Computational Materials Design. Tomi Suhonen, Anssi Laukkanen, Matti Lindroos, Tom Andersson, Tatu Pinomaa, et al. VTT Materials & Manufacturing

Size: px
Start display at page:

Download "Computational Materials Design. Tomi Suhonen, Anssi Laukkanen, Matti Lindroos, Tom Andersson, Tatu Pinomaa, et al. VTT Materials & Manufacturing"

Transcription

1 Computational Materials Design Tomi Suhonen, Anssi Laukkanen, Matti Lindroos, Tom Andersson, Tatu Pinomaa, et al. VTT Materials & Manufacturing

2 Contents Click to edit Master title style Computational materials design, focusing especially on microstructures of metallic and composite materials subjected to mechanical loading (fatigue, fracture, wear ) Direct microstructural modifications and virtual trials of modern martensitic steels Solidification structures, properties and performance of additively manufactured metals High entropy alloy accelerator Machine learning in capturing microstructural design parameters 2

3 Process-Structure-Properties-Performance Concept in Application of ICME Click to edit Master title style 3

4 Microstructural modeling: model generation Click to edit Master title style Martensitic steel microstructure Prior austenite grains reconstructed Merger of advanced characterization and modeling means provides quite a realistic description of steel at the microstructural level Hierarchies, such as block boundaries (green) and packet boundaries (red) Computational microstructure 4

5 Microstructural modeling: model generation EBSD orientations Click to edit Master title style from characterization 3D microstructural model geometry from a stack of 2D images Material plot from finite element model Example of a martensitic steel microstructural model Utilizing EBSD data as basis for model generation, either statistical or directly imaging based model 5

6 Constitutive models: Micromorphic and higher order single crystal models for martensitic and alike microstructures Click to edit Master title style 100 um 10 um Motivation: Significant increase in flow stress with small microstructural features Capture the effect of length-scale E.g., smaller grain size Hall-Petch effect Geometrically necessary dislocations become more significant when grain size is small In martensitic steels: martensite hierarchy enables small grains/laths and retained austenite exist in the microstructure in small/large islands Implementation to crystal plasticity models Regularization of damage zones Stabilization of shear banding Tailoring of length scale dependent microstructures Cordero & Forest 6

7 Constitutive models: Gradient plasticity + TRIP Click to edit Master Voltitle fraction of style all Retained austenite grain (for testing purposes) grains (not local austenite grain only) 1000 um 100 um 10 um Generalized stress (Sx) 1000 um 10 um Equivalent stress (Mises) Transformed volume fraction FCC BCC 7

8 Click to edit Master title style Analysis workflows and use cases for wear and fatigue 8

9 Micromechanics of abrasive wear Modeling Workflow Click to edit Master title style 9

10 Single asperity scratch test models, martensitic steel grade Scratch testing of martensitic steel grade, contours of cumulative plastic slip Material section plots 18/06/

11 Microstructure design trial: Fully martensitic grade Click to edit Master title style Synthetic microstructural models: The core methodology for generating statistical and parametric microstructures, focus on martensite like features. Kitahara et al, st scale: inherent austenite grains (either isotropic or like in current example with max 1/10 aspect ratio) 2 nd scale: first submorphology, for martensite microstructures the packet microstructure 3 rd scale: further morphologies, at minimum for martensite the block structure 11

12 Microstructure design trial: Fully martensitic grade: example on prior austenite grain aspect ratio Click + ODF to edit Master title style Prior austenite grain aspect ratio = 1 Prior austenite grain aspect ratio = 2 Prior austenite grain aspect ratio = 5 Prior austenite grain aspect ratio = 10 12

13 Microstructure design trial: Fully martensitic grade: example on prior austenite grain aspect ratio Click + ODF to edit Master title style Prior austenite grain aspect ratio = 1 1 st principal stress Cumulative plastic slip Cumulative micromechanical model damage sum: Damage sum Prior austenite grain aspect ratio = 5 Prior austenite grain aspect ratio = 10 Scratch length 13

14 Microstructure informed abrasion damage and cumulative Click to edit wear Master title style Establish surface wear inducing loading load case 2, higher velocity load case 1, lower velocity Microstructure informed modeling of wear damage crystal plasticity analysis of slip and damage for differing wear events wear rate surface of a component, component mass loss and surface damage update analysis & iterate further when required (e.g. wear surface changes etc.) Coarse-grain with respect to temporal scale Coarse-grain with respect to spatial scale divide the wear process volume to regions & evaluate statistically 14

15 Modeling abrasive wear loading in 2- and 3- Click body to contacts edit Master title style Modeling abrasive wear loading arising from 2- and 3-body abrasion. Wear resistant steel plate and the collapse of a rock column and a velocity of approx. 50 m/s at a nominal angle of 50 degrees. 15

16 Modeling abrasive wear loading in 2- and 3- Click body to contacts edit Master title style Modeling abrasive wear loading arising from 2- and 3-body abrasion. Wear resistant steel plate moving laterally with a velocity of 10 m/s. 16

17 Experiments & Characterization Click to edit Master title style Application Characterization Experiments Simulations Macro-to-micro scale Stress Microscale Application scale model Twins 17

18 Click to edit Master title style Visualization Crystal plasticity approach Realistic type rock inputs Dynamic model Crusher stresses, deformation, and wear Crusher loads Crushing efficiency End product quality Crushing work & energy Material performance 18

19 Use case: design for metal additive manufacturing

20 Multiscale modeling for metal additive manufacturing Powder and alloy design Material property & performance design Modeling material structure properties and performance Discrete modeling of powder bed physics SLM process design and optimization Material structure to material properties causality Material performance Powder bed thermomechanics, laser matter interaction Thermomechanical modeling of selective laser melting PRODUCT PERFORMANCE AND COST Thermodynamics and phase fields Part geometry design Topology optimization Solidification microstructure, surface phenomena & reactive wetting Part specific process design, residual stress & distortion minization Optimized geometric design 18/06/

21 Modeling for metal additive manufacturing: Concept Adopting ICME principles Motivation: to properly design for metal AM, an approach incorporating aspects of material, process and product modeling and design is required. (1) (2) (3) (4) (5) Digital material, digital manufacturing and digital product design for metal additive manufacturing. Enable complex and coupled (e.g. two-way) optimization workflows. 18/06/

22 Model Generation & I/O with SLM Machine Model creation via a push of a button : 1) interface to read and process machine build files (and logs) and 2) create the thermomechanical process model directly for simulation with a solver of interest. Use e.g. with SLM or EOS systems, integration via log and build files. Geometry parsed from bracket,example layers 1 & 100 Parsing scan strategy from CLI Reproduce scan strategy /06/2018 Extensible since the basis classes describing the AM build process have been developed and established for typical SLM and EOS systems. 22

23 SLM transient thermomechanical process model, bracket case study Bracket geometry of this case study, approx. 2k layers in experimental build. Temperature isosurfaces, example from layer 1100, 20 by 20 cm powder bed in model. Linking between local thermal solution, process parameters, scan strategy and part features Laser power P = 100 W, beam velocity v = 1000 mm/s Laser power P = 150 W, beam velocity v = 1000 mm/s Laser power P = 250 W, beam velocity v = 1000 mm/s Laser power P = 375 W, beam velocity v = 1000 mm/s 18/06/

24 Selective laser melting of Ti-6Al-4V and PF modeling Click to edit Master title style Epitaxial growth of columnar grains Epitaxial microstructure 24

25 Structure-Property: Crystal plasticity, tensile testing Click to edit Master title style CUMULATIVE PLASTIC SLIP Columnar model 1, direction 1 Columnar model, lamellar substructure EQUIVALENT STRESS CONTOURS Equiaxed model, lamellar substructure Columnar model, lamellar substructure Equiaxed model Equiaxed model Equiaxed model, lamellar substructure Columnar model 1, direction 1 Columnar model 1, direction 2 25

26 Fatigue performance indicators (F-S, D-V etc.) Effect Click of loading conditions to edit and microstructural Master detail title to cycles style to initiation prediction FPIs in general: ~100 cycles in strain control, merged results from F-S and damage computation Best microstructure as good as the others for large amplitudes defects Coarser structure, effect approx Fine structure Introduction of a short fatigue crack size sharp defect influences cycles to initiation by a factor of approx Effect of inclusion with good adhesion approx

27 SLM transient thermomechanical process model, Click drill to edit piston Master case title study style Map smaller scale modeling results to larger components by considering local thermal solution during build: oil pressure distributor valve in a rock drill piston (topology optimized) Computation of representative thermal histories for material points Self-consistent crystal plasticity model for computing local stress-strain response Different process parameters yield a differing (homogenized) material response in terms of strength (phase distribution in the component), the effects of which are highlighted in a case study analysis. Component deformation response during the design performance critical axial impact, utilizing the process parameters yielding the most suited mechanical properties and higher surface strength (left) (P = 190 W, v = 1.2 m/s) and a set with less favourable response and lower surface strength (right) (P = 230 W, v = 0.9 m/s). The component in the right is with respect to fatigue amplitude in a low cycle fatigue region, the one on the left in the high cycle region. 27

28 Use case: material discovery and high entropy alloys

29 Process-Structure-Properties-Performance Concept in Application of ICME Click to edit Master title style Artificial intelligence and machine learning 29

30 MATERIAL DISCOVERY GUIDING PRINCIPLES Need to be able to discover and generate new data (~discovery by MD) 2. Need to generate lots of the data in question (~automatization required) 3. Data can be imperfect (~machine learning of trends and parameters) 4. Ultimately drive the process (~ AI ) 18/06/ MATERIAL DEVELOPMENT & INTEGRATION TO PRODUCT

31 CrMnFeCoNi base alloy, FCC single crystal, applied shear 18/06/

32 Findings from the atomistic recipe book Tweaking Ni content to activate different deformation mechanisms Enable deformation, promote toughness Limit deformation, promote strength and hardness Promote deformation over twinning and phase transformations Increased twinning of the FCC phase 18/06/

33 Data-based modeling: Machine learning for CP

34 Effects of sub-grain structures to micro-scale behavior of martensitic steel aggregates Simple example how microstructure modeling resolution and inclusion of martensite sub-hierarchies influences the analysis outcome: Different levelof discretization Versatile tools for model generation and modification required to be able to run design iterations: i) Computational geometry based (tesselations, packings etc. typical operations) ii) Image processing and microstructure (re)construction tools, operating largely on morphological imaging and characterization data Simplest means to exploit multi-level tesselations etc. for construction. 18/06/2018 mesh equivalent stress equivalent plastic 34 strain

35 Synthetic microstructures for machine learning models Click Texture to edit follows Master K-S variants title style Tensile test (~similarity in behavior) Microstructure affects the stressstrain behavior Prior austenite + martensite packets included Microstructure A Coarse structure Microstructure B Mixed structure Microstructure C Small prior austenite 35

36 Machine learning for the crystal plasticity results Click to edit Master title style Apply machine learning to recognize grain features that predict plastic slip, hardening Click to for edit evaluation Master of text fatigue styles performance Second indices level Obtain physical understanding Relationships Fourth between level microstructure and fatigue performance Find general rules to help design and act as surrogate models in design workflows Features for the model: Aims at full field prediction Crystal orientation distribution Schmid factors Geometric features (grain shape, size, etc ) Prediction accuracy on top-right: R 2 = 60% Cumulative plastic slip predictions compared for all data: Cumulative plastic slip predictions compared for 2D models: Crystal plasticity model Machine learning model 36

37 Thank You! Acknowledging collaborations with: Financially supported by: RFCS project IMMARS (funded by EC) Manufacturing, Micromechanics and Numerics project (funded by TEKES) Fundamentals and modeling materials programme (funded by TEKES)

Process Model for Metal Additive Manufacturing

Process Model for Metal Additive Manufacturing VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Process Model for Metal Additive Manufacturing Tom Andersson, Anssi Laukkanen, Tatu Pinomaa NAFEMS NORDIC "Exploring the Design Freedom of Additive Manufacturing

More information

Microstructural modelling of materials

Microstructural modelling of materials Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 50, No 3, 2017, pp. 256-260 https://rakenteidenmekaniikka.journal.fi/index https:/doi.org/10.23998/rm.65075 Author(s) 2017. Open access under

More information

Development of bimodal grain structures in microalloyed steels:

Development of bimodal grain structures in microalloyed steels: Development of bimodal grain structures in microalloyed steels: Niobium and titanium are added to high strength low alloy (HSLA) steels to provide grain boundary pinning precipitates to help produce the

More information

MSC Solutions for Additive Manufacturing Simufact Additive

MSC Solutions for Additive Manufacturing Simufact Additive MSC Solutions for Additive Manufacturing Simufact Additive 15.01.2018 Simufact Product Portfolio Cold Forming Hot Forging Sheet Metal Forming Mechanical Joining Powder Bed Fusion Arc Welding Laser Beam

More information

Introduction to Materials Science

Introduction to Materials Science EPMA Powder Metallurgy Summer School 27 June 1 July 2016 Valencia, Spain Introduction to Materials Science Prof. Alberto Molinari University of Trento, Italy Some of the figures used in this presentation

More information

EMMC case study: MTU Aero Engines AG

EMMC case study: MTU Aero Engines AG EMMC case study: MTU Aero Engines AG Simulation of additive manufacturing of metallic components Interview of Thomas Göhler (MTU) Writer: Gerhard Goldbeck 26/01/2016 Project reference: N/A yang yu, #4472077,

More information

Vauhtia korvaavien materiaalien kehitykseen

Vauhtia korvaavien materiaalien kehitykseen VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Vauhtia korvaavien materiaalien kehitykseen Mineraalivarat ja korvaavat materiaalit (MISU) vuosiseminaari 14.9.2017 Vice President, TkT Tarja Laitinen Vauhtia

More information

Energy Dissipation Mechanism Based Materials and Materials Systems Design

Energy Dissipation Mechanism Based Materials and Materials Systems Design Energy Dissipation Mechanism Based Materials and Materials Systems Design Wing Kam Liu w-liu@northwestern.edu Walter P. Murphy Professor of Mechanical and Civil Engineering President, International Association

More information

WEDNESDAY SEPTEMBER 20, 2017

WEDNESDAY SEPTEMBER 20, 2017 WEDNESDAY SEPTEMBER 20, 2017 Session Title: Multiscalle modeling and connecting to continuum level descriptions Chairperson: Harmandaris-Goddin 11.20 Atomistically informed full-field simulation of tempered

More information

Click to edit Master title style

Click to edit Master title style Click to edit Master title style Zhili Feng, Xinghua Yu, Jeff Bunn, Andrew Payzant- ORNL Demetrios Tzelepis, TARDEC Click to edit Outline Master title style Background Hydrogen Inducted Cracking (HIC)

More information

Validation of a Generic Metallurgical Phase Transformation Framework Applied to Additive Manufacturing Processes

Validation of a Generic Metallurgical Phase Transformation Framework Applied to Additive Manufacturing Processes Validation of a Generic Metallurgical Phase Transformation Framework Applied to Additive Manufacturing Processes Tyler London 1, Victor Oancea 2, and David Griffiths 1 1 TWI Ltd, Cambridge, United Kingdom

More information

OUTLINE. Dual phase and TRIP steels. Processing Microstructure Mechanical properties Damage mechanisms Strategies to improve strength and ductililty

OUTLINE. Dual phase and TRIP steels. Processing Microstructure Mechanical properties Damage mechanisms Strategies to improve strength and ductililty OUTLINE Dual phase and TRIP steels Processing Microstructure Mechanical properties Damage mechanisms Strategies to improve strength and ductililty DUAL PHASE STEELS With relatively straightforward thermomechanical

More information

Building blocks for a digital twin of additive manufacturing

Building blocks for a digital twin of additive manufacturing Building blocks for a digital twin of additive manufacturing - a path to understand the most important metallurgical variables H.L. Wei, T. Mukherjee and T. DebRoy, Department of Materials Science and

More information

Industeel Industeel, the right steel Creusabro at the right place Unique, Best, Proven

Industeel Industeel, the right steel Creusabro at the right place Unique, Best, Proven Industeel Industeel, Creusabro the right steel at Unique, the right Best, place Proven A complete range to meet any situation Creusabro is a complete range of advanced abrasion resistant steel plates bringing

More information

Module-6. Dislocations and Strengthening Mechanisms

Module-6. Dislocations and Strengthening Mechanisms Module-6 Dislocations and Strengthening Mechanisms Contents 1) Dislocations & Plastic deformation and Mechanisms of plastic deformation in metals 2) Strengthening mechanisms in metals 3) Recovery, Recrystallization

More information

Additive manufacturing

Additive manufacturing Comparison Between Microstructures, Deformation Mechanisms and Micromechanical Properties of 316L Stainless Steel Consolidated by Laser Melting I. Heikkilä, O. Karlsson, D. Lindell, A. Angré, Y. Zhong,

More information

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational. Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.org Contents Preface to the Second Edition of Steels: Processing,

More information

Hot Isostatic Pressing for AM parts

Hot Isostatic Pressing for AM parts Document no SE037406 Revision 1 Page 1(3) Hot Isostatic Pressing for AM parts Dr. Johan Hjärne and Magnus Ahlfors, Applications Engineer AMD, Quintus Technologies. Västerås, Sweden, May 2016 The QIH9 Hot

More information

Single vs Polycrystals

Single vs Polycrystals WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Kinetics - Heat Treatment

Kinetics - Heat Treatment Kinetics - Heat Treatment Nonequilibrium Cooling All of the discussion up till now has been for slow cooling Many times, this is TOO slow, and unnecessary Nonequilibrium effects Phase changes at T other

More information

Equilibria in Materials

Equilibria in Materials 2009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 09.01.2009 Eun Soo Park Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Text: A. PRINCE,

More information

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY TEQIP Workshop on HRXRD, IIT Kanpur, 05 Feb 2016 MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY K.S. Suresh Department of Metallurgical and Materials Engineering Indian Institute of

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

MP21781 Understanding the Mechanical Properties of Additively Manufactured Lattice Structures with Testing and Simulation

MP21781 Understanding the Mechanical Properties of Additively Manufactured Lattice Structures with Testing and Simulation MP21781 Understanding the Mechanical Properties of Additively Manufactured Lattice Structures with Testing and Simulation Daniel Noviello Autodesk Advanced Consulting Learning Objectives Understand the

More information

Technical trends in cemented carbides. ITIA September 2012

Technical trends in cemented carbides. ITIA September 2012 Technical trends in cemented carbides ITIA September 2012 1 Cemented carbides One of the most successful powder metallurgy products Balance between hardness and toughness: wide range of application Cutting

More information

Computational and Analytical Methods in AM: Linking Process to Microstructure

Computational and Analytical Methods in AM: Linking Process to Microstructure Computational and Analytical Methods in AM: Linking Process to Microstructure Greg Wagner Associate Professor, Mechanical Engineering Northwestern University Workshop on Predictive Theoretical and Computational

More information

Fundamentals of Metal Forming

Fundamentals of Metal Forming Fundamentals of Metal Forming Chapter 15 15.1 Introduction Deformation processes have been designed to exploit the plasticity of engineering materials Plasticity is the ability of a material to flow as

More information

Stress and strain gradient in the deformed metallic surface

Stress and strain gradient in the deformed metallic surface Stress and strain gradient in the deformed metallic surface Xiaodan Zhang Section for Materials Science and Advanced Characterization, Department of Wind Energy, DTU Risø Campus, Roskilde, Denmark Vintermødet

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

Stress and Strain Distributions During Compressive Deformation of Titanium Alloy Affected by Microstructure

Stress and Strain Distributions During Compressive Deformation of Titanium Alloy Affected by Microstructure Stress and Strain Distributions During Compressive Deformation of Titanium Alloy Affected by Microstructure Zhao, Q., Wu, G., & Sha, W. (2013). Stress and Strain Distributions During Compressive Deformation

More information

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials Grain Boundaries 1 Point Defects 2 Point Defects A Point Defect is a crystalline defect associated with one or, at most, several atomic sites. These are defects at a single atom position. Vacancies Self-interstitials

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

Lecture # 11 References:

Lecture # 11 References: Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC Dr.Haydar Al-Ethari

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

MICROSTRUCTURE AND PROPERTIES OF REVERSION TREATED LOW-NI HIGH-MN AUSTENITIC STAINLESS STEELS

MICROSTRUCTURE AND PROPERTIES OF REVERSION TREATED LOW-NI HIGH-MN AUSTENITIC STAINLESS STEELS 1 MICROSTRUCTURE AND PROPERTIES OF REVERSION TREATED LOW-NI HIGH-MN AUSTENITIC STAINLESS STEELS 06.06.2016 Anna Kisko University of Oulu Materials Engineering and Production Technology research unit 2

More information

GRAIN GROWTH MODELING FOR ADDITIVE MANUFACTURING OF NICKEL BASED SUPERALLOYS

GRAIN GROWTH MODELING FOR ADDITIVE MANUFACTURING OF NICKEL BASED SUPERALLOYS Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 016) Edited by: Elizabeth A. Holm, Susan Farjami, Priyadarshan Manohar, Gregory S. Rohrer, Anthony D. Rollett,

More information

MICROMODELLING OF ADDITIVE MANUFACTURING AT ILT/LLT

MICROMODELLING OF ADDITIVE MANUFACTURING AT ILT/LLT MICROMODELLING OF ADDITIVE MANUFACTURING AT ILT/LLT Current work, problems and outlook ICME Barcelona 14.04.2016 Jonas Zielinski, Norbert Pirch MICROMODELLING OF ADDITIVE MANUFACTURING AT ILT/LLT AM: SLM

More information

Gear Tooth Bending Fatigue Life Prediction Using Integrated Computational Material Engineering (ICME)

Gear Tooth Bending Fatigue Life Prediction Using Integrated Computational Material Engineering (ICME) Gear Tooth Bending Fatigue Life Prediction Using Integrated Computational Material Engineering (ICME) Eaton: Carlos Wink, Nikhil Deo VEXTEC: Sanjeev Kulkarni, Michael Oja, Robert McDaniels, Robert Tryon,

More information

Strengthening Mechanisms

Strengthening Mechanisms ME 254: Materials Engineering Chapter 7: Dislocations and Strengthening Mechanisms 1 st Semester 1435-1436 (Fall 2014) Dr. Hamad F. Alharbi, harbihf@ksu.edu.sa November 18, 2014 Outline DISLOCATIONS AND

More information

3-D Microstructural Modeling and Simulation of Microstress for Nickel Superalloys

3-D Microstructural Modeling and Simulation of Microstress for Nickel Superalloys 3-D Microstructural Modeling and Simulation of Microstress for Nickel Superalloys VEXTEC Corporation, 523 Virginia Way Suite C-2, Brentwood, TN 37027 USA Abstract Statistical elastic micro-stress analysis

More information

Research Article Efficiency of Butt-Welded Joints of Low-Carbon Steel for Different Types of the Cooling Rate and Annealing Time

Research Article Efficiency of Butt-Welded Joints of Low-Carbon Steel for Different Types of the Cooling Rate and Annealing Time Cronicon OPEN ACCESS Mustafa A Rijab 1, Ali I Al-Mosawi 2 *, Muhannad A Al-Najar 1 1 Department of Mechanics, Technical Institute of Baquba, Iraq 2 Free Consultation, Babylon, Hilla, Iraq CHEMISTRY Research

More information

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering The use of holographic optics in laser additive layer manufacture Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering Traditional Laser Beam Problems Shape Intensity Beam intensity distribution....

More information

"Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015

Advanced Manufacturing Technologies, UCL, Louvain-la-Neuve, 24/11/2015 "Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015 1 2 Outline Introduction Additive manufacturing Laser Beam Melting vs Laser Cladding Specificities (1) ultra-fast thermal cycles

More information

AN INTRODUCTION TO OIM ANALYSIS

AN INTRODUCTION TO OIM ANALYSIS AN INTRODUCTION TO OIM ANALYSIS Raising the standard for EBSD software The most powerful, flexible, and easy to use tool for the visualization and analysis of EBSD mapping data OIM Analysis - The Standard

More information

MT 348 Outline No MECHANICAL PROPERTIES

MT 348 Outline No MECHANICAL PROPERTIES MT 348 Outline No. 1 2009 MECHANICAL PROPERTIES I. Introduction A. Stresses and Strains, Normal and Shear Loading B. Elastic Behavior II. Stresses and Metal Failure A. ʺPrincipal Stressʺ Concept B. Plastic

More information

Activation of deformation mechanism

Activation of deformation mechanism Activation of deformation mechanism The deformation mechanism activates when a critical amount of mechanical stress imposed to the crystal The dislocation glide through the slip systems when the required

More information

Lecture # 11. Line defects (1D) / Dislocations

Lecture # 11. Line defects (1D) / Dislocations Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC References: 1-

More information

Continuous Cooling Diagrams

Continuous Cooling Diagrams Continuous Cooling Diagrams Isothermal transformation (TTT) diagrams are obtained by rapidly quenching to a given temperature and then measuring the volume fraction of the various constituents that form

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Multiscale modelling of the forming process of thermoplastic fibre reinforced composites (TPFRCs)

Multiscale modelling of the forming process of thermoplastic fibre reinforced composites (TPFRCs) Multiscale modelling of the forming process of thermoplastic fibre reinforced composites (TPFRCs) TPFRCs are fundamentally well suited for the application in lightweight (vehicle) construction. Project

More information

Metal working: Deformation processing II. Metal working: Deformation processing II

Metal working: Deformation processing II. Metal working: Deformation processing II Module 28 Metal working: Deformation processing II Lecture 28 Metal working: Deformation processing II 1 Keywords : Difference between cold & hot working, effect of macroscopic variables on deformation

More information

Fracture Mechanism Analysis of Schoen Gyroid Cellular Structures Manufactured by Selective Laser Melting. Lei Yang, Chunze Yan*, Yusheng Shi*

Fracture Mechanism Analysis of Schoen Gyroid Cellular Structures Manufactured by Selective Laser Melting. Lei Yang, Chunze Yan*, Yusheng Shi* Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Fracture Mechanism Analysis of Schoen

More information

Phase Transformation in Materials

Phase Transformation in Materials 2015 Fall Phase Transformation in Materials 09. 02. 2015 Eun Soo Park Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Introduction Web lecture assistance: http://etl.snu.ac.kr

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

Mechanical behaviour of additively manufactured materials

Mechanical behaviour of additively manufactured materials Outline Mechanical behaviour of additively manufactured materials ION Congress 2018 Dr. Vera Popovich Delft University of Technology (TUDelft) Contact: v.popovich@tudelft.nl, +31 (0) 15 2789568 Outline

More information

Development of New Generation Of Coatings with Strength-Ductility Relationship, Wear, Corrosion and Hydrogen Embrittlement Resistance Beyond the

Development of New Generation Of Coatings with Strength-Ductility Relationship, Wear, Corrosion and Hydrogen Embrittlement Resistance Beyond the Development of New Generation Of Coatings with Strength-Ductility Relationship, Wear, Corrosion and Hydrogen Embrittlement Resistance Beyond the Current Materials Accomplishments till date As the structural

More information

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys Fatigue and Creep of Materials Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Fatigue failure Laboratory fatigue test The S-N Ncurve Fractography of fractured surface Factors improving fatigue life

More information

Deformation and fracture of an alpha/beta titanium alloy

Deformation and fracture of an alpha/beta titanium alloy ISSN 1517-7076 Revista Matéria, v. 15, n. 2, pp. 364-370, 2010. http://www.materia.coppe.ufrj.br/sarra/artigos/artigo11240 Deformation and fracture of an alpha/beta titanium alloy A. Andrade; A. Morcelli;

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy T651 using the PPR Potential-Based Cohesive Zone Model

Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy T651 using the PPR Potential-Based Cohesive Zone Model Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy 7075- T651 using the PPR Potential-Based Cohesive Zone Model Albert Cerrone 1, Drs. Gerd Heber 2, Paul Wawrzynek 1, Glaucio Paulino

More information

Structural change during cold rolling of electrodeposited copper

Structural change during cold rolling of electrodeposited copper Materials Science Forum Vols. 539-543 (2007) pp. 5013-5018 online at http://www.scientific.net (2007) Trans Tech Publications, Switzerland Structural change during cold rolling of electrodeposited copper

More information

CME 300 Properties of Materials. ANSWERS Homework 2 September 28, 2011

CME 300 Properties of Materials. ANSWERS Homework 2 September 28, 2011 CME 300 Properties of Materials ANSWERS Homework 2 September 28, 2011 1) Explain why metals are ductile and ceramics are brittle. Why are FCC metals ductile, HCP metals brittle and BCC metals tough? Planes

More information

3, MSE 791 Mechanical Properties of Nanostructured Materials

3, MSE 791 Mechanical Properties of Nanostructured Materials 3, MSE 791 Mechanical Properties of Nanostructured Materials Module 3: Fundamental Physics and Materials Design Lecture 1 1. What is strain (work) hardening? What is the mechanism for strain hardening?

More information

DEPENDENCE of MICROSTRUCTURE and MECHANICAL PROPERTIES on HEAT TREAT CYCLES of ELECTRON BEAM MELTED Ti-6Al-4V

DEPENDENCE of MICROSTRUCTURE and MECHANICAL PROPERTIES on HEAT TREAT CYCLES of ELECTRON BEAM MELTED Ti-6Al-4V Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference DEPENDENCE of MICROSTRUCTURE and MECHANICAL

More information

Dynamic mechanical properties of AMmanufactured

Dynamic mechanical properties of AMmanufactured Dynamic mechanical properties of AMmanufactured stainless steel material CIRP STC-E Paris, 27.01.2012 A.B. Spierings, G. Levy, K. Wegener Inspire institute for rapid product development irpd St. Gallen,

More information

QuesTek Innovations Application of ICME to the Design and Development of New High-Performance Materials for AM

QuesTek Innovations Application of ICME to the Design and Development of New High-Performance Materials for AM QuesTek Innovations Application of ICME to the Design and Development of New High-Performance Materials for AM David Snyder Senior Materials Development Engineer October 8, 2015 Session Questions #1 -

More information

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988)

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) CREEP CREEP Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) Review If failure is considered as change in desired performance*- which could involve changes in properties and/or

More information

Movement of edge and screw dislocations

Movement of edge and screw dislocations Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

Constitutive models: Elasto-Plastic Models

Constitutive models: Elasto-Plastic Models Plasticity is the property of the solid body to deform under applied external force and to possess permanent or temporal residual deformation after applied load is removed. Main feature of plasticity:

More information

Microstructure Mechanics Crystal Mechanics

Microstructure Mechanics Crystal Mechanics Microstructure Mechanics Crystal Mechanics Dierk Raabe Düsseldorf, Germany WWW.MPIE.DE d.raabe@mpie.de RWTH Class on Microstructure Mechanics 2013 Roters, Eisenlohr, Bieler, Raabe: Crystal Plasticity Finite

More information

Deformation Criterion of Low Carbon Steel Subjected to High Speed Impacts

Deformation Criterion of Low Carbon Steel Subjected to High Speed Impacts Deformation Criterion of Low Carbon Steel Subjected to High Speed Impacts W. Visser, G. Plume, C-E. Rousseau, H. Ghonem 92 Upper College Road, Kingston, RI 02881 Department of Mechanical Engineering, University

More information

Predicting fatigue crack initiation in metals using dislocation dynamics simulations

Predicting fatigue crack initiation in metals using dislocation dynamics simulations Engineering Conferences International ECI Digital Archives International Workshop on the Environmental Damage in Structural Materials Under Static Load/ Cyclic Loads at Ambient Temperatures Proceedings

More information

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary 1 A simple view of fatigue 1. Will a crack nucleate? 2. Will it grow? 3. How fast will

More information

INSTRUCTION PROFESSOR K. KOMVOPOULOS. Mechanical Behavior of Engineering Materials (ME 108) (Undergraduate course, junior/senior level)

INSTRUCTION PROFESSOR K. KOMVOPOULOS. Mechanical Behavior of Engineering Materials (ME 108) (Undergraduate course, junior/senior level) INSTRUCTION PROFESSOR K. KOMVOPOULOS. Mechanical Behavior of Engineering Materials (ME 108) (Undergraduate course, junior/senior level) Part I Microstructure and Deformation of Materials Alloying and Hardening

More information

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering ISSN 2320-9135 1 International Journal of Advance Research, IJOAR.org Volume 3, Issue 9, September 2015, Online: ISSN 2320-9135 EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti

More information

Laboratory of Applied Mechanics and Reliability: Research Activities

Laboratory of Applied Mechanics and Reliability: Research Activities Laboratory of Applied Mechanics and Reliability: Research Activities Experimental mechanics Static, cyclic & fatigue testing, uniaxial / biaxial test, climatic chamber (- 10 C to 250 C). Vibration testing

More information

Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples

Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples Stefan Zaefferer with contributions of N. Elhami, (general & steels) Z. Li F. Ram,

More information

Determination of the residual stress distribution of steel bridge components by modelling the welding process

Determination of the residual stress distribution of steel bridge components by modelling the welding process EUROSTEEL 2017, September 13 15, 2017, Copenhagen, Denmark Determination of the residual stress distribution of steel bridge components by modelling the welding process Evy Van Puymbroeck*,a, Wim Nagy

More information

Trends and Issues - Titanium Alloy use in Gas Turbines Professor Dave Rugg

Trends and Issues - Titanium Alloy use in Gas Turbines Professor Dave Rugg Trends and Issues - Titanium Alloy use in Gas Turbines Professor Dave Rugg Corporate Specialist Compressor and Nuclear Applications Royal Society Industrial Fellow Rolls-Royce plc 2010 The information

More information

Numerical Simulation of Sliding Contact during Sheet Metal Stamping

Numerical Simulation of Sliding Contact during Sheet Metal Stamping Numerical Simulation of Sliding Contact during Sheet Metal Stamping Biglari F. R. * Nikbin K. ** O Dowd N. P. ** Busso E.P. ** * Mechanical Engineering Department, Amirkabir University of Technology, Hafez

More information

12/10/09. Chapter 4: Imperfections in Solids. Imperfections in Solids. Polycrystalline Materials ISSUES TO ADDRESS...

12/10/09. Chapter 4: Imperfections in Solids. Imperfections in Solids. Polycrystalline Materials ISSUES TO ADDRESS... Chapter 4: ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material

More information

Content. perform. Brief profile. Product information for high-strength thermomechanically hot-rolled strip and cut-to-length plate

Content. perform. Brief profile. Product information for high-strength thermomechanically hot-rolled strip and cut-to-length plate Steel perform Product information for high-strength thermomechanically hot-rolled strip and cut-to-length plate Issue: January 22, 2019, version 0 / WB 660 Brief profile Outstanding surface quality Bending

More information

MECHANICS EXAMINATION ON THE WEAR BEHAVIOUR OF SHAPE MEMORY ALLOYS

MECHANICS EXAMINATION ON THE WEAR BEHAVIOUR OF SHAPE MEMORY ALLOYS MECHANICS EXAMINATION ON THE WEAR BEHAVIOUR OF SHAPE MEMORY ALLOYS Wenyi Yan Computational Engineering Research Centre, Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba,

More information

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Materials Transactions, Vol. 50, No. 7 (2009) pp. 1832 to 1837 #2009 The Japan Institute of Metals Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Kuk Hyun

More information

Steels for hot stamping -Usibor and Ductibor

Steels for hot stamping -Usibor and Ductibor Automotive Worldwide Steels for hot stamping -Usibor and Ductibor Extract from the product catalogue -European edition Note: Information contained in this catalogue is subject to change. Please contact

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Simulation models for development of components with tailored material properties

Simulation models for development of components with tailored material properties CHS Theme Day at Volvo Cars, 170906 Simulation models for development of components with tailored material properties Professor Mats Oldenburg Luleå University of Technology Presentation outline: - The

More information

Simulation of Deformation Texture with MTEX

Simulation of Deformation Texture with MTEX Simulation of Deformation Texture with MTEX Dr. M. Witte Chemnitz, 10th February 2017 SZMF, ESWW, M. Witte, Folie 2, 13/02/17 Overview Salzgitter Mannesmann Forschung GmbH Company Overview Introduction

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

Available online at ScienceDirect. Procedia CIRP 13 (2014 ) On surface grind hardening induced residual stresses

Available online at   ScienceDirect. Procedia CIRP 13 (2014 ) On surface grind hardening induced residual stresses Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 13 (2014 ) 264 269 2 nd CIRP Conference on Surface Integrity (CSI) On surface grind hardening induced residual stresses Konstantinos

More information

Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures

Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures M. Ortiz California Institute of Technology MULTIMAT closing meeting Bonn, Germany, September 12, 2008 Dislocation

More information

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IMPERFECTIONSFOR BENEFIT Sub-topics 1 Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IDEAL STRENGTH Ideally, the strength of a material is the force necessary

More information

Model Development for Residual Stress Consideration in Design for Laser Metal 3D Printing of Maraging Steel 300. Vedant Chahal and Robert M.

Model Development for Residual Stress Consideration in Design for Laser Metal 3D Printing of Maraging Steel 300. Vedant Chahal and Robert M. Solid Freeform Fabrication 8: Proceedings of the 9th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Model Development for Residual Stress

More information

Modeling Component Assembly of a Bearing Using Abaqus

Modeling Component Assembly of a Bearing Using Abaqus Modeling Component Assembly of a Bearing Using Abaqus Bisen Lin, Ph.D., P.E. and Michael W. Guillot, Ph.D., P.E. Stress Engineering Services, Inc. Abstract: Assembly process of a bearing considered in

More information