PHOTOVOLTAIC CELLS

Size: px
Start display at page:

Download "PHOTOVOLTAIC CELLS"

Transcription

1 PHOTOVOLTAIC CELLS

2 How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free from their bond. Due to the structure of semiconductor, electron are forced to flow in one direction which creating electrical current Photovoltaic cells are not 100% efficient in part due to reflection of light spectrum, some too weak to create electricity (IR ray) and some create heat energy instead of electricity (UV ray)

3 Monocrystalline Silicon PV Panel Made from a single silicon crystal, more efficient, though more expensive than the newer and cheaper polycrystalline and thin-film PV panel technologies Easily recognizable by an external even colouring and uniform look, indicating high-purity silicon Monocrystalline solar cells are made out of silicon ingots, which are cylindrical in shape Have the highest efficiency rates since they are made out of the highest-grade silicon. The efficiency rates of monocrystalline solar panels are typically 15-20%.

4 Polycrystalline Silicon PV Panel Recognizable by a visible grain, a metal flake effect Can be synthesized by allowing Silicon (liquid) to cool using a seed crystal. The other methods for crystallizing amorphous silicon to form is by using high temperature Chemical Vapour Deposition (CVD) This Polycrystalline Silicon panel is almost as good as single cell Monocrystalline Silicon panels. But have better efficiency than thin film solar panels.

5 Thin-Film PV Panel Thin Film is a second generation solar cell that is made by depositing one or more thin layers of material on substrate such as plastic, metal or glass There are several type of thin-film photovoltaic panel used such as Organic Photovoltaic Cell (OPV), Amorphous Silicon (a Si / TF Si), Copper Indium Gallium Selenide (CIGS / CIS), Perovskite, Dye Sensitized (DSSC) and Cadmium Telluride (CdTe) DSSC Dye Sensitized Thin Film Perovskite OPC Organic Photovoltaic Cell a Si / TF Si Amorphous Silicon CIGS / CIS Copper Indium Gallium Selenide CdTe Cadmium Telluride

6 Organic Photovoltaic Cell (OPC) OPC consists of one or several photoactive materials sandwiched between two electrodes. In bilayer OPC cell, sunlight is absorbed by Photoactive Layer. This layer contain donor and acceptor semiconducting organic material that able to generate photocurrents. Have ability to be utilized in large area and flexible solar modules The manufacturing cost of this cell can be reduced due to their lower cost compared to silicon-based materials and the ease of device manufacturing + + To Anode - - Charge Separation Sunlight Absorbed To Cathode

7 Amorphous Silicone (a Si / TF Si) Formed by depositing a thin layer of silicon material (using vapour) about 1 µm thick on a substrate material such as glass or metal The overall thickness of solar cell is just 1 µm, or about 1/300th the size of mono - crystalline silicon solar cell Red Cell Green Cell Back Reflector Film Layer Blue Cell Transparent Conductive Oxide Film Thickness of Multijunction Cell = <1.0 µm The efficiency rate of this cell are lesser than crystalline silicone panel due to Staebler Wronski effect - defect density of hydrogenated amorphous silicon (a- Si:H) increases with light exposure, causing an increase in the recombination current and reducing the efficiency Flexible Stainless Steel Substrate Based on the research, Staebler Wronski effect can be reduced by using Silane Gas

8 Copper Indium Gallium Selenide (CIGS) Sunshine Transparent Conductive Oxide (TCO) Cadmium Sulfide (CdS) Copper Indium Gallium Selenide (CIGS) Molybdenum Substrate (Glass, Metal Foil) Manufactured by depositing a thin layer of copper, indium, gallium and selenide on glass or plastic backing, along with electrodes on the front and back to collect current The layers are thin enough to be flexible, allowing them to be deposited on flexible substrates. However, as all of these technologies normally use hightemperature deposition techniques, the best performance normally comes from cells deposited on glass. Commercial CIGS modules typically have efficiencies between 12% and 14%

9 Cadmium Telluride (CdTe) Based on the use of cadmium telluride, a thin semiconductor layer designed to absorb and convert sunlight into electricity Smallest carbon footprint, lowest water use and shortest energy payback time of all solar technologies Glass Substrate Indium Tin Oxide (Low Sensitivity TCO) Tin Oxide (High Sensitivity TCO) n-doped Cadmium Sulphide (Window Layer) p-doped Cadmium Telluride (Absorber) Metal Contact (Ti or Au) Currently industry uses thermal PVD methods for the deposition of the materials utilised in the cell (either Close Space Sublimation (CSS) or Vapour Transport Deposition (VTD) Sputtering is an alternative PVD deposition method which allows much better uniformity control. Moreover, sputtering allows reduction of the growth temperatures from ºC used for CSS and VTD to, potentially, as low as room temperature.

10 Perovskite Type of mineral that was first found in the Ural Mountains and named after Lev Perovski who was the founder of the Russian Geographical Society. A perovskite structure is any compound that has the same structure as the perovskite mineral Formed of calcium, titanium and oxygen in the form CaTiO 3. Meanwhile, a perovskite structure is anything that has the generic form ABX 3 and the same crystallographic structure as perovskite (the mineral) Dependant on which atoms/molecules are used in the structure, perovskites can have an interesting properties including superconductivity, giant magnetoresistance, spin dependent transport (spintronic) and catalytic properties Perovskite (CaTiO 3 ) A schematic of a perovskite crystal structure

11 Perovskite The most efficient devices so far have been produced with the following combination of materials in the usual perovskite form ABX 3 A = An organic cation - methylammonium (CH 3 NH 3 )+ B = A big inorganic cation - usually lead(ii) (Pb 2 +) X 3 = A slightly smaller halogen anion usually chloride (Cl-) or iodide (I-) A B X 3 Organo Metal Trihalide (or trihalide) Methylammonium Lead Iodide (or triiodide) Plumbate Chloride (or trichloride) Glass ITO Hole Interface Layer Perovskite ABX 3 Electron Interface Layer Metal Back Contact

12 Dye Sensitized (DSSC) Likened to artificial photosynthesis due to the way in which it mimics natures absorption of light energy A disruptive technology that can be used to produce electricity in a wide range of light conditions, indoors and outdoors, enabling the user to convert both artificial and natural light into energy Electrically Conductive Electrode e Dye Light/Indoor Light Counter Electrode Thin and mechanically robust allowing for heat to be radiated quickly and efficiently, which avoids the problem faced by traditional silicon-based solar cells DSSCs work in low-light conditions. Due to their very favourable electrochemical kinetics, DSSCs do not share the same cut-off point as other solar cells in terms of charge carrier mobility and recombination e TiO 2 e e e e e e e DC Current 3I- I - 3 Electrolyte e e

13 Dye Sensitized (DSSC) As sunlight strikes the molecular dye, after passing through the transparent electrode, an electron is ejected and makes its way through the titanium dioxide (TiO 2 ) nanoparticle layer The electrons flow towards the transparent electrode where load collecting takes place before flowing on to an external circuit The electrons are reintroduced into the cell through the counter electrode where the electrolyte transports the electrons to the dye molecule

14 Comparison (Crystalline Silicon vs Thin Film) Cell Technology Crystalline Silicon Thin Film Types of Technology Voltage Rating (Vmp/Voc) *higher is better as there is less gap in Voc and Vmp Temperature Coefficient I-V Curve Fill Factor *idealized PV cell is 100% Monocrystalline Silicon Polycrystalline Silicon String Ribbon Amorphous Silicon Copper Indium Gallium Selenide (CIGS) Organic Photovoltaic (OPV) Cadmium Telluride (CdTe) Dye Sensitized (DSSC) 80% - 85% 72% - 78% Higher Lower *lower is beneficial at high ambient temperature 73% - 82% 60% - 68%

15 Comparison (Crystalline Silicon vs Thin Film) Cell Technology Crystalline Silicon Thin Film Module Construction Inverter Compatibility and Sizing Mounting Systems DC Wiring With Anodized Aluminium Lower temperature coefficient is beneficial Industrial Standard Industrial Standard Frameless, sandwiched between glass; lower cost and weight Need to consider factor such as temperature coefficient, different of Voc and Vmp Special Clips and Structure but in some cases, significant save in labour cost May need combination of circuits and fuses Application Type Residential, Commercial and Utility Commercial and Utility Required Area Industrial Standard May require up to 50% more space for given project size

16 Efficiency and Cost Comparison (Crystalline Silicon vs Thin Film) 1 st Generation PV Technology Units Monocrystalline Silicon Polycrystalline Silicon Best Research Solar Cell Efficiency at AM1.5* Confirmed Solar Cell Efficiency at AM1.5 Commercial PV Module Efficiency at AM1.5 Confirmed Maximum PV Module Efficiency % 24.7 % % % PV Module Cost** USD/W State of Commercialisation Mature with large scale production Mature with large scale production *Standard Testing Condition, Temperature 25 C, Light Intensity 1000W/m^2, Air Mass 1.5.

17 Efficiency and Cost Comparison (Crystalline Silicon vs Thin Film) 2 nd Generation PV Technology Units Amorphous Silicon CIGS CdTe Best Research Solar Cell Efficiency at AM1.5* Confirmed Solar Cell Efficiency at AM1.5 Commercial PV Module Efficiency at AM1.5 Confirmed Maximum PV Module Efficiency % 10.4 Single Junction 13.2 Tandem % % % 7.1 / PV Module Cost** USD/W State of Commercialisation Early deployment phase, medium scale production Early deployment phase, medium scale production Early deployment phase, small scale production *Standard Testing Condition, Temperature 25 C, Light Intensity 1000W/m^2, Air Mass 1.5.

18 Efficiency and Cost Comparison (Crystalline Silicon vs Thin Film) 3 rd Generation PV Technology Units Concentrated PV Dye-Sensitized (DSSC) Organic PV (OPV) Best Research Solar Cell Efficiency at AM1.5* Confirmed Solar Cell Efficiency at AM1.5 Commercial PV Module Efficiency at AM1.5 Confirmed Maximum PV Module Efficiency % % % % PV Module Cost USD/W State of Commercialisation Just commercialized, small scale production R&D Phase R&D Phase *Standard Testing Condition, Temperature 25 C, Light Intensity 1000W/m^2, Air Mass 1.5.

19 Solar Cell Efficiency (Research Cell)

20 Solar Cell Degradation The rated power output of solar panels typically degrades at about 0.5%/year However, thin-film solar panels (a-si, CdTe and CIGS) degrades faster than panels that are based on mono and polycrystalline solar panels Due to extreme weather, panels in hot climates exhibited large decreases in production over time - close to 1% per year - mainly due to high levels of UV exposure Solar panels typically degrade faster in the first couple of years of their life Solar Cell Type Output Loss in One Year (%) Pre Post Cadmium Telluride (CdTe) Amorphous Silicon (a-si) Copper Indium Gallium Selenide (CIGS) Monocrystalline Silicon Polycrystalline Silicon

21 Future of Solar Energy (ASEAN PV Market Share) ASEAN PV MARKET SHARE Indonesia Malaysia Thailand Philippines Vietnam Others [CATEGORY NAME] [VALUE] [CATEGORY [CATEGORY NAME] NAME] [VALUE] [VALUE] [CATEGORY NAME] [VALUE] With annual solar radiation levels ranging from 1,460 to 1,900 kwh/m^2 per year the region has some of the highest yields in the world [CATEGORY NAME] [VALUE] [CATEGORY NAME] [VALUE] While Thailand and the Philippines dominate the market today, in just a few short years, the other ASEAN countries will be competing for the title of the top PV market in ASEAN s rapidly growing solar power region

22 Future of Solar Energy (ASEAN Total Energy Consumption) Total overall energy consumption increase >100 % in 2013 from Highest overall energy consumption in Thailand and Indonesia (2013).

23 Future of Solar Energy (ASEAN Share of Renewables in Primary Consumption) Total energy consumption for renewable energy decrease from 43 % in 1990 to 23 % in 2012 Renewable energy consumption for Malaysia and Indonesia are less than 25 %

24 Future of Solar Energy (ASEAN Share of Renewables in Electricity Production) No so much change in total share of electricity production (including hydro) from 1990 to 2012 Malaysia and Indonesia share of renewable electricity production (including hydro) are around 8 to 30 % from total energy demand

25 LJ UHV TECHNOLOGY KGC SAINTIFIK Thank You This slide presentation is prepared by Research & Development Team, KGC Saintifik Any inquiries, feel free to us at

KGC SCIENTIFIC TYPES OF SOLAR CELL

KGC SCIENTIFIC  TYPES OF SOLAR CELL KGC SCIENTIFIC www.kgcscientific.com TYPES OF SOLAR CELL How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

PV System Components

PV System Components PV System Components PV modules each containing many PC cells. Connected in series or parallel arrays. Charge Controllers Optimally charges a storage battery for an off grid system, or Grid tie Inverters

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Thin film solar cells

Thin film solar cells Thin film solar cells pn junction: a:si cells heterojunction cells: CIGS-based CdTe-based 1 Amorphous Si large concentration of defects N T >10 16 cm -3 ( dangling bonds D +, D -, D o ) passivation of

More information

The Potential of Photovoltaics

The Potential of Photovoltaics The Potential of Photovoltaics AIMCAL 2008 2008 Fall Conference Vacuum Web Coating Brent P. Nelson October 22, 2008 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

More information

Production of PV cells

Production of PV cells Production of PV cells MWp 1400 1200 Average market growth 1981-2003: 32% 2004: 67% 1000 800 600 400 200 0 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 rest 1.0 1.0 1.0 2.0 4.0

More information

Latest Solar Technologies

Latest Solar Technologies Latest Solar Technologies Mrs. Jothy.M. Saji Mrs. Sarika. A. Korade Lecturer Lecturer IE Dept, V.P.M s Polytechnic, Thane IE Dept, V.P.M s Polytechnic, Thane Mob no. : 9892430301 Mob no. : 9960196179 Email:

More information

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator 1 Outline Why thin film Si? Advantages of Si thin film Si thin film vs. other thin film Hydrogenated amorphous silicon Energy gap

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839)

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Sample geometry used by Adams and Day (1876) for the investigation

More information

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence Solar Photovoltaics We are on the cusp of a new era of Energy Independence Broad Outline Physics of Photovoltaic Generation PV Technologies and Advancement Environmental Aspect Economic Aspect Turkish

More information

Amorphous silicon thin film solar cells

Amorphous silicon thin film solar cells Amorphous silicon thin film solar cells c-si a-si large concentration of intrinsic defects N T >10 16 cm -3 ( dangling bonds D +, D -, D o ) doping more difficult, e.g. if we increase a number of free

More information

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

Grid-Tied PV System with Energy Optimization

Grid-Tied PV System with Energy Optimization International Journal of Engineering Works Kambohwell Publisher Enterprises Vol. 4, Issue 10, PP. 184-189, October 2017 www.kwpublisher.com Grid-Tied PV System with Energy Optimization Maryam Shahjehan,

More information

Institute for Sustainable Energy, University of Malta

Institute for Sustainable Energy, University of Malta Institute for Sustainable Energy, University of Malta SUSTAINABLE ENERGY 2016: THE ISE ANNUAL CONFERENCE Tuesday 4 th October 2016, The Auditorium, University of Malta, Valletta Campus, Malta ISBN 978-99957-853-1-4

More information

13.4 Chalcogenide solar cells Chalcopyrite solar cells

13.4 Chalcogenide solar cells Chalcopyrite solar cells 13. Thin-Film Solar Cells 201 Figure 13.19: The crystal structure of copper indium diselenide, a typical chalcopyrite. The colors indicate copper (red), selenium (yellow) and indium (blue). For copper

More information

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET)

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) The Greenhouse Effect 270 ppm carbon dioxide (CO 2 ) in the atmosphere absorbs outgoing

More information

National Institute of Solar Energy visit by Prosper.net 2016 Group 2

National Institute of Solar Energy visit by Prosper.net 2016 Group 2 National Institute of Solar Energy visit by Prosper.net 2016 Group 2 Madhuri Nanda, Maja Gajic Napapat Permpool, Rui Wu Introduction National Institute of Solar Energy (NISE) is an autonomous institute

More information

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP im- PHYSICSOF SOLARCELLS Jenny Nelson Imperial College, UK ICP Imperial College Press Contents Preface v Chapter 1 Introduction 1 1.1. Photons In, Electrons Out: The Photovoltaic Effect 1 1.2. Brief History

More information

High Purity Materials for. Photovoltaics

High Purity Materials for. Photovoltaics High Purity Materials for Photovoltaics A photovoltaic substance is a material used in the creation solar cells that convert sunlight directly into electricity. The long-term goal of photovoltaic (PV)

More information

1 Introduction 1.1 Solar energy worldwide

1 Introduction 1.1 Solar energy worldwide 1 Introduction 1.1 Solar energy worldwide Solar energy, the earth s source of life, has an enormous potential to also become earth s inexhaustible and clean energy/electricity source. Each year the earth

More information

Course schedule. Universität Karlsruhe (TH)

Course schedule. Universität Karlsruhe (TH) Course schedule 1 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals 3. Solar cell working principles / pn-junction solar cell 4. Silicon solar cells 5. Copper-Indiumdiselenide

More information

Solar and Wind Energy

Solar and Wind Energy Jerry Hudgins Solar and Wind Energy Department of Electrical Engineering 1 Average Irradiation Data (Annual) from Solarex. The units on the map are in kwh/m 2 /day and represent the minimum case values

More information

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC Markets for Indium-Based Materials in Photovoltaics Nano-405 Published September 2011 NanoMarkets, LC NanoMarkets, LC PO Box 3840 Glen Allen, VA 23058 Tel: 804-360-2967 Web: Chapter One: Introduction 1.1

More information

Solar Power for Ham Radio. KK4LTQ

Solar Power for Ham Radio. KK4LTQ Solar Power for Ham Radio KK4LTQ sysop@kk4ltq.com http://kk4ltq.com/solar/solarpower.zip The key facts about each type of solar cell: Overview and Appearance Monocrystalline This is the oldest and most

More information

Research seminar Solar energy harvesting with the application of nanotechnology

Research seminar Solar energy harvesting with the application of nanotechnology Research seminar Solar energy harvesting with the application of nanotechnology By B.GOLDVIN SUGIRTHA DHAS, AP/EEE SNS COLLEGE OF ENGINEERING, Coimbatore Objective By 2050 30 TW The fossil fuels will exhausted

More information

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K.

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K. 2132-6 Winter College on Optics and Energy 8-19 February 2010 Thin Film Technologies D. Bagnall Southampton University U.K. Thin Film Technologies Professor Darren Bagnall Electronics and Computer Science,

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang Research on high efficiency and low cost thin film silicon solar cells Xiaodan Zhang 2013 China-America Frontiers of Engineering, May 15-17, Beijing, China Institute Institute of of photo-electronics

More information

Introduction to Solar Cell Materials-I

Introduction to Solar Cell Materials-I Introduction to Solar Cell Materials-I 23 July 2012 P.Ravindran, Elective course on Solar Rnergy and its Applications Auguest 2012 Introduction to Solar Cell Materials-I Photovoltaic cell: short history

More information

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF Solar Photovoltaic S stems Systems Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF A Focus on Energy Use Solar energy 1% Conventional 1.8x10 12 hydroelectric Watts (continuously) power 45% 6x10

More information

An Evaluation of Solar Photovoltaic Technologies

An Evaluation of Solar Photovoltaic Technologies An Evaluation of Solar Photovoltaic Technologies 15.965 Technology Strategy Paper 1, February 23, 2009 Introduction: Green thinking is the in topic these days. Companies are all claiming to be going green.

More information

Polycrystalline and microcrystalline silicon

Polycrystalline and microcrystalline silicon 6 Polycrystalline and microcrystalline silicon In this chapter, the material properties of hot-wire deposited microcrystalline silicon are presented. Compared to polycrystalline silicon, microcrystalline

More information

Introduction. 1.1 Solar energy

Introduction. 1.1 Solar energy 1 Introduction This chapter provides a general background on solar cells. In particular, the necessity of developing thin-film silicon tandem solar cells is discussed. The working principles of two different

More information

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K Solar Spectrum 1 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K 2 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun

More information

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann Efficiency improvement in solar cells MSc_TI Winter Term 2015 Klaus Naumann Agenda Introduction Physical Basics Function of Solar Cells Cell Technologies Efficiency Improvement Outlook 2 Agenda Introduction

More information

Victor Alfonso MSRE 517 Feb. 25, University of San Diego MSRE Program. Photovoltaics. Image Source: techhamlet.com

Victor Alfonso MSRE 517 Feb. 25, University of San Diego MSRE Program. Photovoltaics. Image Source: techhamlet.com Victor Alfonso MSRE 517 Feb. 25, 2014 University of San Diego MSRE Program Photovoltaics Image Source: techhamlet.com Photovoltaics Photovoltaics ( PV ) utilizes solar cells that act as semiconductor devices

More information

Technical Talk on HK s Largest Solar Power System at Lamma Power Station

Technical Talk on HK s Largest Solar Power System at Lamma Power Station 15 June 2011 Technical Talk on HK s Largest Solar Power System at Lamma Power Station for HKIE EV Division by C.K. Lau Agenda Fundamentals of PV Project Background Feasibility Study and Site Selection

More information

New generation of solar cell technologies

New generation of solar cell technologies New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus

More information

Solar Photovoltaic Technologies: Past, Present and Future

Solar Photovoltaic Technologies: Past, Present and Future Solar Photovoltaic Technologies: Past, Present and Future Xihua Wang, Ph.D., P.Eng. Assistant Professor of Electrical & Computer Engineering University of Alberta April 18, 2018 Outline History of photovoltaic

More information

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE VALUE OF EFFICIENCY & ENERGY GAP FOR DIFFERENT DYE SOLAR CELLS Nserdin A. Ragab* 1, Sawsan Ahmed Elhouri Ahmed 2, Ahmed Hassan Alfaki 3, Abdalsakhi

More information

Renewable Energy CHEM REBECCA SCHEIDT

Renewable Energy CHEM REBECCA SCHEIDT Renewable Energy CHEM20204 2018.3.20 REBECCA SCHEIDT Energy Consumption 1 Energy Consumption U.S. Energy Consumption in 2016 by Source Wind, 2.2% Hydro, 2.5% Biomass, 4.9% Nuclear, 8.6% Coal, 14.6% Solar,

More information

DEGRADATION STUDIES OF A-SI:H SOLAR CELL MODULES UNDER DIFFERENT LOADS IN THE FIELD

DEGRADATION STUDIES OF A-SI:H SOLAR CELL MODULES UNDER DIFFERENT LOADS IN THE FIELD DEGRADATION STUDIES OF A-SI:H SOLAR CELL MODULES UNDER DIFFERENT LOADS IN THE FIELD Chris LUND, Mark SINCLAIR, Trevor PRYOR, Philip JENNINGS AND John CORNISH Division of Science and Engineering, Murdoch

More information

Selenium and Tellurium. G&E Ch. 16 and Supplements

Selenium and Tellurium. G&E Ch. 16 and Supplements Selenium and Tellurium G&E Ch. 16 and Supplements Batteries vs. Electrolytic Cells An electrochemical cell that releases energy is called a galvanic cell (battery, power generation, ΔG

More information

Solar 101 for the Duke Energy Academy

Solar 101 for the Duke Energy Academy Solar 101 for the Duke Energy Academy June 23, 2014 Peter Bermel School of Electrical and Computer Engineering Outline The solar resource Approaches to harvesting solar power Solar photovoltaics technologies

More information

Roll to Roll Flexible Microgroove Based Photovoltaics. John Topping Chief Scientist Big Solar Limited

Roll to Roll Flexible Microgroove Based Photovoltaics. John Topping Chief Scientist Big Solar Limited Roll to Roll Flexible Microgroove Based Photovoltaics John Topping Chief Scientist Big Solar Limited Big Solar Limited, Washington Business Centre 2 Turbine Way, Sunderland SR5 3NZ Email: John@powerroll.solar

More information

Thin Film Solar Cells Fabrication, Characterization and Applications

Thin Film Solar Cells Fabrication, Characterization and Applications Thin Film Solar Cells Fabrication, Characterization and Applications Edited by Jef Poortmans and Vladimir Arkhipov IMEC, Leuven, Belgium John Wiley & Sons, Ltd Contents Series Preface Preface xiii xv 1

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

Amorphous silicon / crystalline silicon heterojunction solar cell

Amorphous silicon / crystalline silicon heterojunction solar cell Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-9 "Amorphous Silicon / Cyrstalline Silicon Heterojunction Solar Cell" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy Amorphous

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018 ME 432 Fundamentals of Modern Photovoltaics Discussion 30: Contacts 7 November 2018 Fundamental concepts underlying PV conversion input solar spectrum light absorption carrier excitation & thermalization

More information

An Introduction to Solar Cell Technology *

An Introduction to Solar Cell Technology * OpenStax-CNX module: m41217 1 An Introduction to Solar Cell Technology * Brittany L. Oliva-Chatelain Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Topics Relevant to CdTe Thin Film Solar Cells

Topics Relevant to CdTe Thin Film Solar Cells Topics Relevant to CdTe Thin Film Solar Cells March 13, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool Lecture 8 : Solar cell technologies, world records and some new concepts Prof Ken Durose University of Liverpool Review papers on PV there are lots do read one or two! Materials Today 2007 NREL efficiency

More information

Green Star Photovoltaic Modelling Guidelines

Green Star Photovoltaic Modelling Guidelines Green Star Photovoltaic Modelling Guidelines September 2013 Contents Contents... 2 Change Log... 2 Introduction... 3 How to use this document... 3 Reporting guidelines... 4 System information... 4 Site

More information

Photovoltaic Systems Engineering

Photovoltaic Systems Engineering Photovoltaic Systems Engineering Ali Karimpour Associate Professor Ferdowsi University of Mashhad Reference for this lecture Mrs. Golmakanion Thesis Feb 2010 Ferdowsi University of Mashhad lecture 2 Lecture

More information

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

HANA BENEŃOVÁ 1, PETR MACH 2

HANA BENEŃOVÁ 1, PETR MACH 2 Wydawnictwo UR 2017 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 3/21/2017 www.eti.rzeszow.pl DOI: 10.15584/eti.2017.3.11 HANA BENEŃOVÁ 1, PETR MACH 2 Suggestion for Modify of

More information

Scholars Research Library. Mallikarjun G. Hudedmani*, Vishwanath Soppimath, Chaitanya Jambotkar

Scholars Research Library. Mallikarjun G. Hudedmani*, Vishwanath Soppimath, Chaitanya Jambotkar Available online at www.scholarsresearchlibrary.com European Journal of Applied Engineering and Scientific Research, 2017, 5(1):1-13 ISSN: 2278-0041 A Study of Materials for Solar PV Technology and Challenges

More information

Article 4: Solar Cell Technology

Article 4: Solar Cell Technology Article 4: Solar Cell Technology Article 4 is a survey of solar cell technologies. Eleven solar technologies are reviewed, five of them currently available and six of them still in the laboratory. A scoring

More information

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund Review of Photovoltaic Solar Cells Op5cs for Energy Course 11/5/13 Liz Lund Outline Solar electricity produc5on How Photovoltaics (PV) work Types of PV Emerging technologies Solar Electricity Produc5on

More information

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF Solar Photovoltaic S stems Systems Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF A Focus on Energy Use Solar energy 1% Conventional 1.8x10 12 hydroelectric Watts (continuously) power 45% 6x10

More information

Solar Power--The Future is Now An In depth look at Solar PV... So Far

Solar Power--The Future is Now An In depth look at Solar PV... So Far Solar Power--The Future is Now An In depth look at Solar PV... So Far March 4, 2015 Presented by: Jim Duncan, Founder & President North Texas Renewable Energy Inc. 1 Something new under the sun indeed.

More information

SolarWindow. Innovating Alternative and Renewable Energy Solutions. Corporate» Technology» Media» Investors» Contact

SolarWindow. Innovating Alternative and Renewable Energy Solutions. Corporate» Technology» Media» Investors» Contact Innovating Alternative and Renewable Energy Solutions A A A Corporate» Technology» Media» Investors» Contact SolarWindow New Energy Technologies is developing the first-of-its kind SolarWindow technology,

More information

Crystalline Silicon Solar Cells

Crystalline Silicon Solar Cells 12 Crystalline Silicon Solar Cells As we already discussed in Chapter 6, most semiconductor materials have a crystalline lattice structure. As a starting point for our discussion on crystalline silicon

More information

Material Needs for Thin-Film and Concentrator Photovoltaic Modules

Material Needs for Thin-Film and Concentrator Photovoltaic Modules Material Needs for Thin-Film and Concentrator Photovoltaic Modules NREL Sarah Kurtz CDMA Conference: Opportunities for Chemicals and Materials in Wind and Solar Energy December 4, 2009 Philadelphia, PA

More information

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers supplementary material Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and

More information

Gerhard Rauter, COO. Q-CELLS SE Leading edge photovoltaic technologies for Europe

Gerhard Rauter, COO. Q-CELLS SE Leading edge photovoltaic technologies for Europe Gerhard Rauter, COO Q-CELLS SE Leading edge photovoltaic technologies for Europe Q-CELLS SE Foundation: November 1999 Core business: Si-Solar Cells Start of production: 2001 Production (2007): 389 MW Number

More information

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light Development of Highly Efficiency, Ultra-light light Weight, Radiation-Resistant, Resistant, High-Specific Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Neelkanth G. Dhere Florida Solar

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Fabrication and testing of DSSC M. Mazalan*, M. Mohd Noh, Y.Wahab, M. N. Norizan, I. S. Mohamad Advanced Multidisciplinary

More information

PV Primer. building science.com. Building America Report June-2002 Building Science Corporation. Abstract:

PV Primer. building science.com. Building America Report June-2002 Building Science Corporation. Abstract: building science.com 2008 Building Science Press All rights of reproduction in any form reserved. PV Primer Building America Report - 0212 June-2002 Building Science Corporation Abstract: PV systems have

More information

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Principles, technologies, systems, costs, markets Assessing PV output Global

More information

Nano-Solar - A Technique for Optimal Usage of Solar Energy

Nano-Solar - A Technique for Optimal Usage of Solar Energy Nano-Solar - A Technique for Optimal Usage of Solar Energy HARISH THUTUPALLI Electronics and Instrumentation engineering, CVR College of Engineering, Hyderabad-501510, AP, India. E.Mail: harish.endeavour.fluky@gmail.com

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Technologies Lecture-33 Prof. C.S. Solanki Energy Systems Engineering IIT Bombay Contents Brief summary of the previous lecture Various Thin film solar cell technologies a-si CdTe, CIGS

More information

light to electricity in p-n junctions

light to electricity in p-n junctions (-) (+) light e - Conducting back contact h + thin conducting transparent film n p light to electricity in p-n junctions + J - V + Dark Current - Photo Current Typical plots of current vs. applied potential

More information

Impact of Materials Prices on Cost of PV Manufacture Part 2

Impact of Materials Prices on Cost of PV Manufacture Part 2 Impact of Materials Prices on Cost of PV Manufacture Part 2 Sustainable Materials for Emerging Energy (SMEET) II Conference The Institute of Materials, Minerals and Mining London 27 th February 2013 Dr

More information

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS Emmanuelle ROUVIERE CEA Grenoble (France) emmanuelle.rouviere@cea.fr Outline Introduction Photovoltaic technologies and market Applications Promising Thin

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Evaluating thermal imaging for identification and characterization of solar cell defects

Evaluating thermal imaging for identification and characterization of solar cell defects Graduate Theses and Dissertations Graduate College 2014 Evaluating thermal imaging for identification and characterization of solar cell defects Jiahao Chen Iowa State University Follow this and additional

More information

Thin film CdS/CdTe solar cells: Research perspectives

Thin film CdS/CdTe solar cells: Research perspectives Solar Energy 80 (2006) 675 681 www.elsevier.com/locate/solener Thin film CdS/CdTe solar cells: Research perspectives Arturo Morales-Acevedo * CINVESTAV del IPN, Department of Electrical Engineering, Avenida

More information

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Introduction Natural photosynthesis, based on complex organic photoactive antennae and metal organic redox

More information

Solar as an environmental product: Thin-film modules production processes and their environmental assessment

Solar as an environmental product: Thin-film modules production processes and their environmental assessment Solar as an environmental product: Thin-film modules production processes and their environmental assessment ECN and M+W Zander FE GmbH Thin Film Industry Forum, Berlin 2009, April 24th Mariska de Wild-Scholten

More information

Dye-Sensitized Solar Cell Sealant

Dye-Sensitized Solar Cell Sealant ThreeBond Technical News Issued January 1, 214 83 Dye-Sensitized Solar Cell Sealant Introduction Renewable energy development is currently underway all across the world in an effort to ensure sufficient

More information

Solar Cells Fabrication Technologies

Solar Cells Fabrication Technologies Solar Cells Fabrication Technologies Crystalline Si Cell Technologies Amorphous Si Cell Technologies Thin Film Cell Technologies For a comprehensive tutorial on solar cells in general, see www.udel.edu/igert/pvcdrom

More information

Fundamentals of Photovoltaic Technology (PV): A Review

Fundamentals of Photovoltaic Technology (PV): A Review Middle-East Journal of Scientific Research 25 (3): 536-542, 2017 ISSN 1990-9233 IDOSI Publications, 2017 DOI: 10.5829/idosi.mejsr.2017.536.542 Fundamentals of Photovoltaic Technology (PV): A Review C.

More information

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS MATERIALS FOR SOLAR ENERGY: SOLAR CELLS ROBERTO MENDONÇA FARIA PRESIDENT OF Brazil-MRS (SBPMat) The concentration of CO 2 in Earth s atmosphere (2011) is approximately 392 ppm (parts per million) by volume,

More information

Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology

Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology Atlanta, January 30, 2012 Introduction In the 1 st Quarter of 2011, renewable energy generated production has surpassed

More information

AQUEOUS CRITICAL CLEANING: A WHITE PAPER THE SIGNIFICANCE IN SOLAR MODULE MANUFACTURING

AQUEOUS CRITICAL CLEANING: A WHITE PAPER THE SIGNIFICANCE IN SOLAR MODULE MANUFACTURING AQUEOUS CRITICAL CLEANING: A WHITE PAPER THE SIGNIFICANCE IN SOLAR MODULE MANUFACTURING Alconox, Inc. Critical Cleaning Experts 30 Glenn St., Suite 309, White Plains NY 10603 USA Tel.914.948.4040 Fax.914.948.4088

More information

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

Technology of dye-sensitized solar cells with carbon nanotubes

Technology of dye-sensitized solar cells with carbon nanotubes Volume 70 Issue 2 December 2014 Pages 70-76 International Scientific Journal published monthly by the World Academy of Materials and Manufacturing Engineering Technology of dye-sensitized solar cells with

More information

Solar Power. Technical Aspects and Environmental Impacts. 6 th March 2011 Sustainable Energy Options (UAU212F) - University of Iceland

Solar Power. Technical Aspects and Environmental Impacts. 6 th March 2011 Sustainable Energy Options (UAU212F) - University of Iceland Solar Power Technical Aspects and Environmental Impacts 1 Solar Power 1. Introduction 2. Passive Solar Energy utilization 3. Solar Thermal Heat Utilization 4. Solar thermal power plants 5. Photovoltaic

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Advanced Analytical Chemistry Lecture 9. Chem 4631

Advanced Analytical Chemistry Lecture 9. Chem 4631 Advanced Analytical Chemistry Lecture 9 Chem 4631 Solar Cell Research Solar Cell Research Solar Cell Research Solar Cell Research Thin film technologies Candidates for thin-film solar cells: Crystalline

More information

PHOTOVOLTAIC INDUSTRY STRUCTURE... 9 LEADING PHOTOVOLTAIC MANUFACTURERS... 9

PHOTOVOLTAIC INDUSTRY STRUCTURE... 9 LEADING PHOTOVOLTAIC MANUFACTURERS... 9 INTRODUCTION... XVII STUDY GOALS AND OBJECTIVES... XVII REASONS FOR DOING THIS STUDY... XVII CONTRIBUTIONS TO THE STUDY AND FOR WHOM... XVII SCOPE AND FORMAT... XVIII METHODOLOGY... XVIII INFORMATION SOURCES...

More information

Solar energy for electricity production: Photovoltaics (PV)

Solar energy for electricity production: Photovoltaics (PV) Solar energy for electricity production: Photovoltaics (PV) Chiara Candelise Doctoral researcher Imperial Centre for Energy Policy and Technology (ICEPT) Page 1 Energy from the Sun HEAT (Solar thermal

More information