institute sponsor Contacts: Rod

More information

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production Qi-xing YANG 1 2 2, Dong-feng HE 2 3 1 Abstract: Wastes from stainless steel production were briquetted together

More information

SINTER BASICITY INCREASE THROUGH INSERTION OF MAGNESIUM SILICATE MINILUMPS BY ALBA FERNÁNDEZ, PAMELA DIAZ, ESTEBAN RUISÁNCHEZ, JAVIER MARTÍNEZ *

SINTER BASICITY INCREASE THROUGH INSERTION OF MAGNESIUM SILICATE MINILUMPS BY ALBA FERNÁNDEZ, PAMELA DIAZ, ESTEBAN RUISÁNCHEZ, JAVIER MARTÍNEZ * SINTER BASICITY INCREASE THROUGH INSERTION OF MAGNESIUM SILICATE MINILUMPS BY ALBA FERNÁNDEZ, PAMELA DIAZ, ESTEBAN RUISÁNCHEZ, JAVIER MARTÍNEZ * SYPNOPSIS PASEK Dunite is an ultramaphic rock with a basic

More information

Laboratory Investigations of the Electrical Resistivity of Cokes and Smelting Charge for Optimizing Operation in Large Ferrochrome Furnaces

Laboratory Investigations of the Electrical Resistivity of Cokes and Smelting Charge for Optimizing Operation in Large Ferrochrome Furnaces Southern African Pyrometallurgy 2006, Edited by R.T. Jones, South African Institute of Mining and Metallurgy, Johannesburg, 5-8 March 2006 Laboratory Investigations of the Electrical Resistivity of Cokes

More information

Chapter 2.5: Insulation & Refractories

Chapter 2.5: Insulation & Refractories Chapter 2.5: Insulation & Refractories Part-I: Objective type questions and answers 1. A thermal insulator is a) good conductor of heat and has high thermal conductivity b) poor conductor of heat and has

More information

Influence of Pellet Basicity (CaO/SiO 2 ) on Iron Ore Pellet Properties and Microstructure

Influence of Pellet Basicity (CaO/SiO 2 ) on Iron Ore Pellet Properties and Microstructure , pp. 14 20 Influence of Pellet Basicity (CaO/SiO 2 ) on Iron Ore Pellet Properties and Microstructure T. UMADEVI, Prasanna KUMAR, Naveen F. LOBO, M. PRABHU, P.C. MAHAPATRA and Madhu RANJAN JSW Steel Limited,

More information

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics 10 Sulphur Problem AkMB Rashid Professor, Department of MME BUET, Dhaka Today s Topics Introduction Behaviour of sulphur in metal and slag Oxidation of sulphur in the furnace Oxidation of sulphur in the

More information

LOW-SILICON FERROSILICON PRODUCTION FROM IRON ORE MATERIALS IN AN OXYGEN REACTOR

LOW-SILICON FERROSILICON PRODUCTION FROM IRON ORE MATERIALS IN AN OXYGEN REACTOR LOW-SILICON FERROSILICON PRODUCTION FROM IRON ORE MATERIALS IN AN OXYGEN REACTOR A.V. Pavlov, K.L. Kossyrev, A.E. Semin, А. Korostylev and V.A. Grygorian Moscow Steel and Alloys Institute, Leninsky pr.

More information

^ Springer. Innovation in Electric. Arc Furnaces. Ilyaz Y. Zinurov. Scientific Basis for Selection. Yuri N. Toulouevski. Revised and Supplemented

^ Springer. Innovation in Electric. Arc Furnaces. Ilyaz Y. Zinurov. Scientific Basis for Selection. Yuri N. Toulouevski. Revised and Supplemented Yuri N. Toulouevski Ilyaz Y. Zinurov Innovation in Electric Arc Furnaces Scientific Basis for Selection The Second Edition Revised and Supplemented ^ Springer Contents 1 Modem Steelmaking in Electric Arc

More information

Recent progress of hot stage processing for steelmaking slags in China considering stability and heat recovery. Guangqiang Li, Hongwei Ni

Recent progress of hot stage processing for steelmaking slags in China considering stability and heat recovery. Guangqiang Li, Hongwei Ni Recent progress of hot stage processing for steelmaking slags in China considering stability and heat recovery Guangqiang Li, Hongwei Ni Contents Introduction Treating and heat recovery system for steelmaking

More information

REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN

REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN C. N. Harman Director (Technical), Facor Alloys Ltd., Shreeramnagar-535 101(A.P.), India;

More information

CFD-study of a 230 MWe coal fired boiler to predict the influence of secondary fuels on slagging, fouling, CO corrosion and NOx formation

CFD-study of a 230 MWe coal fired boiler to predict the influence of secondary fuels on slagging, fouling, CO corrosion and NOx formation Page 1 CFD-study of a 23 MWe coal fired boiler to predict the influence of secondary fuels on slagging, fouling, CO corrosion and NOx formation Johan Vanormelingen*, Alexander Berreth**, Benedetto Risio**

More information

T X S p u e p r e f r i f n i e n Gr G i r n i d n i d n i g n Mi M l i l

T X S p u e p r e f r i f n i e n Gr G i r n i d n i d n i g n Mi M l i l T130X Superfine Grinding Mill T130X superfine grinding mill with innovative design is a new-type grinding machine evolving from the original patented product - TGM Super Pressure Trapezium Mill based on

More information

Recent Progress in Ironmaking Technology for CO2 Mitigation at JFE Steel

Recent Progress in Ironmaking Technology for CO2 Mitigation at JFE Steel JFE TECHNICAL REPORT No. 19 (Mar. 2014) Recent Progress in Ironmaking Technology for CO2 Mitigation at JFE Steel SATO Michitaka*1 YAMAMOTO Tetsuya*2 SAKURAI Masaaki*3 Abstract: In order to contribute of

More information

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals.

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals. Extracting and using metals Only the most unreactive metals such as gold and platinum are found as native metals. ores All the other metals we use are extracted from their ores by chemical processes. native

More information

MATHEMATICAL MODELLING OF THE CEMENT CLINKER BURNING PROCESS

MATHEMATICAL MODELLING OF THE CEMENT CLINKER BURNING PROCESS MATHEMATICAL MODELLING OF THE CEMENT CLINKER BURNING PROCESS Dr. sc. techn. G. Locher, Dipl.-Ing. H. Klein Verein Deutscher Zementwerke e. V., Tannenstraße 2, 40476 Düsseldorf, Germany Summary The mathematical

More information

EXCEL and HIMELT crucibles

EXCEL and HIMELT crucibles EXCE and HIMET crucibles DESCRIPTION EXCE and HIMET are high quality carbon-bonded silicon carbide crucibles manufactured using the latest rollerforming techniques and are designed to cater for a range

More information

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron Use of DRI in EAF s Gregory L. Dressel Dressel Technologies Pawleys Island, SC Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron Introduction When melting DRI or HBI

More information

Characteristics of waste streams and requirements for recycling processes Executive summary

Characteristics of waste streams and requirements for recycling processes Executive summary FOSTERING INDUSTRIAL SYMBIOSIS FOR A SUSTAINABLE RESOURCE INTENSIVE INDUSTRY ACROSS THE EXTENDED CONSTRUCTION VALUE CHAIN Characteristics of streams and requirements for recycling processes Executive summary

More information

raw sinter mix ignition hood direction of strand wind main electrostatic wind boxes wind legs gas flow Fig. 1 Schematic of a typical sinter plant

raw sinter mix ignition hood direction of strand wind main electrostatic wind boxes wind legs gas flow Fig. 1 Schematic of a typical sinter plant Does the handling of iron present a potential health hazard from the release of respirable crystalline silica? IP TWG position paper to support the Iron Sinter REACH dossier 1. INTRODUCTION Sintering is

More information

OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS. Abstract

OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS. Abstract OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS Ahmad Wafiq 1, Ahmed Soliman 1, Tarek M. Moustafa 1, and A.F. Nassar 1 1 Chemical Engineering Department, Faculty of Engineering,

More information

Introduction. 1. MIDREX R process

Introduction. 1. MIDREX R process Kobe Steel, along with MIDREX Technologies, is the world leader in direct reduction (DR) technologies. Kobe Steel has developed a coal based DR process which utilizes non-coking coal as a reductant instead

More information

Unit-V Chemistry of Engineering Materials

Unit-V Chemistry of Engineering Materials Unit-V Chemistry of Engineering Materials Basic terms and definition Cement A material possesses adhesive and cohesive properties and capable of bonding materials like bricks, stones, building blocks,

More information

Section 800 Coarse Aggregate

Section 800 Coarse Aggregate Section 800 Coarse Aggregate 800.1 General Description This section includes requirements for coarse aggregate. All aggregate shall be the specified type, class, and grade, and shall meet the requirements

More information

Lecture 14 Modern trends in BOF steelmaking

Lecture 14 Modern trends in BOF steelmaking Lecture 14 Modern trends in BOF steelmaking Contents: Post combustion Technology of post combustion Potential post combustion issues Slag splashing What is required for slag splashing Liquidus temperature

More information

4th Slag Valorisation Symposium, April Conditioning of Lead and Zinc Slags in Pilot Scale SAF for further Utilization

4th Slag Valorisation Symposium, April Conditioning of Lead and Zinc Slags in Pilot Scale SAF for further Utilization 4th Slag Valorisation Symposium, 15-17 April 2015 Conditioning of Lead and Zinc Slags in Pilot Scale SAF for further Utilization Frank Kaußen, Jörn Böhlke, Christoph Kemper, Bernd Friedrich IME Process

More information

Mechanical Strength of Reduced Iron Ore Pellets Sampled from the LKAB Experimental Blast Furnace

Mechanical Strength of Reduced Iron Ore Pellets Sampled from the LKAB Experimental Blast Furnace Mechanical Strength of Reduced Iron Ore Pellets Sampled from the LKAB Experimental Blast Furnace Anna Brännmark *, Anna Dahlstedt **, Caroline Stillberg ***, Gunilla Hyllander **** * LKAB SE-971 28 Luleå

More information

The generic requirements from blast furnace refractories are summarised below:

The generic requirements from blast furnace refractories are summarised below: BLAST FURNACE In the blast furnace iron ore is melted and reduced by coke and limestone. The materials are charged from the furnace top to form layers. Hot blast blown from furnace bottom burns coke and

More information

Continous Carbonate Looping Tests in a 1 MWth Pilot Plant

Continous Carbonate Looping Tests in a 1 MWth Pilot Plant Petersenstrasse 30 64287 Darmstadt / Germany Phone: +49 6151 16 2191 www.est.tu-darmstadt.de Continous Carbonate Looping Tests in a 1 MWth Pilot Plant Bernd Epple, J.Kremer, J.Ströhle September 2 th -

More information

NEW EAF DUST TREATMENT PROCESS : ESRF MICHIO NAKAYAMA *

NEW EAF DUST TREATMENT PROCESS : ESRF MICHIO NAKAYAMA * NEW EAF DUST TREATMENT PROCESS : ESRF BY MICHIO NAKAYAMA * SYNOPSYS: Electric arc furnaces (EAF) generate much dust during operation, which contains very high percentages of zinc, lead, and iron, as well

More information

STUDIES ON INFLUENCE OF LIQUID LEVEL ON BLAST FURNACE PERFORMANCE AND MONITORING OF HEARTH DRAINAGE

STUDIES ON INFLUENCE OF LIQUID LEVEL ON BLAST FURNACE PERFORMANCE AND MONITORING OF HEARTH DRAINAGE STUDIES ON INFLUENCE OF LIQUID LEVEL ON BLAST FURNACE PERFORMANCE AND MONITORING OF HEARTH DRAINAGE Dr. Baidya Nath Roy 1 and Uddeshya Kumar 2 International Journal of Latest Trends in Engineering and

More information

Blast Furnace Regions Iron Making Furnace

Blast Furnace Regions Iron Making Furnace Blast Furnace Regions Iron Making Furnace The thickness of the lining depends on the furnace size STACK LINING The lining in stack should have good abrasion resistance and resistance to CO attack. In general,

More information

Module: 4 Lecture: 17

Module: 4 Lecture: 17 Module: 4 Lecture: 17 SULFURIC ACID INTRODUCTION Sulfuric acid (H2SO4) is a highly corrosive strong mineral acid. It is a colorless to slightly yellow viscous liquid which is soluble in water at all concentrations.

More information

Steel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering

Steel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering Steel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 16 Modern Steelmaking II, Electric

More information

Reduction in Charge Requirements of Hismeltiron-Making Process in Indian Context

Reduction in Charge Requirements of Hismeltiron-Making Process in Indian Context American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-12, pp-102-108 www.ajer.org Research Paper Open Access Reduction in Charge Requirements of Hismeltiron-Making

More information

Waste treatment technologies I

Waste treatment technologies I Waste treatment technologies I - Mechanical treatment, waste recycling, thermal treatment - INVENT Final Meetings Content 1. Waste recycling - basics 2. Mechanical waste treatment - Size reduction - Screening

More information

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering Time: 3 Hrs. Prelim Question Paper Solution [Marks : 70 Q.1 Attempt any FIVE of the following. [10] Q.1(a) Explain difference between Thermodynamic

More information

Strong under tension and compression. Malleable. Low density. Have a dull appearance. Good conductors of electricity and heat

Strong under tension and compression. Malleable. Low density. Have a dull appearance. Good conductors of electricity and heat Revision from Year 10: Properties of Metals and Non-Metals Read CC pp182-183 Use arrows to link the properties with the materials: Strong under tension and compression Malleable Low density Have a dull

More information