SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 An electrodeposited inhomogeneous metal insulator semiconductor junction for efficient photoelectrochemical water oxidation James C. Hill, Alan T. Landers, Jay A. Switzer * Missouri University of Science & Technology, Department of Chemistry and Graduate Center for Materials Research, Rolla, MO , USA. *Correspondence to: jswitzer@mst.edu NATURE MATERIALS 1

2 Photoelectrochemical efficiency calculations The fill factor is FF, the current density at the maximum power point is J mpp, the potential at the maximum power point is V mpp, the open circuit voltage is V oc, the short circuit current density is J sc, and the power input is P in. The fill factor is determined by finding the potential and current at which the maximum power output is generated from the device. The power input is 100 mw cm -2. The photovoltage is calculated by taking the difference between the voltage of n- Si/SiO x /Co/CoOOH in the light and the p ++ -Si/Co/CoOOH in the dark. The limiting current density is the short circuit current density. The maximum power point occurs at 31 ma cm -2 and 0.33 V. The short circuit current density is 35 ma cm -2 and the open circuit voltage is 0.47 V. Thus, the fill factor is 0.62 (Eq. S1) and the efficiency is 10.2 % (Eq. S2). If the photovoltage is calculated against the thermodynamic potential for water oxidation in 1 M KOH ( V vs. Ag/AgCl), the maximum power point occurs at 6.2 ma cm -2 and 0.06 V, the short circuit current density is 13 ma cm -2 and the open circuit potential is 0.20 V. Thus, the fill factor is 0.14 and the efficiency is 0.4 %. FF = Jmpp x V mpp (Eq. S1) Jsc x V oc FF x V oc sc % efficiency = (Eq. S2) P in x J Solid-state measurement calculations The Mott-Schottky equation is shown below as Eq. S3. Capacitance is C (F cm -2 ), the charge of an electron is q (1.60 x C), the vacuum permittivity is! o (8.85 x F cm -1 ), the permittivity of silicon is! s (1.05 x F cm -1 ), area is A, donor density is N D, the applied bias is V, the flat band voltage is V fb, Boltzmann s constant is k (1.38 x J K -1 ), and temperature 2 2 NATURE MATERIALS

3 SUPPLEMENTARY INFORMATION is T (294 K). The x-intercept of the Mott-Schottky plot is reached at the bias that needs to be applied to cause the bands to become flat. Also, the slope of the plot can be used to calculate the donor density of the electrode. The x-intercept plus kt/q (0.025 V) equals the flat band voltage, which is 0.66 V for the solid state cell with 10 mc cm -2 of cobalt electrodeposited on n-silicon. 1 C 2 = 2 q" s" o A 2 N D ( V! V fb! kt / q) (Eq. S3) The donor density (N D ) of the silicon wafer is calculated from Eq. S4 using the charge of an electron as q (1.60 x C), the electron mobility as µ (1500 cm 2 V -1 s -1 ), and the resistivity as ". A 4-point probe was used to measure the resistivity of the silicon wafers prior to scoring and breaking the wafers. The (100) n-silicon wafer used in this study had a resistivity of 2.3 # cm and a donor density of 1.8 x cm -3 (Eq. S4). N D 1 = (Eq. S4) qµ! Interface surface state density calculation Eq. S5 was used to estimate the density of surface states in the n-si/sio x /Co/CoOOH heterojunction 1. The expression was developed by Card and Rhoderick for metal-insulatorsemiconductor (MIS) solar cells. The following are constants used in this equation; the permittivity of silicon dioxide is! i (3.45 x F cm -1 ), the permittivity of silicon is! s (1.05 x F cm -1 ), and the charge of an electron is q (1.60 x C). The following variables were calculated: the diode quality factor is n (1.12), the thickness of silicon dioxide is $ (5 Å), the flat band voltage is V fb (0.66 V), and the donor density is N D (1.8 x cm -3 ). This shows that the density of surface states is dependent on the diode quality factor and the thickness of the insulating layer, in this case silicon dioxide. The density of surface states for the photoanode with 10 mc cm -2 of cobalt electrodeposited onto (100) n-silicon is 5.07 x states cm -2 ev NATURE MATERIALS 3

4 This low surface state density is consistent with minimal electron-hole recombination at midgap states. D ( n# 1)! i # " 2! sv q! s q N fb D = (Eq. S5) ss References: 1. Card, H. C., & Rhoderick, E. H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D: Appl. Phys. 4, (1971). 2. Prabhakaran, K., Sumitomo, K., & Ogino T. Diffusion mediated chemical reaction in Co/Ge/Si(100) forming Ge/CoSi 2 /Si(100). Appl. Phys. Lett. 68, (1996). 3. Hwang, I. Y., Kim, J. H., Oh, S. K., Kang, H. J., & Lee Y. S. Ultrathin cobalt silicide film formation on Si(100). Surf. Interface Anal. 35, (2003). 4 4 NATURE MATERIALS

5 SUPPLEMENTARY INFORMATION Figure S1 Light attenuation and reflectance by the catalyst. UV-vis-NIR a, specular reflectance measurements of n-si (black), n-si/co (blue), and n-si/co/coooh (red); and b, transmittance measurements of FTO (black), FTO/Co (blue), and FTO/Co/CoOOH (red). The dashed vertical line represents the bandgap of silicon. All films had 10 mc cm -2 of cobalt electrodeposited. The Co is thin enough to be transparent, and the n-si/sio x /Co/CoOOH electrode shows lower reflectivity in the visible region than bare Si. 5 NATURE MATERIALS 5

6 Figure S2. Surface characterization of activated photoanode by Raman spectroscopy. Raman spectrum of the cobalt surface after photo-oxidation in 1 M KOH at 100 mw cm -2 AM 1.5 irradiation. The spectrum shows a surface layer of CoOOH. 6 6 NATURE MATERIALS

7 SUPPLEMENTARY INFORMATION Figure S3. Characterization of the n-si/co interface by XPS. a, X-ray photoelectron spectroscopy measurements of Si 2p comparing as-deposited n-si/co (10 mc cm -2 ) before (black), and after (red) dissolution of the cobalt layer in 5 M sulfuric acid. b, X-ray photoelectron spectroscopy measurements of Co 2p comparing as-deposited n-si/co before (black), and after (red) dissolution of the cobalt layer in 5 M sulfuric acid. These results are consistent with a layer of SiO x atop silicon, and show no evidence of a silicide layer NATURE MATERIALS 7

8 Figure S4. TEM cross-sections of the n-si/co interface. Cross-section TEM images of as-deposited n- Si/SiO x /Co thin films with a 200 mc cm -2 and b 10 mc cm -2 of cobalt. Cobalt islands are evident in the image (b) of the sample with 10 mc cm -2 of cobalt. 8 NATURE MATERIALS

9 SUPPLEMENTARY INFORMATION Figure S5 Measurements of the catalytic activity of p + -Si/SiO x /Co/CoOOH for the oxygen evolution reaction. a, Enhancement of the catalytic activity of degenerate Si (p + -Si) for water oxidation by the deposition of a thin Co/CoOOH layer. Linear sweep voltammetry of bare p + -Si (black) and p + -Si/SiO x /Co/CoOOH (red) at a 10 mv s -1 scan rate in 1 M KOH. b, Table of overpotential values necessary for p + -Si/SiO x /Co/CoOOH to generate the given current densities for water oxidation in 1 M KOH. c, Tafel plot of a p + -Si/SiO x /Co/CoOOH thin film at a 1 mv s -1 scan rate in 1 M KOH. NATURE MATERIALS 9

10 Figure S6 Photoelectrochemical characterization of n-si/sio x /Co/CoOOH in 1 M KOH and ph 9 borate buffer. a, Chopped light linear sweep voltammetry under 100 mw cm -2 AM 1.5 irradiation in 1 M KOH at a 10 mv s -1 scan rate. b, Linear sweep voltammetry under 100 mw cm -2 AM 1.5 irradiation in borate buffer at ph 9 at a 10 mv s -1 scan rate. The vertical line in b corresponds to the thermodynamic potential for water oxidation at ph NATURE MATERIALS

11 SUPPLEMENTARY INFORMATION Figure S7 Stability measurements of n-si/sio x /Co/CoOOH. a, Normalized photocurrent stability measurements at (red) 1.3 V vs. Ag/AgCl in borate buffer at ph 9 and (black) 1.0 V vs. Ag/AgCl in 1 M KOH to under 100 mw cm -2 AM 1.5 irradiation. b, Electrochemical stability measurements of Au/Co/CoOOH at 1.3 V vs. Ag/AgCl in borate buffer at ph 9 (red) and at 0.7 V vs. Ag/AgCl in 1 M KOH (black). Note that even the Au/Co/CoOOH electrode shows a steady decrease in activity in 1 M KOH. The improved stability at ph 9 for n-si/sio x /Co/CoOOH and Au/Co/CoOOH suggests cobalt dissolution in 1 M KOH. c, 5-day photocurrent stability measurement at 1.2 V vs. Ag/AgCl in borate buffer at ph 9 under 100 mw cm -2 AM 1.5 irradiation. 11 NATURE MATERIALS 11

12 Figure S8 Characterization of an n-si/sio x /Co/CoOOH photoanode after device failure. a, SEM image of n-si/sio x /Co/CoOOH photoanode after photocurrent significantly decreased in 1 M KOH at 100 mw cm -2 AM 1.5 irradiation. The quantity and density of the cobalt islands has decreased significantly due to dissolution or conversion to the CoOOH platelets. b, Cross-section TEM of the same film showing a region where all of the Co has been converted to CoOOH forming an n- Si/SiO x /CoOOH junction with a significantly thicker SiO x layer. 12 NATURE MATERIALS

13 SUPPLEMENTARY INFORMATION Figure S9 Solar water oxidation efficiency determination using the thermodynamic standard reduction potential. a, Linear sweep voltammetry of n-si/sio x /Co/CoOOH at 100 mw cm -2 AM 1.5 irradiation in 1.0 M KOH. The dashed vertical line represents the standard reduction potential for oxygen evolution. b, J-V plot of n-si/sio x /Co/CoOOH at 100 mw cm -2 AM 1.5 irradiation with 0 V bias equivalent to the standard reduction potential of water oxidation. NATURE MATERIALS 13

14 List of Symbols and Units A Area cm 2 A* Richardson s constant 120 A cm -2 K -2 C Capacitance F cm -2 D ss Density of surface states cm -3 FF Fill factor J Current density A cm -2 J L Limiting current density A cm -2 J mpp Current density at maximum power point A cm -2 J s Saturation current density A cm -2 J sc Short circuit current density A cm -2 k Boltzmann s constant 1.38 x J K -1 n Diode quality factor N C Density of states in the conduction band 2.8 x cm -3 N D Donor density cm -3 P in Power input W cm -2 q Charge of an electron 1.60 x C R s Series resistance # T Temperature 294 K V Potential or voltage V V fb Flat band voltage V V mpp Voltage at maximum power point V V n Conduction band position Fermi level ev 14 NATURE MATERIALS

15 SUPPLEMENTARY INFORMATION V oc Open circuit voltage V $ Oxide thickness Å! i Silicon dioxide permittivity 3.45 x F cm -1! s Silicon permittivity 1.05 x F cm -1! o Permittivity in vacuum 8.85 x F cm -1 µ Electron mobility in silicon 1500 cm 2 V -1 s -1 % bh Barrier height ev " Resistivity # cm NATURE MATERIALS 15

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Supplementary Information

Supplementary Information Supplementary Information Facile growth of hierarchical hematite ( -Fe 2 O 3 ) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting Pravin S. Shinde, Geun Ho Go

More information

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Hematite photoanode with gradient structure shows an unprecedentedly

More information

defects re-growth re-growth over-grown hematite (rgh III) re-grown hematite (rgh II) Solution-derived hematite (sdh)

defects re-growth re-growth over-grown hematite (rgh III) re-grown hematite (rgh II) Solution-derived hematite (sdh) defects defects-cured defects re-growth re-growth Solution-derived hematite (sdh) re-grown hematite (rgh II) over-grown hematite (rgh III) Supplementary Figure 1. Re-growth scheme of hematite. Supplementary

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) In Situ XAS Study of Modified Hematite Photoanodes

More information

Supplementary Information

Supplementary Information Supplementary Information Facile Preparation of Fe 2 O 3 Thin Film with Photoelectrochemical Properties Hyun Gil Cha, Jieun Song, Hyun Sung Kim *, Woonsup Shin, Kyung Byung Yoon, Young Soo Kang * Korea

More information

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4,

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Bi 2 WO 6 and Bi 2 Mo 3 O 12, Using Dendritic Bi Metal Electrodes Donghyeon Kang, a, Yiseul Park, a, James C. Hill, b and Kyoung-Shin Choi a,*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information Tuning nanosheet Fe 2 O 3 photoanode with C 3 N 4

More information

Electronic supplementary information

Electronic supplementary information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Electronic supplementary information Hydrothermally grown CdS nanograin-sensitized 1D

More information

Protective Metal Oxides that Electronically Couple Catalysts to Efficient Light Absorbers

Protective Metal Oxides that Electronically Couple Catalysts to Efficient Light Absorbers Protective Metal Oxides that Electronically Couple Catalysts to Efficient Light Absorbers Co-PI: Christopher Chidsey Personnel: Andrew Scheuermann, Olivia Hendricks, and Kyle Kemp Support: GCEP Leverage:

More information

Incorporation of Mo and W into Nanostructured BiVO 4 Films to Improve Photoelectrochemical Water Oxidation Performance

Incorporation of Mo and W into Nanostructured BiVO 4 Films to Improve Photoelectrochemical Water Oxidation Performance Power Density ( W cm -2 ) Supporting Information Incorporation of Mo and W into Nanostructured BiVO 4 Films to Improve Photoelectrochemical Water Oxidation Performance Sean P. Berglund, Alexander J.E.

More information

Supporting Information for Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting

Supporting Information for Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting Supporting Information for Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting William D. Chemelewski 1,2, Heung-Chan Lee 2,3, Jung-Fu Lin 1,4, Allen J. Bard 1,2,3,

More information

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP im- PHYSICSOF SOLARCELLS Jenny Nelson Imperial College, UK ICP Imperial College Press Contents Preface v Chapter 1 Introduction 1 1.1. Photons In, Electrons Out: The Photovoltaic Effect 1 1.2. Brief History

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY DISCUSSION AND FIGURES 1. Chemical and Structural Characterization (a) Grazing-incidence small-angle X-ray scattering (GISAXS) The structural evolution of the mesoporous

More information

Schottky-barrier and MIS solar cells

Schottky-barrier and MIS solar cells Schottky-barrier and MIS solar cells (Metal-Insulator- Semiconductor) Steve Byrnes NSE 290 Final Presentation December 1, 2008 Outline Background on Schottky barriers Dark and light I-V curves, and effect

More information

Why does pyrite have a low photovoltage?

Why does pyrite have a low photovoltage? Why does pyrite have a low photovoltage? August 25, 2011 Hypothesis I: metallic phase impurities Pyrite always contains metallic FeS-type phase impurities, which somehow reduce the photovoltage Evidence

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Spray pyrolysis of CuBi 2 O 4 photocathodes:

More information

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Osamu Yoshikawa*, Akinobu Hayakawa, Takuya Fujieda, Kaku Uehara, SusumuYoshikawa Institute of Advanced Energy Kyoto University Introduction

More information

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells Kyung Hee Park, Chonnam National University, Electric Eng., Gwangju, Kr Kyung Jun Hwang,

More information

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS International Journal of Nanotechnology and Application (IJNA) ISSN(P): 2277-4777; ISSN(E): 2278-9391 Vol. 6, Issue 5, Dec 2016, 1-6 TJPRC Pvt. Ltd. AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY

More information

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Oxygen Evolution Reaction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. ARTICLE NUMBER: 16178 DOI: 10.1038/NENERGY.2016.178 Enhanced Stability and Efficiency in Hole-Transport Layer Free CsSnI3 Perovskite Photovoltaics Supplementary

More information

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water.

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S2 AFM measurement of typical LTMDs

More information

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Crystalline Silicon Solar Cells With Two Different Metals Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588,

More information

Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly

Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly distributed on CNF. (c) SEM image of 2-cycle CoO/CNF.

More information

Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates

Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates Solar Energy Materials & Solar Cells 90 (2006) 753 759 www.elsevier.com/locate/solmat Photoelectrochemical cells based on CdSe films brush plated on high-temperature substrates K.R. Murali a,, A. Austine

More information

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with non-uniform particle size distribution. The scale bar is

More information

Fe 2 O 3 on patterned fluorine doped tin oxide for efficient photoelectrochemical water splitting

Fe 2 O 3 on patterned fluorine doped tin oxide for efficient photoelectrochemical water splitting Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Fe 2 O 3 on patterned fluorine doped tin oxide for efficient photoelectrochemical

More information

G.Pucker, Y.Jestin Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, Povo (Trento) Italy

G.Pucker, Y.Jestin Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, Povo (Trento) Italy F. Sgrignuoli, P. Ingenhoven, A. Anopchenko, A.Tengattini, D.Gandolfi, L. Pavesi Nanoscience Laboratory, Department of Physics, University of Trento,Via Sommarive 14, 38123 Povo (Trento) Italy. G.Pucker,

More information

A Multi-step Ion Exchange Approach for Fabrication of Porous BiVO 4 Nanorod Arrays on Transparent Conductive Substrate

A Multi-step Ion Exchange Approach for Fabrication of Porous BiVO 4 Nanorod Arrays on Transparent Conductive Substrate Supporting Information A Multi-step Ion Exchange Approach for Fabrication of Porous BiVO 4 Nanorod Arrays on Transparent Conductive Substrate Cong Liu, Jinzhan Su*, Jinglan Zhou and Liejin Guo International

More information

Realization and Characterization of ZnO/n-Si Solar Cells by Spray Pyrolysis

Realization and Characterization of ZnO/n-Si Solar Cells by Spray Pyrolysis Egypt. J. Solids, Vol. (28), No. (2), (2005) 243 Realization and Characterization of ZnO/n-Si Solar Cells by Spray Pyrolysis H. H. Afify 1, S. H. EL-Hefnawi 2, A. Y. Eliwa 2, M. M.Abdel-Naby 3 and N. M.

More information

General Considerations for Improving Photovoltage in Metal Insulator Semiconductor Photoanodes

General Considerations for Improving Photovoltage in Metal Insulator Semiconductor Photoanodes This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation

More information

Effect of grain boundaries on photovoltaic properties of PX-GaAs films

Effect of grain boundaries on photovoltaic properties of PX-GaAs films Indian Journal of Pure & Applied Physics Vol. 48, August 2010, pp. 575-580 Effect of grain boundaries on photovoltaic properties of PX-GaAs films M K Sharma & D P Joshi* Principal, Govt Sr Sec School Kolar,

More information

EFFECT OF WINDOW LAYER ON Cd (S, Se) THIN FILM PHOTOELECTRODES FOR PEC CELLS

EFFECT OF WINDOW LAYER ON Cd (S, Se) THIN FILM PHOTOELECTRODES FOR PEC CELLS EFFECT OF WINDOW LAYER ON Cd (S, Se) THIN FILM PHOTOELECTRODES FOR PEC CELLS PUJARI V. B. Materials Research Laboratory, Dept. of Physics, Karmaveer Bhaurao Patil College, Vashi, Navi Mumbai 4 73, M.S.,

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

Slide 1. Slide 2. Slide 3. Chapter 19: Electronic Materials. Learning Objectives. Introduction

Slide 1. Slide 2. Slide 3. Chapter 19: Electronic Materials. Learning Objectives. Introduction Slide 1 Chapter 19: Electronic Materials 19-1 Slide 2 Learning Objectives 1. Ohm s law and electrical conductivity 2. Band structure of solids 3. Conductivity of metals and alloys 4. Semiconductors 5.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information Engineering Crystalline Structures of Two-Dimensional

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supporting Information Nanostructural and Photo-electrochemical Properties of Solution Spin-coated

More information

Interface potential measurement with electron spectroscopic method

Interface potential measurement with electron spectroscopic method Journal of Surface Analysis Vol.13 No. 2 (2006) pp. 185-189 Interface potential measurement with electron spectroscopic method Michiko Yoshitake * and Weijie Song National Research Institute for Materials

More information

The Effects of ZnO and Al2O3 Layers on Semiconductor-Insulator-Metal (MIS) Solar Cell Performance

The Effects of ZnO and Al2O3 Layers on Semiconductor-Insulator-Metal (MIS) Solar Cell Performance Applied mathematics in Engineering, Management and Technology 2 (6) 2014:348-352 www.amiemt-journal.com The Effects of ZnO and Al2O3 Layers on Semiconductor-Insulator-Metal (MIS) Solar Cell Performance

More information

Towards scalable fabrication of high efficiency polymer solar cells

Towards scalable fabrication of high efficiency polymer solar cells Towards scalable fabrication of high efficiency polymer solar cells Hui Joon Park 2*, Myung-Gyu Kang 1**, Se Hyun Ahn 3, Moon Kyu Kang 1, and L. Jay Guo 1,2,3 1 Department of Electrical Engineering and

More information

Supplementary Figure 1. (a-d). SEM images of h-bn film on iron foil with corresponding Raman spectra. Iron foil was reused for re-growth of h-bn

Supplementary Figure 1. (a-d). SEM images of h-bn film on iron foil with corresponding Raman spectra. Iron foil was reused for re-growth of h-bn Supplementary Figure 1. (a-d). SEM images of h-bn film on iron foil with corresponding Raman spectra. Iron foil was reused for re-growth of h-bn after bubbling transfer. Scale bars (ad) 20 μm. Supplementary

More information

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets Supplementary Information High Rate and Durable, Binder Free Anode Based on Silicon Loaded O 3 Nanoplatelets Alejandro Martinez-Garcia, Arjun Kumar Thapa,Ruvini Dharmadasa,, Tu Q. Nguyen, Jacek Jasinski,

More information

Thermally-Enhanced Generation of Solar Fuels

Thermally-Enhanced Generation of Solar Fuels Thermally-Enhanced Generation of Solar Fuels Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh, William Chueh Materials Science & Engineering, Precourt Institute for Energy Stanford University Fundamentals

More information

High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells

High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells S1 Supporting Information High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells James R. Maiolo III, Brendan M. Kayes, Michael A. Filler, Morgan C. Putnam, Michael D. Kelzenberg, Harry A. Atwater*,

More information

ALD of Scandium Oxide from Tris(N,N -diisopropylacetamidinato)scandium and Water

ALD of Scandium Oxide from Tris(N,N -diisopropylacetamidinato)scandium and Water ALD of Scandium Oxide from Tris(N,N -diisopropylacetamidinato)scandium and Water Philippe P. de Rouffignac, Roy G. Gordon Dept. of Chemistry,, Cambridge, MA gordon@chemistry.harvard.edu (617) 495-4017

More information

Supplementary Figure 1. Supplementary Figure 2.

Supplementary Figure 1. Supplementary Figure 2. Supplementary Figure 1. STEM annular dark field (ADF) image of NiO/Ni-CNT showing non-uniform coating of NiO nanoparticles on Ni cores (the red circles show individual NiO nanoparticles with different

More information

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells Changwoo Lee, Harry Efstathiadis, James E. Raynolds, Pradeep Haldar Energy and Environmental Applications Center (E2TAC) College

More information

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018 ME 432 Fundamentals of Modern Photovoltaics Discussion 30: Contacts 7 November 2018 Fundamental concepts underlying PV conversion input solar spectrum light absorption carrier excitation & thermalization

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplimentary Information Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride

More information

ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SILICON IN DARK

ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SILICON IN DARK CHAPTER III ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SILICON IN DARK 3.1 INTRODUCTION A lot of attention is being focused on the electrical properties of PX-Silicon because of its application in integrated

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 18 Supporting Information CVD-grown copper tungstate thin films for solar water

More information

Bi-functional RuO 2 /Co 3 O 4 Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst

Bi-functional RuO 2 /Co 3 O 4 Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst This journal is The Royal Society of Chemistry 0 7 8 9 0 7 8 9 0 7 Supporting Information Bi-functional RuO /Co O Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst Jong

More information

Electrosynthesis of iron, cobalt and zinc microcrystals and. magnetic enhancement of the oxygen reduction reaction

Electrosynthesis of iron, cobalt and zinc microcrystals and. magnetic enhancement of the oxygen reduction reaction M / [A m 2 kg -1 ] Electrosynthesis of iron, cobalt and zinc microcrystals and magnetic enhancement of the oxygen reduction reaction Lorena M. A. Monzon*, Karsten Rode, M. Venkatesan and J.M.D. Coey School

More information

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China Supporting Information A New Type of BiPO 4 Oxy-acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University,

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Review Literature for Mosfet Devices Using High- K

Review Literature for Mosfet Devices Using High- K Review Literature for Mosfet Devices Using High- K Prerna Teaching Associate, Deptt of E.C.E., G.J.U.S. &T., INDIA prernaa.29@gmail.com Abstract: With the advancement of MOS devices over 40 years ago,

More information

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

Supplemental Information for: Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2

Supplemental Information for: Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2 Supplemental Information for: Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2 Kelsey A. Stoerzinger, a,b Liang Qiao, c Michael D. Biegalski, c Yang Shao-Horn a,b,d, * a Department

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201500039 An Optoelectronic Resistive Switching Memory with Integrated

More information

Fabrication of MoS 2 Thin Film Transistors via Novel Solution Processed Selective Area Deposition

Fabrication of MoS 2 Thin Film Transistors via Novel Solution Processed Selective Area Deposition Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Supplementary Information Fabrication of MoS 2 Thin Film Transistors via

More information

Supporting Information

Supporting Information Supporting Information Carlos G. Morales-Guio, Kerstin Thorwarth, Bjoern Niesen, Laurent Liardet, Jörg Patscheider, Christophe Ballif, and Xile Hu*, Laboratory of Inorganic Synthesis and Catalysis, Institute

More information

Characterization and Improvement of Reverse Leakage Current of Shallow Silicided Junction for Sub-100 nm CMOS Technology Utilizing N 2 PAI

Characterization and Improvement of Reverse Leakage Current of Shallow Silicided Junction for Sub-100 nm CMOS Technology Utilizing N 2 PAI Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S795 S799 Characterization and Improvement of Reverse Leakage Current of Shallow Silicided Junction for Sub-100 nm CMOS Technology Utilizing

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

EE THERMAL OXIDATION - Chapter 6. Basic Concepts

EE THERMAL OXIDATION - Chapter 6. Basic Concepts EE 22 FALL 999-00 THERMAL OXIDATION - Chapter 6 Basic Concepts SiO 2 and the Si/SiO 2 interface are the principal reasons for silicon s dominance in the IC industry. SiO 2 : Easily selectively etched using

More information

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Jing-Fang Huang,* a and Wen-Rhone Chang a Supporting information Experimental Section

More information

Supplementary Figures

Supplementary Figures 1635 Reflectance / a.u. 3425 Supplementary Figures T-3 T-2 T-1 4000 3500 3000 2500 2000 1500 1000 Wavenumber / cm -1 Supplementary Figure 1 FTIR spectra of rutile TiO2 samples. Two bands at 1635 and 3425

More information

Effect of enhancement of selenium content in zirconium sulphoselenide on its photoelectrochemical behaviour

Effect of enhancement of selenium content in zirconium sulphoselenide on its photoelectrochemical behaviour Indian J. Phys. 83 (3), 275-284 (2009) Effect of enhancement of selenium content in zirconium sulphoselenide on its photoelectrochemical behaviour G K Solanki*, Sudeep Goyal, S K Arora, Dipika B Patel

More information

0HE, United Kingdom. United Kingdom , Japan

0HE, United Kingdom. United Kingdom , Japan Tel. No.: 81-45-924-5357 Fax No.: 81-45-924-5339 e-mail: tkamiya@msl.titech.ac.jp Effects of Oxidation and Annealing Temperature on Grain Boundary Properties in Polycrystalline Silicon Probed Using Nanometre-Scale

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 20 th of Jan 14 M-S and p-n Junctions

More information

Supporting Information. Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production

Supporting Information. Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production Supporting Information Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production Youn Jeong Jang, Yoon Bin Park, Hyo Eun Kim, Yo Han Choi,

More information

7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors

7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors 7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors 7.1 Introduction The present study on ZnO:Al and textured Ag back reflectors is aimed at application in thin film µc-si n-i-p solar cells.

More information

Ultrathin oxynitride formation by low energy ion implantation

Ultrathin oxynitride formation by low energy ion implantation Ultrathin oxynitride formation by low energy ion implantation A. Khoueir and Z. H. Lu Department of Metallurgy and Materials Science, University of Toronto, Toronto, Ontario M5S 3E4, Canada W. T. Ng Department

More information

Fairchild Semiconductor Application Note June 1983 Revised March 2003

Fairchild Semiconductor Application Note June 1983 Revised March 2003 Fairchild Semiconductor Application Note June 1983 Revised March 2003 High-Speed CMOS (MM74HC) Processing The MM74HC logic family achieves its high speed by utilizing microcmos Technology. This is a 3.5

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

The charge trapping/emission processes in silicon nanocrystalline nonvolatile memory assisted by electric field and elevated temperatures

The charge trapping/emission processes in silicon nanocrystalline nonvolatile memory assisted by electric field and elevated temperatures PACS 73.50.Gr, 84.32.Tt, 85.30.Tv The charge trapping/emission processes in silicon nanocrystalline nonvolatile memory assisted by electric field and elevated temperatures V.A. Ievtukh, V.V. Ulyanov, A.N.

More information

Structural, electrical and optical properties of AZO/SiO 2 /p-si SIS heterojunction prepared by magnetron sputtering

Structural, electrical and optical properties of AZO/SiO 2 /p-si SIS heterojunction prepared by magnetron sputtering Optica Applicata, Vol. XL, No. 1, 20 Structural, electrical and optical properties of AZO/SiO 2 /p-si SIS heterojunction prepared by magnetron sputtering HEBO 1, ZHONGQUANMA 1, XUJING 2, ZHAOLEI 1, ZHANGNANSHENG

More information

Supplementary Figure S1. CV curves of gold wire and seamless solid/nanoporous Au electrodes in 0.5 M H 2 SO 4 solution at a scan rate of 100 mv S -1.

Supplementary Figure S1. CV curves of gold wire and seamless solid/nanoporous Au electrodes in 0.5 M H 2 SO 4 solution at a scan rate of 100 mv S -1. Supplementary Figure S1. CV curves of gold wire and seamless solid/nanoporous Au electrodes in 0.5 M H 2 SO 4 solution at a scan rate of 100 mv S -1. The seamless solid/nanoporous Au electrode was obtained

More information

A ZnOS Demonstrator Solar Cell and its Efficiency

A ZnOS Demonstrator Solar Cell and its Efficiency Performance Enhancement of Large Area Solar cells by incorporating Nanophosphors: 1 A ZnOS Demonstrator Solar Cell and its Efficiency High quality ternary ZnO 1-x S x (0 x 1.0) nanocrystals in the whole

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Characterization of precursor coated on salt template. (a) SEM image of Mo precursor coated on NaCl. Scale bar, 50 μm. (b) EDS of Mo precursor coated on

More information

University of Texas Arlington Department of Electrical Engineering. Nanotechnology Microelectromechanical Systems Ph.D. Diagnostic Examination

University of Texas Arlington Department of Electrical Engineering. Nanotechnology Microelectromechanical Systems Ph.D. Diagnostic Examination University of Texas Arlington Department of Electrical Engineering Nanotechnology Microelectromechanical Systems Ph.D. Diagnostic Examination Fall 2012 November 17, 2012 Question # 1 2 3 To be filled by

More information

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity Supporting Information Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S Exhibiting Low Resistivity and High Infrared Responsivity Wen-Ya Wu, Sabyasachi Chakrabortty, Asim Guchhait, Gloria Yan

More information

Molarities Concentration Effects On Some Characterization Of (Fe 2 O 3 ) Thin Film Solar Cell Application

Molarities Concentration Effects On Some Characterization Of (Fe 2 O 3 ) Thin Film Solar Cell Application Molarities Concentration Effects On Some Characterization Of (Fe 2 O 3 ) Thin Film Solar Cell Application Majid H. Hassoni, Noor J. Sahib Physics Department, Education Faculty, University of Al- Mustansiriyah,

More information

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS Project leader: Dr D.N. Kouvatsos Collaborating researchers from other projects: Dr D. Davazoglou Ph.D. candidates: M. Exarchos, L. Michalas

More information

Photovoltaics under concentrated sunlight

Photovoltaics under concentrated sunlight Photovoltaics under concentrated sunlight April 2, 2013 The University of Toledo, Department of Physics and Astronomy Principles and Varieties of Solar Energy (PHYS 4400) Reading assignment: Sections 9.4

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni La Co Ce Oxide

More information

Electron backscattered diffraction study of poly-si by Ni-mediated crystallization of amorphous silicon using a SiO 2 nanocap

Electron backscattered diffraction study of poly-si by Ni-mediated crystallization of amorphous silicon using a SiO 2 nanocap Electron backscattered diffraction study of poly-si by Ni-mediated crystallization of amorphous silicon using a SiO 2 nanocap Y. J. Chang, a) J. H. Oh, K. H. Kim, and Jin Jang b) Advanced Display Research

More information

Effect of annealing temperature on the electrical properties of HfAlO thin films. Chun Lia, Zhiwei Heb*

Effect of annealing temperature on the electrical properties of HfAlO thin films. Chun Lia, Zhiwei Heb* International Forum on Energy, Environment and Sustainable Development (IFEESD 2016) Effect of annealing temperature on the electrical properties of HfAlO thin films Chun Lia, Zhiwei Heb* Department of

More information

Polycrystalline and microcrystalline silicon

Polycrystalline and microcrystalline silicon 6 Polycrystalline and microcrystalline silicon In this chapter, the material properties of hot-wire deposited microcrystalline silicon are presented. Compared to polycrystalline silicon, microcrystalline

More information

Chalcogenide Letters Vol. 13, No. 2, February 2016, p

Chalcogenide Letters Vol. 13, No. 2, February 2016, p Chalcogenide Letters Vol. 13, No. 2, February 2016, p. 55-62 CHARACTERIZATION OF CdS:O THIN FILMS WITH DIFFERENT RATIO OF AMBIENT OXYGEN PREPARED BY RF MAGNETRON SPUTTERING AND ITS APPLICATION IN CdTe

More information

Electrical Characterization of Al/n-CdTe/NiCr Schottky Diodes

Electrical Characterization of Al/n-CdTe/NiCr Schottky Diodes Electrical Characterization of Al/n-CdTe/NiCr Schottky Diodes 1 Raad M. S. Al-Haddad, 2 Batool.D.Balwa, 3 Suha H.Ibraheem 1 Collage of Science Baghdad university- Iraq 2 Collage of Science Al- Mustansriyh

More information

Supporting Information

Supporting Information Supporting Information Experimental Methods Pt ALD. The precursor used for ALD was trimethyl-methylcyclopentadienyl-platinum(iv) (MeCpPtMe 3 ) (Strem Chemicals, 99%), which has been widely reported for

More information

Supporting information

Supporting information Supporting information Cu 2 O-Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media Han Xu, Jin-Xian Feng, Ye-Xiang Tong, and Gao-Ren Li* MOE Laboratory of

More information

FABRICATION AND EVALUATION OF CuO/ZnO HETEROSTRUCTURES FOR PHOTOELECTRIC CONVERSION

FABRICATION AND EVALUATION OF CuO/ZnO HETEROSTRUCTURES FOR PHOTOELECTRIC CONVERSION IJRRAS 13 (1) October 2012 www.arpapress.com/volumes/vol13issue1/ijrras_13_1_06.pdf FABRICATION AND EVALUATION OF / HETEROSTRUCTURES FOR PHOTOELECTRIC CONVERSION Hiroki Kidowaki, Takeo Oku & Tsuyoshi Akiyama

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Iron-cobalt Bimetal Oxide Nanorods as Efficient

More information

Topics Relevant to CdTe Thin Film Solar Cells

Topics Relevant to CdTe Thin Film Solar Cells Topics Relevant to CdTe Thin Film Solar Cells March 13, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

A Novel Low Temperature Self-Aligned Field Induced Drain Polycrystalline Silicon Thin Film Transistor by Using Selective Side-Etching Process

A Novel Low Temperature Self-Aligned Field Induced Drain Polycrystalline Silicon Thin Film Transistor by Using Selective Side-Etching Process Chapter 3 A Novel Low Temperature Self-Aligned Field Induced Drain Polycrystalline Silicon Thin Film Transistor by Using Selective Side-Etching Process 3.1 Introduction Low-temperature poly-si (LTPS) TFTs

More information

Supplementary Information Electrospray Deposition-Induced Ambient Phase Transition in Copper Sulphide Nanostructures

Supplementary Information Electrospray Deposition-Induced Ambient Phase Transition in Copper Sulphide Nanostructures Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supplementary Information Electrospray Deposition-Induced Ambient Phase

More information