Archer G11 Partner: Judy Aug Gravimetric Analysis of a Metal Carbonate

Size: px
Start display at page:

Download "Archer G11 Partner: Judy Aug Gravimetric Analysis of a Metal Carbonate"

Transcription

1 Gravimetric Analysis of a Metal Carbonate Purpose The purpose of this lab is to identify the unknown carbonate. This can be done by finding the mass of the product carbonate and using stoichiometry on that mass to find the molar mass of the unknown carbonate. Once this is done, the molar mass of the unknown carbonate can be determined The significance of this is that it allows chemists to identify unknown substances. Hypothesis The hypothesis is that the unknown carbonate can be identified. By finding the mass of the unknown carbonate, displacing the unknown with calcium, finding the mass of the product carbonate, and using stoichiometry the unknown metal in the carbonate can be identified. Materials: Materials Trial 1 Trial 2 Trial M Calcium chloride (CaCl 2 ) 375 ml Distilled water 600 ml Unknown carbonate sample (M 2 CO 3 ) g g g g precision balance 1 balance 600-mL beaker 6 beakers Bunsen burner 3 burners 30-mL crucible 3 crucibles Crucible tongs 2 tongs Drying oven 1 oven Funnel 3 funnels Filter paper g g g 250-mL graduated cylinder 3 cylinders Wire gauze 3 gauzes Clay pipe stem triangle 3 triangles Ring stand and clamp 3 stands and clamps Timer 3 timers Labeling tags 3 tags Watch glass 3 watch glasses Micro spatula 2 spatulas Procedures: 1.) Put a pipe stem triangle on a clamp of a ring stand 2.) Put a crucible on the triangle 3.) Gently heat the crucible for a minute using a Bunsen burner 4.) Use a tong to transfer the crucible from the triangle to a wire gauze 5.) Let the crucible cools down 6.) Mass the crucible 7.) Add 2 g of unknown carbonate into the crucible 8.) Find the mass of the unknown carbonate plus the crucible 9.) Move the crucible back to the triangle

2 10.) Gently heat the crucible for 2-3 minutes 11.) Let the crucible cool down for about 30 seconds to a minute 12.) Mass the crucible with the unknown carbonate 13.) Repeat step until the mass until the mass is about the same 14.) Pour the unknown carbonate from the crucible to a 600-mL beaker 15.) Add 200 ml of distilled water to the 600-mL beaker 16.) Swirl the beaker to dissolve the unknown carbonate 17.) Add 125 ml of 0.2 M CaCl 2 to the beaker 18.) Wait until the precipitate settles 19.) Weigh a filter paper 20.) Fold the filter paper in a way that will maximize the area for filtering 21.) Put the filter paper in a funnel 22.) Put the funnel in a ring clamp on the ring stand 23.) Put another 600-mL beaker under the funnel 24.) Pour the solution from the first beaker through the filter paper 25.) When nearly all the solutions had been poured, swirl the beaker 26.) Pour the rest through the filter paper 27.) Use some distilled water to wash the beaker 28.) Put the filter paper on the watch glass using 2 micro spatulas 29.) Open the filter paper into a circle 30.) Put a label on the watch glass 31.) Put the watch glass in the drying oven 32.) Wait for a day 33.) Take out the watch glass 34.) Quickly mass the filter paper (using tongs to move it to the balance) 35.) Put it back in the drying oven 36.) Wait for 5 minutes 37.) Repeat step for 2 more times 38.) Repeat step 1-37 for trial 2 and 3 Results: The unknown carbonate was a white powder. When it dissolved, it turned the water into a milky color solution. When CaCl 2 was added, the precipitate was not apparent because the precipitate had the same color as the solution. When the filtrate dried, the filtrate formed a white crumb on the filter paper. There were some black dots in the filtrate of unknown origin.

3 M 2 CO 3 + CaCl 2 CaCO 3 + 2MCl CO 3 2- (aq) + Ca 2+ (aq) CaCO 3 (s) Gravimetric Analysis Table Trial 1 Trial 2 Trial 3 Mass of crucible (g) Mass of crucible + M 2 CO 3 (g) Mass of crucible + M 2 CO 3 (dried) (1st weighing) (g) Mass of crucible + M 2 CO 3 (dried) (2nd weighing) (g) Mass of crucible + M 2 CO 3 (dried) (3rd weighing) (g) Mass of crucible + M 2 CO 3 (dried) (4th weighing) (g) Mass of crucible + M 2 CO 3 (dried) (5th weighing) (g) Calculated mass of M 2 CO 3 (g) Mass of filter paper (g) Mass of filter paper + CaCO 3 (1st weighing) (g) Mass of filter paper + CaCO 3 (2nd weighing) (g) Mass of filter paper + CaCO 3 (3rd weighing) (g) Calculated mass of CaCO 3 (g) Calculated moles of CaCO 3 (mole) Calculated Molar mass of M 2 CO 3 (g/mol) Identity of M 2 CO 3 Na 2 CO 3 Na 2 CO 3 Na 2 CO 3 Calculated percent errors (%) Analysis: Mass of M 2 CO 3 = (Mass of crucible + M 2 CO 3, last trial) (Mass of crucible) Mass of M 2 CO 3 equals to mass of crucible and M 2 CO 3 of the last trial subtract by the mass of crucible Trial 1: = g M 2 CO 3 Trial 2: = g M 2 CO 3 Trial 3: = g M 2 CO 3 Mass of CaCO 3 = [(Mass of filter paper + CaCO 3 (1st weighing) + Mass of filter paper + CaCO 3 (2nd weighing) + Mass of filter paper + CaCO 3 (3rd weighing)) / 3] (Mass of filter paper) Mass of CaCO 3 equals to the average mass of CaCO 3 minus the mass of the filter paper Trial 1: [( ) / 3] = g CaCO 3 Trial 2: [( ) / 3] = g CaCO 3

4 Trial 3: [( ) / 3] = g CaCO 3 Moles of CaCO 3 = (Mass of CaCO 3 ) / (Molar mass of CaCO 3 ) Moles of CaCO 3 equals the mass of CaCO 3 divided by the molar mass of CaCO 3 Trial 1: / = mole CaCO 3 Trial 2: / = mole CaCO 3 Trial 3: / = mole CaCO 2 Molar mass of M 2 CO 3 = (Mass of M 2 CO 3 ) / (Moles of CaCO 3 ) Molar mass of M 2 CO 3 equals to the mass of M 2 CO 3 divide by the moles of CaCO 3 (moles of CaCO 3 = moles of M 2 CO 3 due to the mole ratio) Trial 1: / = g/mol Trial 2: / = g/mol Trial 3: / = g/mol Identity of M = [(Molar mass of M 2 CO 3 ) (Molar mass of CO 3 )] / 2 Identity of M equaled the molar mass of M 2 CO 3 minus the molar mass of CO 3 then divided by 2 Trial 1: ( ) / 2 = = Na = Na 2 CO 3 Trial 2: ( ) / 2 = = Na = Na 2 CO 3 Trial 3: ( ) / 2 = = Na = Na 2 CO 3 Percent Error = (Molar mass of M 2 CO 3 ) / (Molar mass of Na 2 CO 3 ) 100% Percent error is equal to the absolute value of the molar mass of M 2 CO 3 divide by the molar mass of Na 2 CO 3 minus 100% Trial 1: / % = 0.86 % Trial 2: / % = 1.14 % Trial 3: / % = 0.71 % The hypothesis has been proven to be true, according to the results above. The results show that the unknown carbonate is actually sodium carbonate. Since the metal carbonate had been identified correctly, the hypothesis on this lab is correct. The unknown carbonate could have been magnesium carbonate. However, it is shown that the unknown metal in the unknown carbonate is an alkali metal, by the subscript 2 after M. That is the reason that the unknown carbonate had been identified as Na 2 CO 3.

5 Conclusion: The results confirmed the hypothesis with an average of 99.1% accuracy. However, some errors should be corrected in the future to increase the accuracy of the results. Some errors could have occurred that caused the results to be slightly inaccurate. The alkali metal carbonates are hydroscopic so it was heated in order to remove the water. However, the flame intensity used during this experiment could have been too intense thus causing the substance to react with oxygen and form some new compound. The inclusion of oxygen in the product s mass could have caused an increase of molar mass of the unknown carbonate. Not only that, the stirring rod was not used to direct the solution down to the filter paper and so some of the solution might had pass through the side of the filter paper. Therefore, the mass of the CaCO 3 determined would be lower and so the molar mass of the unknown carbonate would become higher. This is because the molar mass was determined by dividing the mass of the unknown carbonate with the moles of carbonate, so if the mass of carbonate decreases, so does the moles of carbonate which causes the mass of the unknown carbonate to be divide by a lower number thus the molar mass increases. To prevent these errors from happening in the future, the flame intensity should always be low when removing water and some equipments such as stirring rods should be use to make sure that the solution is filtered properly.

6

Lab #4 Gravimetric Analysis of a Metal Carbonate (adapted from Flinn Scientific ChemFax, 2005)

Lab #4 Gravimetric Analysis of a Metal Carbonate (adapted from Flinn Scientific ChemFax, 2005) Ms. Sonderleiter AP Chemistry Name: Date: Lab #4 Gravimetric Analysis of a Metal Carbonate (adapted from Flinn Scientific ChemFax, 2005) Background: In this experiment, an unknown alkali metal carbonate,

More information

Archer G11 Partner: Mi 6 Sept Analysis of Alum, AlK(SO 4 ) 2 *12H 2 O

Archer G11 Partner: Mi 6 Sept Analysis of Alum, AlK(SO 4 ) 2 *12H 2 O Analysis of Alum, AlK(SO 4 ) 2 *12H 2 O Purpose: The purpose of this lab is to determine the melting point of alum and the number of water molecules that can be attached to one alum molecule. The significance

More information

PHYSICAL CHANGE OR CHEMICAL CHANGE?

PHYSICAL CHANGE OR CHEMICAL CHANGE? PHYSICAL CHANGE OR CHEMICAL CHANGE? STUDENT BOOK Chapter 2, page 58 LAB 24 OBSERVATION TOOLBOX Pages 18 19, 32, 39 40 Goal Distinguish between a physical change and a chemical change. Observation criteria

More information

Analysis of Calcium Carbonate Tablets

Analysis of Calcium Carbonate Tablets Experiment 9 Analysis of Calcium Carbonate Tablets Prepared by Ross S. Nord, Eastern Michigan University PURPOSE To perform a gravimetric exercise to determine weight percent of active ingredient in a

More information

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION AIM The main objective of this experiment is to determine the concentration of sulfate ion in an unknown solution by using gravimetry. INTRODUCTION

More information

CHM Gravimetric Chloride Experiment (r7) 1/5

CHM Gravimetric Chloride Experiment (r7) 1/5 CHM 111 - Gravimetric Chloride Experiment (r7) 1/5 Purpose You will perform one of the basic types of quantitative analysis - the gravimetric analysis. You will be asked to determine the percentage of

More information

EMPIRICAL FORMULA OF MAGNESIUM OXIDE

EMPIRICAL FORMULA OF MAGNESIUM OXIDE EXPERIMENT 7 Chemistry 110 EMPIRICAL FORMULA OF MAGNESIUM OXIDE PURPOSE: The purpose of this experiment is to determine the empirical formula of a compound. I. INTRODUCTION The object of this experiment

More information

Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1

Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1 Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1 This lab is to reacquaint you with some basic laboratory techniques and serves as a warm-up to the experiments in this course.

More information

EMPIRICAL FORMULA OF MAGNESIUM OXIDE

EMPIRICAL FORMULA OF MAGNESIUM OXIDE EXPERIMENT 7 Chemistry 110 EMPIRICAL FORMULA OF MAGNESIUM OXIDE PURPOSE: The purpose of this experiment is to determine the empirical formula of a compound. I. INTRODUCTION The object of this experiment

More information

Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO (s) Cu 2+ (aq) Cu (s)

Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO (s) Cu 2+ (aq) Cu (s) Cycle of Copper Reactions Lab Exercise The following is a protocol for the multi-step transformation of copper metal based upon the following chemical transformations: Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO

More information

DETERMINATION of the EMPIRICAL FORMULA

DETERMINATION of the EMPIRICAL FORMULA DETERMINATION of the EMPIRICAL FORMULA One of the fundamental statements of the atomic theory is that elements combine in simple whole number ratios. This observation gives support to the theory of atoms,

More information

Experiment 3: Determination of an Empirical Formula

Experiment 3: Determination of an Empirical Formula Background Information The composition of a compound is defined by its chemical formula, which gives the number ratio of the different elements in the compound. For example, water has a fixed composition

More information

Chemistry 143 Empirical Formulas Dr. Caddell. Synthesis of Zinc Iodide and Magnesium Oxide

Chemistry 143 Empirical Formulas Dr. Caddell. Synthesis of Zinc Iodide and Magnesium Oxide Synthesis of Zinc Iodide and Magnesium Oxide In this lab you will synthesize zinc iodide from zinc metal and solid iodine. You will also synthesize magnesium oxide from magnesium metal and oxygen. Equipment

More information

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1 CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1 TECHNIQUES: chemical and physical changes, reactions, observations READING: PHYSICAL AND CHEMICAL CHANGES e.g. Tro chapter 1 SAFETY: Safety

More information

Beaker. Beaker Tongs. Bunsen Burner 2/19/2019

Beaker. Beaker Tongs. Bunsen Burner 2/19/2019 Beaker Beakers hold solids or liquids that will not release gases when reacted or are unlikely to splatter if stirred or heated. 1 2 Beaker Tongs Bunsen Burner Beaker tongs are used to move beakers containing

More information

EXPERIMENT 5 Chemistry 110 COMPOSITION OF A MIXTURE

EXPERIMENT 5 Chemistry 110 COMPOSITION OF A MIXTURE EXPERIMENT 5 Chemistry 110 PURPOSE: The purpose of this experiment is to determine the percent composition of a mixture. COMPOSITION OF A MIXTURE Most matter is a mixture of many substances. For example,

More information

EMP I RICAL FORMULA OF MAGNESI U M OXIDE

EMP I RICAL FORMULA OF MAGNESI U M OXIDE Experiment 6 Name: 53 EMP I RICAL FORMULA OF MAGNESI U M OXIDE In this experiment, you will synthesize oxide via the reaction pathways summarized in Figure 1. Note that [1] is the main reaction and [2]

More information

COPPER CYCLE EXPERIMENT 3

COPPER CYCLE EXPERIMENT 3 COPPER CYCLE EXPERIMENT 3 INTRODUCTION One simple way to state the aim of chemistry is: The study of matter and its transformations. In this experiment, a copper sample will appear in five different forms

More information

Chapter 8. Gravimetric Analysis

Chapter 8. Gravimetric Analysis Chapter 8 Gravimetric Analysis Gravimetric analysis is the use of weighing to determine the amount of a component in your sample. Gravimetric analysis, or gravimetry is normally performed either as a :

More information

Evaluate long- range plans concerning resource use and by- product disposal for environmental, economic, and political impact

Evaluate long- range plans concerning resource use and by- product disposal for environmental, economic, and political impact Title: Author: Course: A Fluid State Of Mind Amanda Brewer Brookland High School Brookland Physical Science, Chemistry Duration: Three 45 minute class periods Grade Level: 9-12 Objective: The process of

More information

Copper Odyssey. Chemical Reactions of Copper

Copper Odyssey. Chemical Reactions of Copper Name Lab Partner(s) Copper Odyssey Chemical Reactions of Copper Date Period Elemental copper metal will be converted into copper (II) ion and then brought through a series of compound conversions until

More information

COMBUSTION. A combustion reaction is the reaction of a substance with oxygen, usually with the rapid release of heat to produce a flame.

COMBUSTION. A combustion reaction is the reaction of a substance with oxygen, usually with the rapid release of heat to produce a flame. 1 COMBUSTION Copyright: Department of Chemistry, University of Idaho, Moscow, ID 2010. A combustion reaction is the reaction of a substance with oxygen, usually with the rapid release of heat to produce

More information

EXPERIMENT 3 THE SYNTHESIS OF COPPER SULFIDE

EXPERIMENT 3 THE SYNTHESIS OF COPPER SULFIDE EXPERIMENT 3 THE SYNTHESIS OF COPPER SULFIDE When heated together, copper and sulfur combine to form a sulfide of copper. In this assignment, you will heat a known mass of copper with excess sulfur in

More information

IDENTIFYING UNKNOWN SUBSTANCES

IDENTIFYING UNKNOWN SUBSTANCES IDENTIFYING UNKNOWN SUBSTANCES LAB 15 EXPERIMENT STUDENT BOOK Chapter 1, page 25 TOOLBOX Page 4 and 36 Goal Identify unknown substances with the help of different tests. 1. What is the independent variable

More information

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION EXPERIMENT 10 (2 Weeks) Chemistry 100 Laboratory TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION It is useful to classify reactions into different types, because products of reactions can be predicted.

More information

Gravimetric Analysis: Determination of % Sulfur in Fertilizer

Gravimetric Analysis: Determination of % Sulfur in Fertilizer Gravimetric Analysis: Determination % Sulfur in Fertilizer This is another "real world" sample experiment in this case we will analyze a fertilizer sample for the sulfate content and express the result

More information

The empirical formula of a compound

The empirical formula of a compound The empirical formula of a compound Reference: Chapter 1, Section 1.2, pages 21 24 Please note Aim A full risk assessment should be carried out prior to commencing this experiment. Personal safety equipment

More information

Experiment 3, Hydrate Experiment Chemistry 201, Wright College, Department of Physical Science and Engineering

Experiment 3, Hydrate Experiment Chemistry 201, Wright College, Department of Physical Science and Engineering Name Date Experiment 3, Hydrate Experiment Chemistry 201, Wright College, Department of Physical Science and Engineering Hydrates are ionic compounds with water loosely bound in their solid, crystalline

More information

Rust and Other Oxides Prelab

Rust and Other Oxides Prelab Rust and Other Oxides Prelab Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Define an oxide and how it is formed. 3. In this laboratory experiment, two oxides

More information

Determination of the Empirical Formula of Magnesium Oxide

Determination of the Empirical Formula of Magnesium Oxide Determination of the Empirical Formula of Magnesium Oxide The quantitative stoichiometric relationships governing mass and amount will be studied using the combustion reaction of magnesium metal. Magnesium

More information

CLASSI ICATION OF MAT R AND HOMOGENEOUS AND HETEROGENEOUS MIXTURES

CLASSI ICATION OF MAT R AND HOMOGENEOUS AND HETEROGENEOUS MIXTURES Experiment 3 Name: CLASSI ICATION OF MAT R AND HOMOGENEOUS AND HETEROGENEOUS MIXTURES Classification of Matter A pure substance is matter with definite and constant composition with distinct chemical properties.

More information

UW Department of Chemistry Lab Lectures Online

UW Department of Chemistry Lab Lectures Online Lab 2: Chemical Composition of Compounds Part I. Identification Based on Percent Metal Compositions Part II. Determination of Percent KClO 3 in a KCl/KClO 3 Mixture Procedure Overview Inspect and clean

More information

Pre-Lab 5: Magnesium and Magnesium Oxide

Pre-Lab 5: Magnesium and Magnesium Oxide Name: Pre-Lab 5: Magnesium and Magnesium Oxide Section: Answer the following questions after reading the background information at the beginning of the lab. This should be completed before coming to lab.

More information

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES 1 CONSERVATION OF MATTER AND CHEMICAL PROPERTIES I. OBJECTIVES AND BACKGROUND The object of this experiment is to demonstrate the conservation of matter- or more particularly, the conservation of "atoms"

More information

Lab 4: Recrystallization

Lab 4: Recrystallization Lab 4: Recrystallization Pre Lab Question: (Answer submitted in a separate piece of paper at the beginning of lab) 1. Calculate how much 95% ethanol will be required to dissolve 0.8 g of sulfanilamide

More information

CH 112 Special Assignment #4 Chemistry to Dye for: Part A

CH 112 Special Assignment #4 Chemistry to Dye for: Part A CH 112 Special Assignment #4 Chemistry to Dye for: Part A PRE-LAB ASSIGNMENT: Make sure that you read this handout and bring the essentials to lab with you. Here are the pre-lab questions for this week.

More information

Lab 4: Recrystallization

Lab 4: Recrystallization Lab 4: Recrystallization Objectives: - Purify an impure sample of an antibiotic. - Practice the crystallization technique. Introduction: The purpose of this experiment is to introduce the technique of

More information

PERCENT Y IELD: COPPER T Ra NSFORMATIONS

PERCENT Y IELD: COPPER T Ra NSFORMATIONS Experiment 4 Name: 39 PERCENT Y IELD: COPPER T Ra NSFORMATIONS In this experiment, you will carry out and observe a reaction sequence where copper metal is the starting material that undergoes a series

More information

Total Dissolved Solids

Total Dissolved Solids Total Dissolved Solids LabQuest 12 INTRODUCTION Solids are found in streams in two forms, suspended and dissolved. Suspended solids include silt, stirred-up bottom sediment, decaying plant matter, or sewage-treatment

More information

Lab 2: Determination of the empirical formula of the product of magnesium heating

Lab 2: Determination of the empirical formula of the product of magnesium heating Chemistry 140 Please have parts 1, 2, 3 and 4 (tables only) ready before class on Wednesday, October 11. Write an abstract and paper-clip it to the front of your individual writeup. The abstract and the

More information

Analysis of Alum, AlK(SO 4 ) 2 12H 2 O AP Chemistry Laboratory #2

Analysis of Alum, AlK(SO 4 ) 2 12H 2 O AP Chemistry Laboratory #2 Analysis of Alum, AlK(SO 4 ) 2 12H 2 O AP Chemistry Laboratory #2 Catalo No. AP6354 Publication No. 6354A Introduction When a compound is synthesized, tests are carried out to confirm whether the compound

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / SOL Questions Chapter 1 Each of the following questions below appeared on an SOL Chemistry Exam. For each of the following bubble in the correct answer on your scantron. 1. The

More information

Porosity of Compost Water retention capacity of Compost Organic matter content of Compost Buffering capacity of Compost

Porosity of Compost Water retention capacity of Compost Organic matter content of Compost Buffering capacity of Compost Porosity of Compost Water retention capacity of Compost Organic matter content of Compost Buffering capacity of Compost by Page 1/21 Contents What is the effect of compost on soil properties?... 3 Introduction:...

More information

SCHOOL CHEMICALS FROM SCRAP COKE COLA CANS AND CALCIUM CARBIDE-WATER REACTION RESIDUE

SCHOOL CHEMICALS FROM SCRAP COKE COLA CANS AND CALCIUM CARBIDE-WATER REACTION RESIDUE SCHOOL CHEMICALS FROM SCRAP COKE COLA CANS AND CALCIUM CARBIDE-WATER REACTION RESIDUE By RCE PORT HARCOURT ERONDU, CHINONSO NGOZI (YOUTH COORDINATOR) RCE PORT HARCOURT, NIGERIA PRESENTED AT THE 7TH AFRICAN

More information

Copper Smelting by an Ancient Method

Copper Smelting by an Ancient Method Copper Smelting by an Ancient Method EXPERIMENT ## Prepared by Paul C. Smithson, Berea College, based on Yee et al., 004 Using beads of a copper-containing mineral, students will produce beads of nearly

More information

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle:

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle: REACTIONS OF COPPER Copper will undergo many types of reactions. In this experiment you will observe a sequence of copper reactions. The sequence begins with copper metal and ends with copper metal, so

More information

Evaluation copy. Total Dissolved Solids. Computer INTRODUCTION

Evaluation copy. Total Dissolved Solids. Computer INTRODUCTION Total Dissolved Solids Computer 12 INTRODUCTION Solids are found in streams in two forms, suspended and dissolved. Suspended solids include silt, stirred-up bottom sediment, decaying plant matter, or sewage-treatment

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Paper Reference Surname Initial(s) Candidate No. Signature Paper Reference(s) 4335/03 4437/08 London Examinations IGCSE Chemistry 4335 Paper 3 Science (Double Award) 4437 Paper 8 Foundation

More information

H N 2. Decolorizing carbon O. O Acetanilide

H N 2. Decolorizing carbon O. O Acetanilide Experiment 1: Recrystallization of Acetanilide Reading Assignment Mohrig 2 4 (Glassware, Reagents, & Heating) & 14 15 (Melting Point & Recrystallization) The purification of organic compounds is a tedious,

More information

solvent diffusion dissolving soluble

solvent diffusion dissolving soluble What do we call it when a liquid changes into a solid? What do we call it when a liquid turns into a gas? What do we call it when a gas turns into a liquid? What do we call the solid that dissolves in

More information

EXPERIMENT 1. AIM: To prepare benzilic acid from benzyl using Green approach.

EXPERIMENT 1. AIM: To prepare benzilic acid from benzyl using Green approach. EXPERIMENT 1 AIM: To prepare benzilic acid from benzyl using Green approach. Requirements: 100 ml conical flask, 200ml beakers, filter paper, oven,0.5 g benzil,20% alc KH, dil.sulfuric acid, benzene for

More information

Clever crystals and solubility

Clever crystals and solubility 19 Clever crystals and solubility Bunsen Burner Badge car 20 Clever crystals and solubility Suitable for: 11 14 years Curriculum and learning links: States of matter, separating mixtures Learning objectives:

More information

EXPERIMENT III. Determination of Iron in Iron Oxide, (Fe 2 O 3 ), Using Dichromate Method. Chemical Overview

EXPERIMENT III. Determination of Iron in Iron Oxide, (Fe 2 O 3 ), Using Dichromate Method. Chemical Overview EXPERIMENT III Determination of Iron in Iron Oxide, (Fe 2 O 3 ), Using Dichromate Method Chemical Overview This is a direct titration using K 2 Cr 2 O 7, a primary standard, as the titrant. As such the

More information

EXPERIMENT 7A. Chemical Separation by Filtration and Recrystallization INTRODUCTION

EXPERIMENT 7A. Chemical Separation by Filtration and Recrystallization INTRODUCTION EXPERIMENT 7A Chemical Separation by Filtration and Recrystallization INTRODUCTION The solubilities of solid substances in different kinds of liquid solvents vary widely. Substances that we call salts

More information

Experiment 30A ENERGY CONTENT OF FUELS

Experiment 30A ENERGY CONTENT OF FUELS Experiment 30A ENERGY CONTENT OF FUELS FV 12/10/2012 MATERIALS: 12-oz. aluminum beverage can with top cut out and holes on side, thermometer, 100 ml graduated cylinder, 800 ml beaker, long-stem lighter,

More information

T 619 cm-84 TENTATIVE STANDARD 1933 OFFICIAL STANDARD 1935 CORRECTED 1944 CORRECTED 1953 CLASSICAL METHOD TAPPI. Analysis of salt cake

T 619 cm-84 TENTATIVE STANDARD 1933 OFFICIAL STANDARD 1935 CORRECTED 1944 CORRECTED 1953 CLASSICAL METHOD TAPPI. Analysis of salt cake T 619 cm-8 TENTATIVE STANDARD 19 OFFICIAL STANDARD 195 CORRECTED 19 CORRECTED 195 CLASSICAL METHOD 198 198 TAPPI The information and data contained in this document were prepared by a technical committee

More information

Changes for Organic Chemistry 2521 Labs

Changes for Organic Chemistry 2521 Labs Changes for Organic Chemistry 2521 Labs Chapter 3 Crystallization Part 1 (Starts on page 56) Test the solubility of three compounds with three solvents. There are four compounds to choose from: 1. Resorcinol

More information

PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND

PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND Chemistry 112 PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND A. INTRODUCTION In this experiment you will synthesize the iron coordination compound,

More information

Group IV and V Qualitative Analysis

Group IV and V Qualitative Analysis Group IV/V Analysis Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Group IV and V Qualitative Analysis Name: Equipment 1-tray of dropper bottles 2-micro spatulas 2-wooden test tube blocks

More information

Pre-Lab Exercises Lab 8: Biochemistry

Pre-Lab Exercises Lab 8: Biochemistry Pre-Lab Exercises Lab 8: Biochemistry Name Date Section 1. List the 3 basic components of a DNA nucleotide, and draw a simple picture to show how they interact. 2. Consider the amine bases in DNA. List

More information

CHM111 Lab Redox Titration Grading Rubric

CHM111 Lab Redox Titration Grading Rubric CHM111 Lab Redox Titration Grading Rubric Name Team Name Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

More information

TITANIUM DIOXIDE. SYNONYMS Titania; CI Pigment white 6; CI (1975) No ; INS No. 171 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

TITANIUM DIOXIDE. SYNONYMS Titania; CI Pigment white 6; CI (1975) No ; INS No. 171 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS TITANIUM DIOXIDE Prepared at the 71 st JECFA (2009) and published in FAO JECFA Monographs 7 (2009), superseding specifications prepared at the 67 th JECFA (2006) and published in FAO JECFA Monographs 3

More information

OXIDATION-REDUCTION TITRATIONS-Permanganometry

OXIDATION-REDUCTION TITRATIONS-Permanganometry Experiment No. Date OXIDATION-REDUCTION TITRATIONS-Permanganometry INTRODUCTION Potassium permanganate, KMnO, is probably the most widely used of all volumetric oxidizing agents. It is a powerful oxidant

More information

30th International Chemistry Olympiad

30th International Chemistry Olympiad 30th International Chemistry Olympiad Melbourne, Tuesday July 7, 1998 Laboratory Examination Exercises Official Version Attention! At all times while you are in the laboratory you must wear safety eye

More information

1. Determine the mass of each element in a sample of the compound

1. Determine the mass of each element in a sample of the compound EXPERIMENT 10 Empirical Formula Determination of Copper Sulfide INTRODUCTION The empirical formula of a compound indicates the relative numbers of atoms of each element in the molecule or formula unit.

More information

DOWNLOAD PDF CYCLE OF COPPER REACTIONS

DOWNLOAD PDF CYCLE OF COPPER REACTIONS Chapter 1 : Copperâ chlorine cycle - Wikipedia CYCLE OF COPPER REACTIONS. PURPOSE: The goal of the experiment is to observe a series of reactions involving copper that form a cycle and calculate the percent

More information

Recrystallization with a Single Solvent

Recrystallization with a Single Solvent Experiment: Recrystallization Part II: Purification of Solids In Part I of the recrystallization experiment, you learned about the factors which make a good recrystallization solvent, and you learned how

More information

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions Partner: Cathy 22 March 2012 Separation and Qualitative Determination of Cations and Anions Purpose: The purpose of this lab is to identify the cations and anions components in the unknown solution. This

More information

Experiment #8. Redox Titration

Experiment #8. Redox Titration Experiment #8. Redox Titration Goal To determine the mass of iron in supplement pill using redox titration. Introduction Oxidationreduction reactions (also known as redox reactions) are reactions that

More information

EXPERIMENT 6. Determination of the Ideal Gas Law Constant - R. Magnesium metal reacts with hydrochloric acid according to the following reaction,

EXPERIMENT 6. Determination of the Ideal Gas Law Constant - R. Magnesium metal reacts with hydrochloric acid according to the following reaction, EXPERIMENT 6 Determination of the Ideal Gas Law Constant - R Magnesium metal reacts with hydrochloric acid according to the following reaction, Mg + 2 HCl MgCl 2 + H 2 (g) In this experiment you will use

More information

Experiment 2: Preparation of the Artificial Sweetener Dulcin

Experiment 2: Preparation of the Artificial Sweetener Dulcin Experiment 2: Preparation of the Artificial Sweetener Dulcin Organic compounds known as sugars are carbohydrates that occur widely in nature. For example, sucrose (aka table sugar) is found in sugar can,

More information

Forensics with TI-Nspire Technology

Forensics with TI-Nspire Technology Forensics with TI-Nspire Technology 2013 Texas Instruments Incorporated 1 education.ti.com Science Objectives Identify characteristics of different soils to demonstrate that a suspect has been at a scene.

More information

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley)

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley) Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley) One of the fundamental properties of any sample of matter is its density, which is its mass per unit of volume. The density of

More information

Experiment Twelve Empirical Formula of Magnesium Oxide

Experiment Twelve Empirical Formula of Magnesium Oxide Experiment Twelve Empirical Formula of Magnesium Oxide Objective The purpose of this experiment is to determine the stoichiometric ratio of magnesium and oxygen following the combustion of magnesium metal.

More information

Preparation of copper(ii) sulfate from copper(ii) nitrate

Preparation of copper(ii) sulfate from copper(ii) nitrate Student s Name: Date: Background Preparation of copper(ii) sulfate from copper(ii) nitrate The purpose of this laboratory activity is to prepare copper(ii) sulfate from copper(ii) nitrate. This is done

More information

Skills in Science. Lab equipment. (Always draw 2D) Drawings below are NOT to scale. Beaker - A general purpose container with a pouring lip.

Skills in Science. Lab equipment. (Always draw 2D) Drawings below are NOT to scale. Beaker - A general purpose container with a pouring lip. Skills in Science Safety: Do NOT enter or leave the lab without permission from a teacher. Keep the gaps between tables clear of stools and bags. Never run in the lab. Do not throw things around in the

More information

A Cycle of Copper Reactions

A Cycle of Copper Reactions EXPERIMENT A Cycle of Copper Reactions PURPOSE To demonstrate a series of copper reactions: starting with copper metal, oxidizing the metal to put it into solution and then, form a copper hydroxide, an

More information

Chemistry. Freezing and Melting of Water ID: By Texas Instruments TEACHER GUIDE

Chemistry. Freezing and Melting of Water ID: By Texas Instruments TEACHER GUIDE Freezing and Melting of Water ID: 16150 By Texas Instruments TEACHER GUIDE Time required 90 minutes Topic: Phase Changes Relate freezing point and melting point. Interpret a heating or cooling curve. Describe

More information

University-level STEM Experiment: Recycling Cans to Alum The Ohio State University ENG Spring 2015 Taylor Ourada, Mary Scherer, Ramon

University-level STEM Experiment: Recycling Cans to Alum The Ohio State University ENG Spring 2015 Taylor Ourada, Mary Scherer, Ramon University-level STEM Experiment: Recycling Cans to Alum The Ohio State University ENG 5797.14 Spring 2015 Taylor Ourada, Mary Scherer, Ramon Weldemicael Table of Contents I. Introduction... 1 II. Learning

More information

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4. BALANCING EQUATIONS PRACTICE WORKSHEET 1.) CH4 + O2 CO2 + H2O 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.) N2 + H2 NH3 5.) KI + Cl2 KCl + I2 6.) HCl + Ca(OH)2 CaCl2 + H2O 7.) KClO3 KCl + O2 8.) K3PO4 + HCl KCl

More information

CHM 152 Last Updated Jan Lab 3: Freezing-Point Depression

CHM 152 Last Updated Jan Lab 3: Freezing-Point Depression temperature, C CHM 152 Last Updated Jan. 2013 Lab 3: Freezing-Point Depression Introduction This lab will examine the effect a solute has on a liquid s freezing point and show how freezing-point depression

More information

Purification Of A Solid By Recrystallization AND Identification By Melting Point Determination

Purification Of A Solid By Recrystallization AND Identification By Melting Point Determination Purification Of A Solid By Recrystallization AND Identification By Melting Point Determination Refer back to your recrystallization and melting point experiments. In this experiment you must purify your

More information

Making Saline SOLUTION. Lab Number 2 Part 1

Making Saline SOLUTION. Lab Number 2 Part 1 Making Saline SOLUTION Lab Number 2 Part 1 Purpose The purpose of part 1 of this lab is to learn the proper way to make reagents that are needed for labs. Materials Need for the Lab are: Volumetric flasks

More information

EXPERIMENT 5. Physical and Chemical Changes Part 1 INTRODUCTION

EXPERIMENT 5. Physical and Chemical Changes Part 1 INTRODUCTION EXPERIMENT 5 Physical and Chemical Changes Part 1 INTRODUCTION Matter undergoes many changes. In some cases only the form of the substance (such as physical state, size of particle, or temperature) is

More information

Heating and Cooling Curves Lab 8 Due Date:

Heating and Cooling Curves Lab 8 Due Date: Name: Date: Class: Heating and Cooling Curves Lab 8 Due Date: Pre-Lab Discussion We have learned about the exchange of heat between a substance and its surroundings when the substance undergoes a change

More information

Periodic Trends and the Properties of Elements

Periodic Trends and the Properties of Elements Page 1 - The Alkaline Earth Metals Introduction The periodic table is the most recognized symbol of chemistry across the world. It is a valuable tool that allows scientists not only to classify the elements

More information

To identify and classify various types of chemical reactions.

To identify and classify various types of chemical reactions. Cycle of Copper Reactions Minneapolis Community and Technical College v.11.17 Objectives: To observe and document copper s chemical changes in five different reactions and verify that copper is conserved

More information

Chemical Reactions LAB

Chemical Reactions LAB Reaction Lab Reactions LAB You will go around from station to station and follow the instructions for each station on the hand out here. We will be in groups of 3 or 4 (NO MORE THAN 4 please!!!!!!!) You

More information

Periodic Trends and the Properties of Elements The Alkaline Earth Metals

Periodic Trends and the Properties of Elements The Alkaline Earth Metals Introduction Periodic Trends and the Properties of Elements The Alkaline Earth Metals The periodic table is the most recognized symbol of chemistry across the world. It is a valuable tool that allows scientists

More information

Solution Concentrations

Solution Concentrations Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Appendix D OB-SCERTAINER ACTIVITY. This activity will required the student to discover the maze pattern inside the Ob-Scertainer with

Appendix D OB-SCERTAINER ACTIVITY. This activity will required the student to discover the maze pattern inside the Ob-Scertainer with Appendix D OB-SCERTAINER ACTIVITY This activity will required the student to discover the maze pattern inside the Ob-Scertainer with opening it. They gently tilted and rotated the Ob-Scertainer to hear

More information

Lab #3: Law of Definite Proportions

Lab #3: Law of Definite Proportions Name Lab #3: Law of Definite Proportions Sept. 21, 2016 Purpose To find the percent composition and therefore definite ratio of the elements in magnesium oxide. Background When magnesium and oxygen are

More information

Elemental Mass Percent and Empirical Formula From Decomposition of a Copper Oxide

Elemental Mass Percent and Empirical Formula From Decomposition of a Copper Oxide EXPERIMENT Elemental Mass Percent and Empirical Formula From Decomposition 6 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community College The student will heat

More information

2. Crystallization. A. Background

2. Crystallization. A. Background 2. Crystallization A. Background Crystallization is one of several available techniques available to purify organic compounds. Unlike other techniques, however, crystallization is specific to the purification

More information

Exploring Protein Crystallization

Exploring Protein Crystallization CHALLENGE LAB Exploring Protein Crystallization BACKGROUND Most genes code for proteins. Proteins fold into specific three-dimensional (3-D) structures that are held together by interactions between amino

More information

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ LAB ADV COMP 8 From Advanced Chemistry with Vernier, Vernier Software & Technology, 2004 INTRODUCTION A titration, as you recall, is a

More information

Sulfate. USEPA 1 SulfaVer 4 Method 2 Method to 70 mg/l SO 4. Powder Pillows. Test preparation. Before starting.

Sulfate. USEPA 1 SulfaVer 4 Method 2 Method to 70 mg/l SO 4. Powder Pillows. Test preparation. Before starting. Sulfate DOC316.53.01473 USEPA 1 SulfaVer 4 Method 2 Method 8051 2 to 70 mg/l SO 4 2 Powder Pillows Scope and application: For water, wastewater and seawater. 1 USEPA accepted for reporting wastewater analyses.

More information

Lab Report: Thermal Energy Transfer in Mixtures

Lab Report: Thermal Energy Transfer in Mixtures Lab Report: Thermal Energy Transfer in Mixtures Purpose: The purpose of this experiment is to discover how exactly the final temperature of a mixture, involving a substance and hot water, is affected and

More information

Kinetic vs. Thermodynamic Control

Kinetic vs. Thermodynamic Control Experiment: Kinetic vs. Thermodynamic Control of rganic Reactions Kinetic vs. Thermodynamic Control During your study of reactions this year you have examined many mechanisms. You have used these mechanisms

More information