Study of Ion Beam Sputtering using Different Materials

Size: px
Start display at page:

Download "Study of Ion Beam Sputtering using Different Materials"

Transcription

1 ab Journal of Nuclear Science and Applications, 5(), Study of Ion Beam Sputtering using Different Materials H. El-Khabeary Accelerators & Ion Sources Department, Basic Nuclear Science Division, Nuclear Research Center, Atomic Energy Authority, P.No. 759, Egypt. ABSTRACT In this paper, the electrical discharge and output ion beam characteristics of cold conical cathode ion source were me asured at the optimum operating conditions and different pressures using argon gas. The effect of negative extraction voltage applied on the ion collector plate on the output ion beam current was measured at electrical discharge current equal to ma and different pressures using argon gas. It was found that the output ion beam current increases about 75 % its initial values at extraction voltage equal to - volt. The efficiency of the ion source was determined at electrical discharge current equal to. ma and different argon gas pressures without and with effect of negative extraction voltage applied on the ion collector plate. It was found that at pressure equal to x - mmhg, the efficiency of the ion source reaches.5 % without extraction voltage and 7.5 % at extraction voltage equal to - volt. The sputtering rate of copper and aluminum targets using argon ion beam was calculated without and with effect of negative extraction voltage. A comparison was made between the sputtering rate values of copper and aluminum targets without extraction voltage and with applied extraction voltage on each target equal to - volt. It was found that at pressure equal to x - mmhg and extraction voltage equal to - volt, the sputtering rate values of coppe r and aluminum targets increases about 5 % than that the sputtering rate values without extraction voltage. Key Words: Conical Cathode Ion Source / Sputtering Rate / Extraction Voltage. INTRODUCTION Sputtering (-) is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles (). When an ion beam strikes a surface, several processes will start. The ions might be partly reflected, they might initiate photons and secondary electrons, or they might be slowed down and captured by the surface. When the energy of the ions exceeds the so-called threshold energy, the surface emits uncharged surface atoms. This process is called sputtering. The kinetic energy of the sputtered particles is about electron volt and thus it is much higher than the energy of evaporated particles (. electron volt). When the sputtered particles hit a substrate, their sticking coefficient is much higher because of their higher energy; the use of a second ion beam for direct bombardment of the substrate might even improve the quality of the film. These properties are caused by processes in the growing layer which usually start at higher temperatures. It is commonly used for thin film deposition (5), etching and analytical techniques. The average number of atoms ejected from the target per incident ion is called the sputtering yield and depends on the angle of the incident ion, the energy of the ion, the masses of the ion and target atoms and the surface binding energy of atoms in the target.

2 ab Journal of Nuclear Science and Applications, 5(), Ion beam sputtering, as a potentially (6) useful roughening technique, has recently been used in attempts to modify the surface topography of biocompatible materials, such as metals, alloys, polymers and ceramics. The focused ion beam (FIB) microscope (7-9) is a tool that has a widespread use in the field of materials science because it is able to micromachining with high resolution imaging thus therefore enhancing a broad range of both fundamental and technological applications () in materials science. EXPERIMENTAL ARRANGEMENT A schematic drawing of cold conical cathode ion source () and its associated electrical circuit is shown in Fig.(). It consists of copper anode disc, A, of 7 mm diameter. The copper conical cathode, C, of mm inner diameter, 7 mm outer diameter and aperture in the center of diameter equal to mm. Two confinement rings, I, made from perspex insulator of 7 mm inner diameter, 7 mm outer diameter and thickness equal to mm are fixed, one on the anode inner surface and the other on the cathode inner surface to confine the discharge in the central zone between them. The anode and the cathode are placed inside an insulating cylinder made from pure perspex material of cm inner diameter, 5 cm outer diameter and length equal to 5 cm. The working gas is admitted to the ion source through a hole of mm diameter in the outer surface of the perspex insulator cylinder. The copper collector plate, CP, is placed at a distance equal to 5 cm from the ion exit aperture of the cathode to collect the output ion beam from the ion source. Fig.(): Cold conical cathode ion source and power its associated electrical circuit. Fig.(): Shows the connection of negative supply to the ion collector plate. Figure () shows the connection of negative power supply to the ion collector plate. The anode is connected to kv positive power supply, P.S., for initiating the glow discharge between the anode and the cathode. The collector plate is connected to 5 kv negative power supply, N.P.S., for extraction of ions from the ion source. A milli-ampere meter is used to measure the electrical discharge current, I d, between the anode and the cathode, while the kilo voltmeter is used to measure the electrical discharge voltage, V d, between them. The cathode is connected to earth, while the ion collector plate is connected to earth through micro-ampere meter which is used to measure the output ion beam current, I b, from central aperture of the cathode. A vacuum system consists of stainless steel mercury diffusion pump of speed 7 L/s provided with electrical heater and backed by a 5 L/min. rotary pump was used to evacuate the ion source chamber. The rotary pump is used to get a pressure from - mmhg to - mmhg, while the mercury diffusion pump is used to yield a low pressure from - mmhg to -6 mmhg in the ion source

3 ab Journal of Nuclear Science and Applications, 5(), chamber. The working gas is admitted into the ion source from a gas cylinder through a finely controlled needle valve. EXPERIMENTAL RESULTS In this work, all the experimental investigations were measured using argon gas and at optimum anode cathode distance, d A-C, inner diameter of two confinement rings, D ring, and cathode ion exit aperture ion collector plate distance, d C-CP, which were obtained before (,) for stable electrical discharge current and a high output ion beam current. The input electrical discharge and output ion beam characteristics from the ion source were measured at different pressures. The effect of applied negative extraction voltage on the ion collector plate, V CP, was determined at different pressures. The efficiency of the ion source was determined at discharge current equals. ma and different argon gas pressures without and with extraction voltage equals - volt. The sputtering rate of copper and aluminum targets which are placed at the optimum distance from the ion exit aperture of the cathode equals 5 cm was calculated without and with extraction voltage equals - volt. - Effect of the Discharge Parameters on Output Ion Beam Current Figure () shows the electrical discharge current, I d, versus the electrical discharge voltage, V d, at different pressures. It is clear that an increase of the discharge voltage was accompanied by an increase of the discharge current and the discharge voltage starts at higher value in case of low pressure, P = x - mmhg, than that at high pressure, P = 7 x - mmhg. Figure () shows the output ion beam current, I b, versus the electrical discharge current, I d, at different pressures. It is obvious that the output ion beam current incresases by increasing the discharge current and at P = x - mmhg and I d =. ma, the value of the output ion beam current reaches 55? A. I d (ma) P = x - mmhg P = 5 x - mmhg P = 6 x - mmhg P = 7 x - mmhg D ring = 7 mm d A-C = mm V d (kv) I b (ma) P = x - mmhg P = 5 x - mmhg P = 6 x - mmhg P = 7 x - mmhg D ring = 7 mm d A-C = mm I d (ma) Fig.(): Discharge current versus discharge versus voltage at different pressures using gas. Fig.(): Output ion beam current discharge current at different argon pressures using argon gas.

4 ab Journal of Nuclear Science and Applications, 5(), - Effect of Applied Negative Extraction Voltage on the Ion Collector Plate In this experiment, the performance of the ion source was modified by applying a negative extraction voltage on the ion collector plate. Also, the effect of applied negative extraction voltage on the ion collector plate on the output ion beam current was measured. Figure (5) shows the output ion beam current, I b, versus the negative extraction voltage applied on the ion collector plate, V CP, at different pressures, optimum cathode ion exit aperture - ion collector plate distance, d C-CP, which equals 5 cm and I d = ma. It is clear from the curves that the output ion beam current increases by increasing the negative voltage applied on the ion collector plate and reaches about 75 % its initial values at V CP = - volt. Also a maximum output ion beam current, I b = 86 µa, can be obtained. Figure (6) shows the output ion beam current, I b, versus the electrical discharge current, I d, at different pressures and V CP = - volt using argon gas. It is obvious that the output ion beam current increases by increasing the discharge current and at P = x - mmhg and I d =. ma, a maximum output ion beam current, I b = 55 µa, can be obtained. I b (ma) P = x - mmhg P = 5 x - mmhg P = 6 x - mmhg P = 7 x - mmhg V CP (volt) I d = ma I b (ma) P = x - mmhg P = 5 x - mmhg P = 6 x - mmhg P = 7 x - mmhg V CP = - volt I d (ma) Fig.(5): Output ion beam current versus V CP Fig.(6): Output ion beam current at versus different pressures using argon gas. discharge current at V CP equals - volt using argon gas. - Ion Source Efficiency Without and With Negative Extraction Voltage The efficiency of the ion source was calculated without and with effect of applied the negative extraction voltage on the ion collector plate at different pressures using the experimental results of the electrical discharge current and the output ion beam current. Figure (7) shows the ion source efficiency, (I b / I d ), versus the gas pressure, P, at I d =. ma without and with applied the negative extraction voltage on the ion collector plate. It is clear from the figure that the ion source efficiency increases by decreasing the gas pressure. At P = x - mmhg and without extraction voltage, the efficiency of the ion source reaches.5 % and at P = 7 x - mmhg reaches.5 %, while in case of V CP = - volt, the efficiency of the ion source at P = x - mmhg reaches 7.5 % and at P = 7 x - mmhg reaches. %.

5 ab Journal of Nuclear Science and Applications, 5(), Ion source efficiency ( Ib / Id) % V CP = - volt without extraction voltage I d =. ma P x - (mmhg) Fig.(7): Ion source efficiency versus the pressure at I d =. ma without and with extraction voltage using argon gas. - Determination of the Sputtering Rate Without and With Negative Extraction Voltage In this experiment, the copper and aluminum targets of 5 mm length, 5 mm width and.5 mm thickness were used. The surface of each target was finely polished to a mirror finish and cleaned by ultrasonic bath of acetone, alcohol and distilled water to remove any contaminations left attached to the surface. Each target was placed at a distance equals 5 cm from the ion exit aperture of the cathode. The argon ions emerging from the cathode aperture of the ion source were used for sputtering of copper and aluminum targets respectively. The rate of the sputtering process for copper and aluminum targets placed at a distance equal to 5 cm from the ion exit aperture of the cathode was calculated using the experimental results without and with the effect of applied negative extraction voltage on each target. The sputtering rate, q, can be calculated as the thickness of the target material surface layer removed per second by ion beam sputterting using the equation () : ( V V ) N q CQ. I b. d - = () o where q is the sputtering rate in mass / sec, C Q is a sputtering rate constant, I b is the output ion beam current, V d is the electrical discharge voltage, V o is a turn-on voltage typically about volt in d.c. operation and N is a constant equal to.7. The sputtering rate constant depends principally on two factors: the transfer of energy from the incident argon ion to the target atoms (this will vary with their relative masses) and break atomic bonds in the target to free sputtered atoms (given by the sublimation energy). The sputtering rate constant of a pure material, expressed as a ratio to some reference material, e.g. pure iron, is given approximately by the relation () :

6 ab Journal of Nuclear Science and Applications, 5(), C Q a b Ø M ø Ø M ref + M ø Ø V S( ref ) ø = Œ œ Œ œ Œ œ () º M ref ß º M + M ß º V S ß c where M is the atomic mass of the material (target), M ref is the reference material, M is the atomic mass of argon gas (the sputtering gas), V S is the sublimation energy, V S(ref) is the sublimation energy of the reference material. The constants a, b and c are equal to.,.8 and.5 respectively. Figure (8) shows the rate of sputtering, q, versus the discharge voltage, V d, for copper and aluminum targets at P = - mmhg without negative extraction voltage. It is clear that the rate of sputtering for copper and aluminum targets increases by increasing the discharge voltage and at V d = kv, the sputtering rate values of copper and aluminum targets reaches.7 µm / min and. µm / min respectively using argon gas. Figure (9) shows the rate of sputtering, q, versus the discharge voltage, V d, for copper and aluminum targets at P = - mmhg with applied extraction voltage on each target, V target, equal to - volt. In this case the extracted ions are due to sum of the discharge voltage and the extraction voltage. Therefore at V d = kv and V target = - volt, the sputtering rate values of copper and aluminum targets reaches.8 µm / min and.9 µm / min respectively using argon gas. q (mm / min.)..8 Cu without extraction voltage.6 P = x - mmhg Al V d (kv) q (mm / min.).5..9 V target = - volt.6 P = x - mmhg Cu Al V d (kv) Fig.(8): The sputtering rate versus discharge Fig.(9): The sputtering rate versus discharge voltage for copper and aluminum targets voltage for copper and aluminum targets at P = - mmhg without extraction at P = - mmhg and V target = - voltage using argon gas. volt using argon gas.

7 ab Journal of Nuclear Science and Applications, 5(), CONCLUSION The electrical discharge current, electrical discharge voltage and output ion beam current characteristics of a cold conical cathode ion source were measured at the optimum operating conditions using argon gas. It was found that at P = x - mmhg and I d =. ma, a maximum output ion beam current, I b = 55 µa, can be obtained. The effect of applied negative extraction voltage on the ion collector plate on the output ion beam current was measured at different pressures. It was found that, at V CP = - volt, I d = ma and, the output ion beam current increases about 75 % its initial values using argon gas. While at P = x - mmhg, V CP = - volt, I d =. ma and, a maximum output ion beam current, I b = 55? A, can be obtained. The efficiency of the ion source was determined without and with the negative extraction voltage. It can be concluded that, at P = x - mmhg and I d =. ma, the efficiency of the ion source reaches.5 % and 7.5 % without and with V CP = - volt respectively. The sputtering rate of copper and aluminum targets which are placed at optimum distance equals 5 cm from the ion exit aperture of the cathode was calculated using the experimental results without and with negative extraction voltage applied on each target. A comparison was made between the sputtering rate values of copper and aluminum targets without extraction voltage and with applied extraction voltage on each target equal to - volt. It can be concluded that, at P = x - mmhg and V target = - volt, the sputtering rate values of copper and aluminum targets increases about 5 % than that the sputtering rate values without extraction voltage. Therefore this ion source can be used for different applications such as sputtering, etching, cleaning (removal the surface contiminations), surface modification and thin film deposition. REFERENCES () K.Shimizu, R.Payling, H.Habazaki, P.Skeldon and G.E.Thompson; J. Anal. At. Spectrom.; 9, 69 (). () M.M.Abdelrahman; Brazilian J. Phys.; (), 6 (). () R.A.Baragiola; Phil. Trans. R. Soc. Lond. A.; 6, 9 (). () R.Behrisch and W.Eckstein; "Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to Mev Energies", Springer, Berlin; (7). (5) M.Stepanova and S.K.Dew; J. Phys.: Condens. Matter; (), (9). (6) F.Aumayr and HP.Winter; Phil. Trans R. Soc. Lond. A.; 6, 77 (). (7) L.A.Giannuzzi and F.A.Stevens ; "Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice", Springer Press, New York; (). (8) C.A.Volkert and A.M.Minor; MRS Bulletin;, 89 (7). (9) V.N.Tondare; J. Vac. Sci. Technol. A.; (6), 98 (5). () L.Repetto, G.Firpo and U.Valbusa; Materials and Technology; (), (8). () A.G.Helal, S.A.Nouh, H.El-Khabeary and S.M.Mahmoud; ab J. Nucl. Sci. Appl.; () () H.El-Khabeary; Brazilian J. Phys.; (), 7 (). () R.Payling; Surf. Interface Anal.;, 79 (99). () B.V.King; " Sputtering: Basic Principles", In: "Glow Discharge Optical Emission Spectrometry", R.Payling, D.G.Jones and A.Bengtson (eds.), John Wiley & Sons LTd., Chichester; (997).

Characteristics of the Broad Beam Glow Discharge Ion Source

Characteristics of the Broad Beam Glow Discharge Ion Source Characteristics of the Broad Beam Glow Discharge Ion Source M.M.Abdel Rahman, N.I. Basal and F.W. Abdelsalam Accelerators & Ion Sources Department, Nuclear Research Center. Atomic Energy P.O.Box:13759,

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

Studies on Atmospheric Non-Thermal Plasma Jet Device

Studies on Atmospheric Non-Thermal Plasma Jet Device Int. J. New. Hor. Phys. 3, No. 1, 1-6 (2016) 1 International Journal of New Horizons in Physics http://dx.doi.org/10.18576/ijnhp/030101 Studies on Atmospheric Non-Thermal Plasma Jet Device H. A. El-sayed*,

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Dr Tony Williams Gencoa Ltd, UK Victor Bellido-Gonzalez, Dr Dermot Monaghan, Dr Joseph Brindley, Robert Brown SVC 2016,

More information

Formation mechanism of new corrosion resistance magnesium thin films by PVD method

Formation mechanism of new corrosion resistance magnesium thin films by PVD method Surface and Coatings Technology 169 170 (2003) 670 674 Formation mechanism of new corrosion resistance magnesium thin films by PVD method a, a a a b M.H. Lee *, I.Y. Bae, K.J. Kim, K.M. Moon, T. Oki a

More information

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation Mat. Res. Soc. Symp. Proc. Vol. 686 2002 Materials Research Society Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation Jae-Hoon Song, Duck-Kyun Choi

More information

Electron Emission. The reader is familiar with the current conduction (i.e. flow of electrons) through a conductor. 28 Principles of Electronics

Electron Emission. The reader is familiar with the current conduction (i.e. flow of electrons) through a conductor. 28 Principles of Electronics 28 Principles of Electronics 2 Electron Emission 2.1 Electron Emission 2.2 Types of Electron Emission 2.3 Thermionic Emission 2.4 Thermionic Emitter 2.5 Commonly Used Thermionic Emitters 2.6 Cathode Construction

More information

TITANIUM MACROPARTICLE FRACTION SUPPRESSION WITH STEERED ARC AND NEGATIVE PULSE BIASING

TITANIUM MACROPARTICLE FRACTION SUPPRESSION WITH STEERED ARC AND NEGATIVE PULSE BIASING Jr. of Industrial Pollution Control ()(06) pp 06-0 www.icontrolpollution.com Research TITANIUM MACROPARTICLE FRACTION SUPPRESSION WITH STEERED ARC AND NEGATIVE PULSE BIASING RYABCHIKOV AI, SIVIN DO, ANANIN

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material on any substrate (in principal) Start with pumping down

More information

Research Article The Corrosion Behavior of Carburized Aluminum Using DC Plasma

Research Article The Corrosion Behavior of Carburized Aluminum Using DC Plasma Metallurgy Volume 212, Article ID 25821, 4 pages doi:1.1155/212/25821 Research Article The Corrosion Behavior of Carburized Aluminum Using DC Plasma Somayeh Pirizadhejrandoost, Mehdi Bakhshzad Mahmoudi,

More information

Kinetics of low temperature plasma carburizing of austenitic stainless steels

Kinetics of low temperature plasma carburizing of austenitic stainless steels Journal of Materials Processing Technology 168 (2005) 189 194 Kinetics of low temperature plasma carburizing of austenitic stainless steels Y. Sun School of Materials Engineering, Nanyang Technological

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

X-RAY EMISSION IN THE HIGH-CURRENT GLOW DISCHARGE EXPERIMENTS

X-RAY EMISSION IN THE HIGH-CURRENT GLOW DISCHARGE EXPERIMENTS Karabut, A.B. X-ray emission in the high-current glow discharge experiments. in The 9th International Conference on Cold Fusion, Condensed Matter Nuclear Science. 2002. Tsinghua Univ., Beijing, China:

More information

XPS STUDY OF DIAMOND-LIKE CARBON-BASED NANOCOMPOSITE FILMS

XPS STUDY OF DIAMOND-LIKE CARBON-BASED NANOCOMPOSITE FILMS International Journal of Nanoscience Vol. 3, No. 6 (2004) 797 802 c World Scientific Publishing Company XPS STUDY OF DIAMOND-LIKE CARBON-BASED NANOCOMPOSITE FILMS S. ZHANG,Y.Q.FU,X.L.BUIandH.J.DU School

More information

EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD. Hybrid system KOLZER DGK 36

EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD. Hybrid system KOLZER DGK 36 email : carlo.gennari@fastwebnet.it web site : http://carlogennariforni.beepworld.it/kolzer.htm EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD Hybrid system KOLZER DGK

More information

Spectroscopy Performance Note

Spectroscopy Performance Note Spectroscopy Performance Note QDP Analysis of Galvanized Steel Galvanizing Thickness and Coating Weight Composition on the Coating and Substrate Surface Treatments The application of zinc and zinc-alloy

More information

ECE 541/ME 541 Microelectronic Fabrication Techniques

ECE 541/ME 541 Microelectronic Fabrication Techniques ECE 541/ME 541 Microelectronic Fabrication Techniques MW 4:00-5:15 pm Introduction to Vacuum Technology Zheng Yang ERF 3017, email: yangzhen@uic.edu ECE541/ME541 Microelectronic Fabrication Techniques

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Materials Transactions, Vol. 44, No. 3 (2003) pp. 389 to 395 #2003 The Japan Institute of Metals An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Rongguang

More information

Via Filling: Challenges for the Chemistry in the Plating Process

Via Filling: Challenges for the Chemistry in the Plating Process Via Filling: Challenges for the Chemistry in the Plating Process Mike Palazzola Nina Dambrowsky and Stephen Kenny Atotech Deutschland GmbH, Germany Abstract Copper filling of laser drilled blind micro

More information

INTRODUCTION OF SYS & System

INTRODUCTION OF SYS & System Vision 2015 INTRODUCTION OF SYS & System PVD & Ion Beam Irradiator Manufacturing Company isys is committed to building the best January. 2007 1 SYS, based on excellent technology and sufficient equipment

More information

AC : MICROWAVE PLASMA CLEANER DESIGN FOR SEMI- CONDUCTOR FABRICATION AND MATERIALS PROCESSING LABO- RATORY USE

AC : MICROWAVE PLASMA CLEANER DESIGN FOR SEMI- CONDUCTOR FABRICATION AND MATERIALS PROCESSING LABO- RATORY USE AC 2011-2416: MICROWAVE PLASMA CLEANER DESIGN FOR SEMI- CONDUCTOR FABRICATION AND MATERIALS PROCESSING LABO- RATORY USE Mustafa G. Guvench, University of Southern Maine Mustafa G. Guvench received M.S.

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Use Of Plasma Window For Enhanced Ion Beam Transmission From Vacuum To Air

Use Of Plasma Window For Enhanced Ion Beam Transmission From Vacuum To Air Use Of Plasma Window For Enhanced Ion Beam Transmission From Vacuum To Air K. Govender, C.B. Franklyn Radiation Utilisation Department, Nuclear Technology Group, Necsa, South Africa E-mail address of main

More information

I. PHYSICAL ELECTRONICS. Prof. W. B. Nottingham L. E. Sprague C. J. Marcinkowski R. Steinberg W. E. Mutter M. Wilkinson A. ELECTRON-EMISSION PROBLEMS

I. PHYSICAL ELECTRONICS. Prof. W. B. Nottingham L. E. Sprague C. J. Marcinkowski R. Steinberg W. E. Mutter M. Wilkinson A. ELECTRON-EMISSION PROBLEMS I. PHYSICAL ELECTRONICS Prof. W. B. Nottingham L. E. Sprague C. J. Marcinkowski R. Steinberg W. E. Mutter M. Wilkinson A. ELECTRON-EMISSION PROBLEMS 1. Work Functions and Electrical Conductivity of Oxide-Coated

More information

Development of J B Arc Discharge Thruster Using Metal and Gas Propellants for Future Space Transporters IEPC p

Development of J B Arc Discharge Thruster Using Metal and Gas Propellants for Future Space Transporters IEPC p Development of J B Arc Discharge Thruster Using Metal and Gas Propellants for Future Space Transporters IEPC-2015-452p Presented at Joint Conference of 30th International Symposium on Space Technology

More information

Title. Author(s)Shimozuma, M.; Date, H.; Iwasaki, T.; Tagashira, H.; Issue Date Doc URL. Type. Note. Additional There Information

Title. Author(s)Shimozuma, M.; Date, H.; Iwasaki, T.; Tagashira, H.; Issue Date Doc URL. Type. Note. Additional There Information Title Three-dimensional deposition of TiN film using low f Author(s)Shimozuma, M.; Date, H.; Iwasaki, T.; Tagashira, H.; CitationJournal of Vacuum Science & Technology. A, Vacuum, S Issue Date 1997-07

More information

Experimental study of plasma window 1*

Experimental study of plasma window 1* Submitted to Chinese Physics C' Experimental study of plasma window 1* SHI Ben-Liang( 史本良 ), HUANG Sheng( 黄胜 ), ZHU Kun( 朱昆 ) 1), LU Yuan-Rong( 陆元荣 ) State Key Laboratory of Nuclear Physics and Technology,

More information

II. NEG THIN FILM DEPOSITION

II. NEG THIN FILM DEPOSITION Deposition of Non-Evaporable Getter Thin Films and Vacuum Pumping Performances Ankit Sur Engineering Department, Wayne State University, Detroit, MI 48202 The ERL (Energy Recovery Linac) proposed at Cornell

More information

Author(s) Chayahara, A; Kinomura, A; Horino, RightCopyright 1999 American Vacuum Soci

Author(s) Chayahara, A; Kinomura, A; Horino,   RightCopyright 1999 American Vacuum Soci Title Titanium nitride prepared by plasma implantation Author(s) Yukimura, K; Sano, M; Maruyama, T; Chayahara, A; Kinomura, A; Horino, Citation JOURNAL OF VACUUM SCIENCE & (1999), 17(2): 840-844 TECHNOL

More information

Production of High Power and Large-Area Negative Ion Beams for ITER

Production of High Power and Large-Area Negative Ion Beams for ITER 1 Production of High Power and Large-Area Negative Ion Beams for ITER M. Hanada, T. Inoue, M. Kashiwagi, M. Taniguchi, H. Tobari, K. Watanabe, N. Umeda, M. Dairaku, Y. Ikeda, K. Sakamoto Japan Atomic Energy

More information

Sputter Coating. Technical Brief

Sputter Coating. Technical Brief Sputter Coating Technical Brief Document Number TB-SPUTTER Issue 2 (01/02) Introduction HP000107 Quorum Technologies Ltd main sales office: South Stour Avenue Ashford Kent U.K. Tel: ++44(0) 1233 646332

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering

Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering Aqeel K. Hadi 1, Muneer H.Jaduaa 1, Abdul- Hussain K. Elttayef 2 1 Wasit University - College

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

CHARGED PARTICLE PHYSICS BRANCH CODE 6750

CHARGED PARTICLE PHYSICS BRANCH CODE 6750 Page 1 of 6 CHARGED PARTICLE PHYSICS BRANCH CODE 6750 The Charged Particle Physics Branch performs basic and applied research on topics relevant to Navy and DoD missions with potential spin-offs to the

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

Aluminium and silicon determination on two Si±Al sputter targets used for magnetron sputtering

Aluminium and silicon determination on two Si±Al sputter targets used for magnetron sputtering Nuclear Instruments and Methods in Physics Research B 158 (1999) 683±688 www.elsevier.nl/locate/nimb Aluminium and silicon determination on two Si±Al sputter targets used for magnetron sputtering G. Terwagne

More information

acta physica slovaca vol. 55 No. 4, August 2005 THERMIONIV VACUUM ARC NEW TECHNIQUE FOR HIGH PURITY CARBON THIN FILM DEPOSITION

acta physica slovaca vol. 55 No. 4, August 2005 THERMIONIV VACUUM ARC NEW TECHNIQUE FOR HIGH PURITY CARBON THIN FILM DEPOSITION acta physica slovaca vol. 55 No. 4, 417 421 August 2005 THERMIONIV VACUUM ARC NEW TECHNIQUE FOR HIGH PURITY CARBON THIN FILM DEPOSITION G. Musa 1,a, I. Mustata a, M. Blideran a, V. Ciupina b, R. Vladoiu

More information

Characteristics of cylindrical hollow cathode plasma jet

Characteristics of cylindrical hollow cathode plasma jet AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Characteristics of cylindrical hollow cathode plasma jet 1 Khaled Hussien Metwaly, 2

More information

Effect of Decarburization on Microstructure of DC-Plasma Nitrided H 13 Tool Steel

Effect of Decarburization on Microstructure of DC-Plasma Nitrided H 13 Tool Steel Journal of Metals, Materials and Minerals. Vol.16 No.2 pp.16, 2006 Effect of Decarburization on Microstructure of DCPlasma Nitrided H 13 Tool Steel Patama VISUTTIPITUKUL 1*, Chuleeporn PAARAI 2 and Kuwahara

More information

Ion channeling effects on the focused ion beam milling of Cu

Ion channeling effects on the focused ion beam milling of Cu Ion channeling effects on the focused ion beam milling of Cu B. W. Kempshall a) and S. M. Schwarz Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, P.O. Box

More information

Formation of Cupric Oxide Films on Quartz Substrates by Annealing the Copper Films

Formation of Cupric Oxide Films on Quartz Substrates by Annealing the Copper Films Journal of Applied Chemical Research, 9, 2, 73-79 (2015) Journal of Applied Chemical Research www.jacr.kiau.ac.ir Formation of Cupric Oxide Films on Quartz Substrates by Annealing the Copper Films Abstract

More information

Etching Mask Properties of Diamond-Like Carbon Films

Etching Mask Properties of Diamond-Like Carbon Films N. New Nawachi Diamond et al. and Frontier Carbon Technology 13 Vol. 15, No. 1 2005 MYU Tokyo NDFCT 470 Etching Mask Properties of Diamond-Like Carbon Films Norio Nawachi *, Akira Yamamoto, Takahiro Tsutsumoto

More information

Deposition of niobium and other superconducting materials with high power impulse magnetron sputtering: Concept and first results

Deposition of niobium and other superconducting materials with high power impulse magnetron sputtering: Concept and first results 15th International Conference on RF Superconductivity July 25-29, 2011, Chicago Deposition of niobium and other superconducting materials with high power impulse magnetron sputtering: Concept and first

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

Institute of Solid State Physics. Technische Universität Graz. Deposition. Franssila: Chapters 5 & 6. Peter Hadley

Institute of Solid State Physics. Technische Universität Graz. Deposition. Franssila: Chapters 5 & 6. Peter Hadley Technische Universität Graz Institute of Solid State Physics Deposition Franssila: Chapters 5 & 6 Peter Hadley Silicon wafers Total Thickness Variation: a good 8" Prime wafer would be < 15 m Site flatness

More information

Introduction. 1. Sputtering process, target materials and their applications

Introduction. 1. Sputtering process, target materials and their applications Sputtering is widely used in the production of electronic devices such as liquid crystal displays (LCDs), optical media, magnetic media and semiconductors. The Kobelco Research Institute, Inc. has been

More information

PULSED LASER DEPOSITION OF DIAMOND-LIKE AMORPHOUS CARBON FILMS FROM DIFFERENT CARBON TARGETS

PULSED LASER DEPOSITION OF DIAMOND-LIKE AMORPHOUS CARBON FILMS FROM DIFFERENT CARBON TARGETS Publ. Astron. Obs. Belgrade No. 89 (2010), 125-129 Contributed Paper PULSED LASER DEPOSITION OF DIAMOND-LIKE AMORPHOUS CARBON FILMS FROM DIFFERENT CARBON TARGETS V. GONCHAROV, G. GUSAKOV, M. PUZYREV, M.

More information

A Parametric Study on the Electrodeposition of Copper Nanocrystals on a Gold Film Electrode. Andrea Harmer Co-op term #1 April 25, 2003

A Parametric Study on the Electrodeposition of Copper Nanocrystals on a Gold Film Electrode. Andrea Harmer Co-op term #1 April 25, 2003 A Parametric Study on the Electrodeposition of Copper Nanocrystals on a Gold Film Electrode Andrea Harmer Co-op term #1 April 25, 2003 Outline of Presentation: Introduction Purpose General method Parameters:

More information

METAL FINISHING. (As per revised VTU syllabus: )

METAL FINISHING. (As per revised VTU syllabus: ) METAL FINISHING (As per revised VTU syllabus: 2015-16) Definition: It is a process in which a specimen metal (article) is coated with another metal or a polymer in order to modify the surface properties

More information

Conversion of Methane to Hydrogen via Pulsed Corona Discharge

Conversion of Methane to Hydrogen via Pulsed Corona Discharge Journal of Natural Gas Chemistry 13(2004)82 86 Conversion of Methane to Hydrogen via Pulsed Corona Discharge Lekha Nath Mishra, Kanetoshi Shibata, Hiroaki Ito, Noboru Yugami and Yasushi Nishida Energy

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

METHODS OF COATING FABRICATION

METHODS OF COATING FABRICATION METHODS OF COATING FABRICATION Zbigniew Grzesik http://home.agh.edu.pl/~grzesik Department of Physical Chemistry and Modelling DEFINITION The coating is the thin outer layer of the object, which physiochemical

More information

Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device*

Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device* Materials Transactions, Vol. 47, No. 7 (2006) pp. 1821 to 1825 #2006 The Japan Institute of Metals Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device* Yoshitake Nishi and Kazunori Tanaka

More information

SOLID SOLUTION METAL ALLOYS

SOLID SOLUTION METAL ALLOYS SOLID SOLUTION METAL ALLOYS Synergy Effects vs. Segregation Phenomena D. Manova, J. Lutz, S. Mändl, H. Neumann 1 Table of Content Motivation Alloys vs. Pure Elements or Intermetallic Compounds Introduction

More information

Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program. J. R. Haines and C. C. Tsai

Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program. J. R. Haines and C. C. Tsai Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program J. R. Haines and C. C. Tsai Rev 1 November 7, 2001 Graphite Sublimation Tests for the Muon Collider/Neutrino

More information

Micromachining vs. Soft Fabrication

Micromachining vs. Soft Fabrication Introduction to BioMEMS & Medical Microdevices Silicon Microfabrication Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/

More information

needed for the SOFC electrolyte membrane application. Few directed vapor deposition

needed for the SOFC electrolyte membrane application. Few directed vapor deposition Chapter 3 Experimental Procedure 3.1 Overview Prior to this study, DVD has not been used to create the type of dense metal oxide layers needed for the SOFC electrolyte membrane application. Few directed

More information

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 623-628 online at http://www.scientific.net 2004 Trans Tech Publications, Switzerland Grain Sizes and Surface Roughness in Platinum

More information

Linear Broad Beam Ion Sources ACC-30x150 IS, ACC-40x300 IS and ACC-40 x 600 IS

Linear Broad Beam Ion Sources ACC-30x150 IS, ACC-40x300 IS and ACC-40 x 600 IS Dr. Hermann Schlemm Ion Beam- and Surface Technology Saalbahnhofstraße 6 D - 07743 JENA, Germany Tel.: ++ 49 3641 22 73 29 Fax: ++ 49 3641 22 87 60 email: hermann.schlemm@jenion.de http://www.jenion.de

More information

A Plasma Emission Controller for Reactive. Magnetron Sputtering of Titanium Dioxide Films

A Plasma Emission Controller for Reactive. Magnetron Sputtering of Titanium Dioxide Films Adv. Theor. Appl. Mech., Vol. 5, 2012, no. 1, 1-10 A Plasma Emission Controller for Reactive Magnetron Sputtering of Titanium Dioxide Films Raad A. Swady DMPS, College of Arts & Sciences, University of

More information

Plasma Quest Limited

Plasma Quest Limited Plasma Quest Limited A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr. Peter Hockley and Prof. Mike Thwaites,

More information

Study of Structure-Phase State of Oxide Films on E110 and E635 Alloys at Pre- and Post-Irradiation Stages

Study of Structure-Phase State of Oxide Films on E110 and E635 Alloys at Pre- and Post-Irradiation Stages A.A. BOCHVAR HIGH-TECHNOLOGY RESEARCH INSTITUTE OF INORGANIC MATERIALS (SC «VNIINM») 18TH INTERNATIONAL SYMPOSIUM ON ZIRCONIUM IN THE NUCLEAR INDUSTRY «ROSATOM» STATE ATOMIC ENERGY CORPORATION MAY 15-19,

More information

Maximizing the Potential of Rotatable Magnetron Sputter Sources for Web Coating Applications

Maximizing the Potential of Rotatable Magnetron Sputter Sources for Web Coating Applications Maximizing the Potential of Rotatable Magnetron Sputter Sources for Web Coating Applications V.Bellido-Gonzalez, Dermot Monaghan, Robert Brown, Alex Azzopardi, Gencoa, Liverpool UK Structure of presentation

More information

Applications. SIMS successfully applied to many fields. Catalysts, metals, ceramics, minerals may primarily use imaging

Applications. SIMS successfully applied to many fields. Catalysts, metals, ceramics, minerals may primarily use imaging Applications SIMS successfully applied to many fields Catalysts, metals, ceramics, minerals may primarily use imaging Semiconductors extensively use depth profiling Si, GaAs, GaN, ZnO Minerals Analysis

More information

Improvement of gas barrier properties by combination of polymer film and gas barrier layer

Improvement of gas barrier properties by combination of polymer film and gas barrier layer Improvement of gas barrier properties by combination of polymer film and gas barrier Y. Tsumagari, H. Murakami, K. Iseki and S. Yokoyama Toyobo Co., LTD. RESEARCH CENTER, - Katata 2-chome, Otsu, Shiga,

More information

PLASMA FLOW AND PLASMA EXPANSION AROUND 3D OBJECTS IN METAL PLASMA IMMERSION ION IMPLANTATION

PLASMA FLOW AND PLASMA EXPANSION AROUND 3D OBJECTS IN METAL PLASMA IMMERSION ION IMPLANTATION PLASMA FLOW AND PLASMA EXPANSION AROUND 3D OBJECTS IN METAL PLASMA IMMERSION ION IMPLANTATION Darina Manova & Stephan Mändl 1 Motivation 2 Motivation Visualisation of Water Flow from Dynamic Sand Dunes

More information

VERSATILE DEVICE FOR IN-SITU MULTIPLE COATINGS OF LONG, SMALL DIAMETER TUBES Ady Hershcovitch 1, Michael Blaskiewicz 1, J. Michael Brennan 1, Art

VERSATILE DEVICE FOR IN-SITU MULTIPLE COATINGS OF LONG, SMALL DIAMETER TUBES Ady Hershcovitch 1, Michael Blaskiewicz 1, J. Michael Brennan 1, Art VERSATILE DEVICE FOR IN-SITU MULTIPLE COATINGS OF LONG, SMALL DIAMETER TUBES Ady Hershcovitch 1, Michael Blaskiewicz 1, J. Michael Brennan 1, Art Custer 2, Mark Erickson 2, Wolfram Fischer 1, Chong-Jer

More information

Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved x-ray photoelectron spectroscopy and QUASES

Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved x-ray photoelectron spectroscopy and QUASES SURFACE AND INTERFACE ANALYSIS Surf. Interface Anal. 2004; 36: 1637 1641 Published online 29 November 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sia.1992 Short Communication

More information

Vacuum properties of TiZrV non-evaporable getter films

Vacuum properties of TiZrV non-evaporable getter films EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-EST CERN EST/99-007 (SM) Vacuum properties of TiZrV non-evaporable getter films C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Escudeiro Santana, T. Hedley,

More information

THE INFLUENCE OF NITROGEN CONTENT ON THE MECHANICAL PROPERTIES OF TiN x THIN FILMS PREPARED BY REACTIVE MAGNETRON SPUTTERING

THE INFLUENCE OF NITROGEN CONTENT ON THE MECHANICAL PROPERTIES OF TiN x THIN FILMS PREPARED BY REACTIVE MAGNETRON SPUTTERING Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 5 (54) No. 2-2012 THE INFLUENCE OF NITROGEN CONTENT ON THE MECHANICAL PROPERTIES OF TiN x THIN FILMS PREPARED BY REACTIVE

More information

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition Nuclear Instruments and Methods in Physics Research B 206 (2003) 357 361 www.elsevier.com/locate/nimb Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted

More information

A Basic Introduction to Thin-Film Coatings. From the Experts at VaporTech

A Basic Introduction to Thin-Film Coatings. From the Experts at VaporTech A Basic Introduction to Thin-Film Coatings From the Experts at VaporTech What are thin-film coatings? 2018 Vapor Technologies, Inc. All rights reserved. Thin-film coatings Physical or Chemical Vapor Deposition

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management DIFFUSION BONDING OF AL ALLOY USING DIFFERENT IINTERLAYERS Assist. Prof. Dr. Ahmed A. Akbar*, Samer K. Khaleel * Asst. Prof. Dr. at University of Technology, Production Engineering and Metallurgy, Iraq

More information

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source

More information

Previous Lecture. Vacuum & Plasma systems for. Dry etching

Previous Lecture. Vacuum & Plasma systems for. Dry etching Previous Lecture Vacuum & Plasma systems for Dry etching Lecture 9: Evaporation & sputtering Objectives From this evaporation lecture you will learn: Evaporator system layout & parts Vapor pressure Crucible

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure KOBAYASHI Akira*, TAKAO Yoshiyuki**, KOMURASAKI Kimiya*** Abstract The microwave discharge plasma

More information

Transactions on Engineering Sciences vol 2, 1993 WIT Press, ISSN

Transactions on Engineering Sciences vol 2, 1993 WIT Press,  ISSN A study of thin-film continuous coating process by vapour deposition P. Gimondo," F. Arezzo,* B. Grifoni,* G. Jasch& "Centra Sviluppo Materiali SpA, Via di Castel & Von Ardenne Anlagentchnik GmbH, Plattleite

More information

Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition Journal of Physics: Conference Series PPER OPEN CCESS Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition To cite this article: Lozovan

More information

In-Situ Low-Angle Cross Sectioning: Bevel Slope Flattening due to Self-Alignment Effects

In-Situ Low-Angle Cross Sectioning: Bevel Slope Flattening due to Self-Alignment Effects In-Situ Low-Angle Cross Sectioning: Bevel Slope Flattening due to Self-Alignment Effects UWE SCHEITHAUER SIEMENS AG, CT MM 7, Otto-Hahn-Ring 6, 81739 München, Germany Phone: + 49 89 636 44143 E-mail: uwe.scheithauer@siemens.com

More information

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis Supporting Information: Model Based Design of a Microfluidic Mixer Driven by Induced Charge Electroosmosis Cindy K. Harnett, Yehya M. Senousy, Katherine A. Dunphy-Guzman #, Jeremy Templeton * and Michael

More information

A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS SENSING

A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS SENSING INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 2, JUNE 2008 A NOVEL METHOD FOR THE IMPROVEMENT IN THERMOELECTRIC PROPERTY OF TIN OXIDE THIN FILMS AND ITS APPLICATION IN GAS

More information

Quantitative thickness measurement of dual layer materials using X-ray absorption-based technique

Quantitative thickness measurement of dual layer materials using X-ray absorption-based technique SIMTech technical reports Volume 8 Number 1 Jan - Mar 7 Quantitative thickness measurement of dual layer materials using X-ray absorption-based technique L. M. Sim and A. C. Spowage Abstract Gray levels

More information

Optimization of the Sputtering Process for Depositing Composite Thin Films

Optimization of the Sputtering Process for Depositing Composite Thin Films Journal of the Korean Physical Society, Vol. 40, No. 3, March 2002, pp. 511 515 Optimization of the Sputtering Process for Depositing Composite Thin Films M. Farooq Pakistan Council of Renewable Energy

More information

3. EXPERIMENTAL. 3.1 The Designed ESP

3. EXPERIMENTAL. 3.1 The Designed ESP 24 3. EXPERIMENTAL In the present work, an appropriate electrostatic precipitator (ESP) was designed and built. Its collection performance was investigated under laboratory conditions by varying operation

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

CORIAL D500. Large capacity batch system for 24/7 production environment

CORIAL D500. Large capacity batch system for 24/7 production environment CORIAL D500 Large capacity batch system for 24/7 production environment High-quality films for a wide range of materials, incl. SiO2, Si3N4, SiOCH, SiOF, SiC and asi-h films Film deposition from 120 C

More information

Rapid electroplating of Cu coatings by mechanical attrition method

Rapid electroplating of Cu coatings by mechanical attrition method Rapid electroplating of Cu coatings by mechanical attrition method NING Zhao-hui( 宁朝晖 ), HE Ye-dong( 何业东 ) Beijing Key Laboratory for Corrosion, Erosion and Surface Technology, University of Science and

More information

Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets

Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets Frank Papa*, Dermot Monaghan**, Victor Bellido- González**, and Alex Azzopardi** *Gencoa Technical & Business Support in US,

More information

THIN NICKEL OXIDE LAYERS PREPARED BY ION BEAM SPUTTERING: FABRICATION AND THE STUDY OF ELECTROPHYSICAL PARAMETERS

THIN NICKEL OXIDE LAYERS PREPARED BY ION BEAM SPUTTERING: FABRICATION AND THE STUDY OF ELECTROPHYSICAL PARAMETERS THIN NICKEL OXIDE LAYERS PREPARED BY ION BEAM SPUTTERING: FABRICATION AND THE STUDY OF ELECTROPHYSICAL PARAMETERS Pavel HORÁK a,b, Václav BEJŠOVEC b, Vasyl LAVRENTIEV b, Jiří VACÍK b, Martin VRŇATA a,

More information

Surface treatments for vacuum applications at CERN

Surface treatments for vacuum applications at CERN Surface treatments for vacuum applications at CERN Paolo Chiggiato Technology Department Vacuum, Surfaces & Coatings JRC-CERN collaboration workshop, CERN, January 27 th, 2014 2 Outlook 1 2 3 Vacuum materials

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Supplementary Information

Supplementary Information Supplementary Information Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing Samuel Yick, Zhao Jun Han and Kostya (Ken)

More information

High-Energy Resolution Microcalorimeter EDS System for Electron Beam Excitation

High-Energy Resolution Microcalorimeter EDS System for Electron Beam Excitation High-Energy Resolution Microcalorimeter EDS System for Electron Beam Excitation *K. Tanaka, A. Nagata, N. Sasayama, M. Ikeda, A. Odawara, S. Nakayama and K. Chinone. SII NanoTechnology Inc.,563 Takatsuka-shinden,

More information

A Study on AlN thin film as Thermal Interface Material for high power LED

A Study on AlN thin film as Thermal Interface Material for high power LED International Journal of Electronics and Computer Science Engineering 296 Available Online at www.ijecse.org ISSN- 2277-1956 A Study on AlN thin film as Thermal Interface Material for high power LED Subramani

More information