Nonconventional Technologies Review - no. 4 / 2007 ELECTROCHEMICAL REMOVAL OF UNIFORM SURFACE LAYERS UNDER MACHINING COMPRESSOR OR TURBINE BLADES

Size: px
Start display at page:

Download "Nonconventional Technologies Review - no. 4 / 2007 ELECTROCHEMICAL REMOVAL OF UNIFORM SURFACE LAYERS UNDER MACHINING COMPRESSOR OR TURBINE BLADES"

Transcription

1 ELECTROCHEMICAL REMOVAL OF UNIFORM SURFACE LAYERS UNDER MACHINING COMPRESSOR OR TURBINE BLADES P. KOCENKO 1, I. RUSICA 2, B. SAUSHKIN 3 Key word: removal, blades, electrochemical, ABSTRACT: A number of technological problems are concerned with removal of uniform thin layers out of manufacturing parts. For example such situation occurs in technologies of compressor or turbine blades production. Often it is necessary to remove so named defective layer received under precise blank stamping of this parts. In spite of the fact that there are some well-known ways to perform this operation but the electrochemical machining (ECM) process offers a number of advantages over other methods. Therefore the main objective of this paper is to discuss ECM possibilities and to underline some technological peculiarities under practical use of ECM in the blades production. The main parameters of ECM are considered in order to study their influence on surface roughness, dimensional accuracy and material removal rate INTRODUCTION Over the past few years there has been a resurgence of interest in the expansion of electrochemical technologies application. This method is used in micro machine building [1], producing the different kinds of surface relief with a help of dielectric masks and coats [2], new fields of dimensional electrochemical machining [3] and other fields [4]. It is well known that the most widely used and available anodic electrochemical technologies are based on either electrochemical polishing (ECP) or dimensional electrochemical machining (ECM) processes. The first of them is usually carried out in the current density region from 0,05 to 0,5 A/сm 2. Usual range of current density variation for ECM is approximately A/cm 2. It is seen that the range from 0,5 up to 10 A/cm 2 is practically not used. Only several publications can be found on technological investigations in this current density region. The point is that this region is not interesting for ECM because high surface roughness is arrived under using traditional water electrolytes. On the other hand classic electropolishing is also not effective in this region because some additional effects are developed negatively such as gas evolution and electrolyte heating. This paper investigates whether electrochemical process in current density region mentioned above can offer a solution to machining problems of compressor and turbine blades production. It regards to one technological stage in the production of this parts namely to the stage of defective layer removal. Such defective layer is produced under hot stamping of the compressor blade blanks or under precision casting of turbine blade blanks. The main requirements to the technology of removal of thin surface layers out of titanium and steel blades are the following: - uniformity of removal layer thickness is not more than 30-50% from nominal size of this layer; - grain boundary etching must be not observed; - size of removal layer is approximately 150 mcm; - machined surface must be smooth enough. Chemical etching is conventional method used usually for realization of this technological stage. Its disadvantages are well known: - removal rate is relatively low, approximately (5-10) 10-3 mm/min; 35

2 - working liquids used at this process are very aggressive; - grain boundary etching is not impossible. Therefore, theoretical and experimental studies were made in order to choose an appropriate producing method on the base of electrochemical process. Traditional ECM is not suitable in this case because it does not ensure required uniformity of removal layer. Classic electropolishing can t provide higher productivity than chemical machining and it is also connected with using aggressive electrolyte components. THEORETICAL BACKGROUND Theoretical studies were performed in order to working out new generation of electrolytes for electrochemical dissolution [5]. It is shown that electrochemical behavior of metals is strongly depended on the nature of solvent. So oxide films are not formed as a rule in organic solutions. Besides in organic medium low valency particles of dissolved metals are stable. So electrochemical equivalent and specific dissolution velocity of metal are higher with respect to aqueous solutions. These reasons allow recommend organic and water-organic solutions of mineral salts for electrochemical machining metals and alloys especially under low current densities. Two additional points must be also emphasized. The matter is that such electrolytes provide as a rule very good surface finish and polishing effect is often observed. Moreover the large dissipated property of organic electrolytes must provide good uniformity under removal of thick surface layers. EXPERIMENTAL METHODS Aqueous-organic solutions of mineral salts were used because good previous results were obtained under electrochemical dissolution of titanium, nickel-chromium alloys and alloyed steels [6]. The blades produced from titanium alloy (6Al- 2Mo-1,5Cr-Ti) and heat-resistant alloy (14Cr- 35Ni-Fe) was used as specimens. They were stamping by hot die forging, so thin uniform defective layer was formed around blade body. Thickness of this layer was approximately 0,15-0,20 mm. Special experimental device is presented in fig.1. Two electrodes connected to a DC supply are required with an electrically 36 conductive solution between. The blade (work piece) is the positive electrode (anode) and two conductive plates of profile form represent the negative electrode (cathode). Cathode Electrolyte feed Anode Fig.1. Scheme of experimental installation. Interelectrode gap a can be changed in the range from 1 to 10 mm with the help of dielectric gasket seals. Machined blade and cathodes are assembled in a compact electrode block. This block sinks into working chamber. Working liquid is passed through electrode block by the pump. Electrolyte flow velocity is regulated with drive valve. Tank for electrolyte is situated in the lower part of this device. Power source provides variation of voltage in the range from 10 to 100 V. Because of the small size of removal stock the machining way with fixed electrodes was used. Before and after machining of every specimen its surface was measured by special measuring device with accuracy not more than 0,02 mm. Average value of removal layer size was determined in result of statistical analysis of measurements. Also surface roughness at the different places of blade was determined with a standard device. RESULTS AND DISCUSSION a a Power sourse Working chamber Fig.2 shows that linear dissolution velocity V is practically proportional to current density. It means that electrochemical equivalent and current efficiency are not notably changed during this experiment. Operating time corresponded to machining allowance about 0,3 mm (titanium alloy) is inversely proportional to current density as in is predicted by theory.

3 The same result is got under manufacturing of Cr-Ni-Fe-alloy blades. It is noted that the change of temperature in the large range does not result in some variation of dissolution velocity under manufacturing of titanium alloys. That regards Cr-Ni-Fe-alloy noticeable changes in dissolution rate art observed upper o C. Such distinction is explained with the different properties of electrolytes applied. passed through unit of electrolyte volume does not influence on the value of dissolution velocity up to 250 A h/l for titanium alloy and 100 A h/l for Cr-Ni-Fr-alloy. This means that electrolyte compositions used in presented experiments have good operating life. Dynamic of the forming of surface roughness is illustrated with fig.3.this data are got under the following conditions: interelectrode gap, mm 4-6; electrolyte temperature, o C ; electrolyte flow rate, m/c 1-2. Dependences presented in fig.3, estimate the size of surface roughness not only under the same operating time but under the same size of machining allowance. It s impotent when they find such machining allowance under which required surface roughness may be received. It s seen that dependence of surface roughness parameter R a on operating time t 0 is described by equation R a = R a *exp(- At 0 ) + B Fig.2. Influence of current density (1,2), factor of passed quantity of electricity through the electrolyte volume unit (3) and electrolyte temperature (4,5) on linear dissolution rate (1,3-5) and operating time (2). Current density, A/cm 2 : 3, 4 1 and 5 0,5. Upper graphs are concerned of titanium alloy. where R a * - is initial size of surface roughness parameter, A and B are some constants, determined by electrolysis conditions [4]. Metallographic investigations of machined surface show that any structure changes in the surface layer are absent (fig.4). It s seen the essential reduce of surface roughness parameter. Etching effect along the grain boundary isn t observed. Micro hardness of surface layer after stamping is in 1,3-1.5 times greater than one into the middle part of a specimen. After removal this layer by electrochemical dissolution micro hardness is the same at any place of cross section of a specimen. It is also shown that quantity of electricity Fig.3. Influence of operating time on average size Z of removal layer (1-3) and surface roughness (1-4 ) under current density, A/cm 2 : 1,1-0,15; 2,2-0,3; 3,3-0,5; 4-1. Material of blade Cr-Ni-Fe-alloy. a) b) Fig.4.Microphotographs of the cross section of the specimens received from titanium alloys (upper line) and Cr-Ni-Fealloy (lower line) after hot stamping (a) and electrochemical machining (b) 37

4 Measurements of hydrogen pickup of surface layer show that this parameter is less, than 0,005 (Ti-alloy) and 0,01 mass. % (Сr-Ni-Fealloy) if only machining allowance is more than 0,1 mm. PRACTICAL APPLICATION On the base of theoretical and experimental results described above new technology and rotor electrochemical machine tool were designed. This machine tool was done and approved in machine building plant conditions (see fig.5). It consists of the following basic parts: Fig.5 Rotor machine tool for electrochemical removal of surface defective layer. - a ring bass for electrolyte provided with cooling system around itself; - main frame with rotating shaft (rotor) which is mounted axially to a ring bass; - six cross arms mounted on a rotor top; - every cross arm is equipped with special device for electrode block fixing; - power source with control system. After compressor blades (see fig.6) are fixed into electrode block rotor unit begins to rotate with working frequency. At this time the blade blanks sunken into electrolyte begin to move relatively electrolyte making required hydrodynamic. After passing of working current during operating time manufactured blades without surface defective layer are received. Fig.6. Compressor blades of the different sizes after stamping (upper part) and electrochemically manufactured. Some sample of blades with the same size was machined and measured with the purpose to determine dimensional accuracy. The following technological parameters are used: -working voltage, V current density, A/cm 2 0,6-1,0 - interelectrode gap, mm 6 - average value of electrolyte flow, m/c 0,5 - electrolyte temperature, o C Statistical analysis of measured data is shown in fig.7 It is seen that dimensional accuracy is about ±0, 05 mm. Fig.7.Results of statistical analysis of measured data: convex part (back) on the left hand and concave part on the right hand. 38

5 CONCLUSIONS The following conclusions may be formulized according to results discussed above: - anodic electrochemical dissolution is an effective way to solve a problem of removal of thick uniform layers out of surface of a part; - this technological problem is successfully solved by application of aqueousorganic electrolytes with specially selected properties; - in comparison with chemical machining electrochemical dissolution of thick uniform layers allows to increase productivity approximately in 3-5 times and to eхclude aggressive working liquids from industrial application; - in this case electrochemical technology provides size accuracy ± 0,05 mm under thickness of removal layer 0,15-0,3 mm and surface roughness R a = 0,32 mcm. Metal surface gets also high reflective property. - special equipment for electrochemical removal of uniform thick layers is designed and approved in the conditions of aircraft engine blades production; - presented process and equipment may be also used in the technologies of high effective electrochemical polishing. REFERENCES: [1 ] Tiginyanu I. Ion-implantation assisted electrochemical nanostructuring of GaP for optoelectronic applications. Electronic manufacturing of materials. 2000, 5. P [2] Keloglu O., Mustytsa A., Dikucar A. Different forms of cavities generated under presence of dielectric masks on anodic surface in the conditions of micro ECM. Modern electrotechnology in machine building production. Tula P [3] Rajurkar K., Zhu D., McGeough J. and other. New developments in ECM. Annals of the CIRP P [4] Physical and chemical manufacturing methods in production of gas-turbine engines. Edited by B.P. Saushkin. Moskow p. [5] Atanasyants A., Saushkin B. Problems of electrochemical machining of metals in nontraditional electrolytes. Proc. Intern. Symp. Electromachining (ISEM-X). Germany P [6] Saushkin B., Plarksin V., Atanasyants A. Finish electrochemical machining of the large-scale punches for hot die forging. Proc. Intern. Symp. Electromachining. Switszerland P AUTHORS 1. P. Kocenko, Chief specialist of machine building plant Topaz, Kishinev, Moldova 2. Rusica I State Technical University of Moldova, Kishinev, ion rusica@maul.md 3. B. Saushkin, Russian State Technological University MATI, Moscow, Russia, Department of Machine Manufacturing. 39

THE EFFECT OF ELECTROCHEMICAL MACHINING ON THE FATIGUE STRENGTH OF HEAT RESISTANCE ALLOYS

THE EFFECT OF ELECTROCHEMICAL MACHINING ON THE FATIGUE STRENGTH OF HEAT RESISTANCE ALLOYS Fatigue of Aircraft Structures Vol. 1 (2011) 57-63 10.2478/v10164-010-0038-2 THE EFFECT OF ELECTROCHEMICAL MACHINING ON THE FATIGUE STRENGTH OF HEAT RESISTANCE ALLOYS Jerzy Kozak Institute of Aviation,Warsaw,

More information

Study of Electrochemical Polishing Applications in some alloys to obtain high surface finish

Study of Electrochemical Polishing Applications in some alloys to obtain high surface finish Study of Electrochemical Polishing Applications in some alloys to obtain high surface finish Niveen J. Abdalkadir Lecturer University of Technology/ Materials Engineering Hussain M. yousif Chief of engineer

More information

Dr.RAVINDER KUMAR B.E.( Hons.), M.E., Ph.D. 1 Dr.Ravinder Kumar

Dr.RAVINDER KUMAR B.E.( Hons.), M.E., Ph.D. 1 Dr.Ravinder Kumar ElectroChemical Machining & Grinding Dr.RAVINDER KUMAR B.E.( Hons.), M.E., Ph.D. 1 Dr.Ravinder Kumar Overview Electro-Chemical Machining Advantages and Disadvantages (ECM) Electro-Chemical Grinding (ECG)

More information

Nontraditional Machining Processes

Nontraditional Machining Processes Nontraditional Machining Processes The NTM processes can be divided into four basic categories: I. Chemical (Chemical reaction), II. Electrochemical (Electrolytic dissolution), III. Mechanical (Multipoint

More information

Electropolishing of 316L Stainless Steel for Anticorrosion Passivation

Electropolishing of 316L Stainless Steel for Anticorrosion Passivation JMEPEG (2001) 10:414 418 ASM International Electropolishing of 316L Stainless Steel for Anticorrosion Passivation H. Hocheng, P.S. Kao, and Y.F. Chen (Submitted 25 September 2000; in revised form 30 March

More information

ELECTROPOLISHING PROCEDURE DEDICATED TO IN-DEPTH STRESS MEASUREMENTS WITH X-RAY DIFFRACTOMETRY

ELECTROPOLISHING PROCEDURE DEDICATED TO IN-DEPTH STRESS MEASUREMENTS WITH X-RAY DIFFRACTOMETRY Fatigue of Aircraft Structures Vol. 1 (2016) 65-72 10.1515/fas-2016-0004 ELECTROPOLISHING PROCEDURE DEDICATED TO IN-DEPTH STRESS MEASUREMENTS WITH X-RAY DIFFRACTOMETRY Elżbieta Gadalińska Wojciech Wronicz

More information

Electrochemical Die-Sinking (ECM) in Practice

Electrochemical Die-Sinking (ECM) in Practice Electrochemical Die-Sinking () in Practice Copyright by Maschinenfabrik Köppern GmbH & Co.KG. Distribution, forwarding or duplication of this document, whether in part or in full, is only allowed with

More information

OBTAINING BY ELECTROCHEMICAL AND ABRASIVE MACHINING OF THE POLISHED SURFACES FOR WORK PIECES FROM TITANIUM

OBTAINING BY ELECTROCHEMICAL AND ABRASIVE MACHINING OF THE POLISHED SURFACES FOR WORK PIECES FROM TITANIUM Nonconventional Technologies Review Romania, March, 28 28 Romanian Association of Nonconventional Technologies OBTAINING BY ELECTROCHEMICAL AND ABRASIVE MACHINING OF THE POLISHED SURFACES FOR WORK PIECES

More information

A.D. Ryabtsev*, A.A. Troyansky*, O.V. Tarlov, V.V. Pashinsky*, M.G. Benz**, V.N. Radchenko*** *Donetsk State Technical University, Ukraine

A.D. Ryabtsev*, A.A. Troyansky*, O.V. Tarlov, V.V. Pashinsky*, M.G. Benz**, V.N. Radchenko*** *Donetsk State Technical University, Ukraine THE DEVELOPMENT OF TECHNOLOGY OF HIGH- QUALITY INGOT MANUFACTURING FROM METALS WITH HIGH REACTION ABILITY (Cr,Ti,V AND OTHERS) BY THE ESR METHOD UNDER ACTIVE CALCIUM-CONTAINING SLAG SYSTEMS. A.D. Ryabtsev*,

More information

Electrochemical Grinding (ECG)

Electrochemical Grinding (ECG) Electrochemical Grinding (ECG) Introduction Equipment Methods Process parameters Advantages Limitations Applications Synopsis Introduction ECG also called electrolytic grinding is similar to ECM, except

More information

LOW HEAT INPUT WELDING ALLOYS

LOW HEAT INPUT WELDING ALLOYS ASTRALOY 662 CHARACTERISTICS: An all position AC/DC electrode for high strength, crack free joining of low/medium carbon, and medium tensile steels of various compositions. Low alloy medium carbon steels,

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 4 Metallography Suggested Reading Y. Leng, Materials Characterization, 2 nd Edition, (2013), Wiley, Hoboken, NJ Chapter 1. Reference Goodhew, Humphreys and Beanland,

More information

ELECTRO CHEMICAL MACHINING

ELECTRO CHEMICAL MACHINING Introduction: ELECTRO CHEMICAL MACHINING The process of metal removal by electro chemical dissolution was known as long back as 1780 AD but it is only over the last couple of decades that this method has

More information

EFFECTS OF CURRENT DENSITY ON SIZE AND SURFACE MORPHOLOGY OF HIGH SPEED DIRECT NANO-CRYSTALLINE NICKEL PLATING ON TITANIUM SURFACE

EFFECTS OF CURRENT DENSITY ON SIZE AND SURFACE MORPHOLOGY OF HIGH SPEED DIRECT NANO-CRYSTALLINE NICKEL PLATING ON TITANIUM SURFACE EFFECTS OF CURRENT DENSITY ON SIZE AND SURFACE MORPHOLOGY OF HIGH SPEED DIRECT NANO-CRYSTALLINE NICKEL PLATING ON TITANIUM SURFACE Noor Zaimah 1, Azieyanti Nurain 1 and Sakhawat Hussain 2 1 Department

More information

THIN LAYERS OBTAINED BY ELECTRIC SPARK IN LIQUID MEDIUM

THIN LAYERS OBTAINED BY ELECTRIC SPARK IN LIQUID MEDIUM THIN LAYERS OBTAINED BY ELECTRIC SPARK IN LIQUID MEDIUM Ion HOPULELE, Carmen NEJNERU, Manuela Cristina PERJU, Mihai AXINTE Technical University Gheorghe Asachi of Iasi, Romania ABSTRACT This paper is a

More information

The change of surface properties on tested smooth stainless steel surfaces after plasma polishing

The change of surface properties on tested smooth stainless steel surfaces after plasma polishing International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 6 ǁ June. 2013 ǁ PP.07-11 The change of surface properties on tested smooth stainless

More information

Improved Quality by Electro Slag Re-Melting

Improved Quality by Electro Slag Re-Melting Improved Quality by Electro Slag Re-Melting BY GÜNTER BUSCH* SYNOPSIS Electro Slag Re-Melting is a process performed after the primary melting steps in electro arc, induction or vacuum induction furnaces.

More information

High Quality Multi-arc Targets

High Quality Multi-arc Targets High Quality Multi-arc Targets IKS provides high-quality multi-arc targets for a wide range of applications for ferromagnetic, complex oxides, and semiconducting films. Our targets are offered in various

More information

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION Prepared by S. SENTHIL KUMAR AP / MECH SVCET INTRODUCTION Conventional machining process Metal is removed by means of tool which is harder than work

More information

Effect of degassing electrolyte on polarisation curve shape with the aim to apply knowledge to electrochemical machining

Effect of degassing electrolyte on polarisation curve shape with the aim to apply knowledge to electrochemical machining KES Transactions on Sustainable Design and Manufacturing I Sustainable Design and Manufacturing 2014 : pp.566-573 : Paper sdm14-041 Effect of degassing electrolyte on polarisation curve shape with the

More information

Manufacturing Processes II Prof. S. Paul Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Manufacturing Processes II Prof. S. Paul Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Manufacturing Processes II Prof. S. Paul Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No.38 Electrochemical Machining Good Morning! Welcome to the class on Manufacturing

More information

QForm. Form3D. Advanced software for forging simulation

QForm. Form3D. Advanced software for forging simulation QForm Form3D Advanced software for forging simulation The goals of forging technology : Make the parts of the required shape Provide required properties Do it in time and at the lowest cost Forging process

More information

Electropolishing of cylindrical workpiece of tool materials using disc-form electrodes

Electropolishing of cylindrical workpiece of tool materials using disc-form electrodes Journal of Materials Processing Technology 142 (2003) 203 212 Electropolishing of cylindrical workpiece of tool materials using disc-form electrodes H. Hocheng, P.S. Pa Department of Power Mechanical Engineering,

More information

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected Corrosion of platinum (Pt) in HCl Now if we place a piece of Pt in HCl, what will happen? Pt does not corrode does not take part in the electrochemical reaction Pt is a noble metal Pt acts as a reference

More information

Study of Electro-Chemical Machining Process For Drilling Hole

Study of Electro-Chemical Machining Process For Drilling Hole Study of Electro-Chemical Machining Process For Drilling Hole Ripu Daman Sharma, B.Tech. Student, CTIENT, Shahpur, Ramandeep Singh, Asst. Prof., MED, CTIEMT, Shahpur, Manpreet Singh Asst. Prof., MED, CTIEMT,

More information

CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering

CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering CORROSION AND CORROSION CONTROL An Introduction to Corrosion Science and Engineering FOURTH EDITION R. Winston Revie Senior Research Scientist CANMET Materials Technology Laboratory Natural Resources Canada

More information

Effect of TiN powder mixed in Electrical Discharge Machining

Effect of TiN powder mixed in Electrical Discharge Machining IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effect of TiN powder mixed in Electrical Discharge Machining To cite this article: A Muttamara and J Mesee 2016 IOP Conf. Ser.:

More information

Electrochemical Machining (ECM)

Electrochemical Machining (ECM) Electrochemical Machining (ECM) Synopsis Introduction Principle Equipment MRR Tool material Electrolyte Insulation Electrical circuit Process parameters Advantages Limitations Applications Introduction

More information

Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b

Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016) Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b 1 Research

More information

Mat E 272 Lecture 26: Oxidation and Corrosion

Mat E 272 Lecture 26: Oxidation and Corrosion Mat E 272 Lecture 26: Oxidation and Corrosion December 11, 2001 Introduction: Environmental degradation of materials is one of the most costly failure modes, accounting for over 5 percent of the total

More information

Electro-chemical processing for tungsten fabrication and joining by layer deposition

Electro-chemical processing for tungsten fabrication and joining by layer deposition Challenges to Developing W-Based Materials for Fusion Applications UCSB, Santa Barbara, CA, USA, February 13 15, 2012 Electro-chemical processing for tungsten fabrication and joining by layer deposition

More information

Introduction. 1. Outline of fan case ring

Introduction. 1. Outline of fan case ring A near-net-shape (NNS) ring-rolling process was developed to reduce the forging weight of a rolled, fan case front, ring made of Ti-6Al-4V. This was achieved by optimizing the ring-rolling process in which

More information

Multiscale post-processing of metal additive manufactured parts by electro-polishing technology

Multiscale post-processing of metal additive manufactured parts by electro-polishing technology Multiscale post-processing of metal additive manufactured parts by electro-polishing technology L.A. Hof, Md. M. Rahman, R. Wüthrich Electrochemical Green Engineering Group Department of Mechanical and

More information

Environmental Interactions

Environmental Interactions Environmental Interactions Chemical reaction between the material and its environment Beneficial interactions: materials processing Carburization and nitriding hardens for wear resistance Doping adds electrically

More information

Available online at ScienceDirect. Procedia CIRP 42 (2016 )

Available online at  ScienceDirect. Procedia CIRP 42 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 42 (2016 ) 317 321 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII) Blasting Erosion Arc Machining of Turbine

More information

A.R. (2016) ISSN

A.R. (2016) ISSN Gomez-Gallegos, A.A. and Mill, F. and Mount, A.R. (2016) Surface finish control by electrochemical polishing in stainless steel 316 pipes. Journal of Manufacturing Processes, 23. pp. 83-89. ISSN 1526-6125,

More information

Crack Initiation and Crack Propagation of Pre-corroded Ni-16Cr Alloy in 4.5%NaCl Aqueous Solution

Crack Initiation and Crack Propagation of Pre-corroded Ni-16Cr Alloy in 4.5%NaCl Aqueous Solution IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 8 (August. 2013), V2 PP 11-15 Crack Initiation and Crack Propagation of Pre-corroded Ni-16Cr Alloy in 4.5%NaCl Aqueous

More information

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate 2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate Mighty ships upon the ocean suffer from severe corrosion. Even those that stay at dockside are rapidly becoming oxide Alas, that piling

More information

Chapter 16 Corrosion and Degradation of Materials

Chapter 16 Corrosion and Degradation of Materials Chapter 16 Corrosion and Degradation of Materials Concept Check 16.1 Question: Would you expect iron to corrode in water of high purity? Why or why not? Answer: Iron would not corrode in water of high

More information

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE Superalloys 2004 Edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston TMS (The Minerals, Metals & Materials Society), 2004 DEVELOPMENT OF Ni BASE SUPERALLOY

More information

METAL FINISHING. (As per revised VTU syllabus: )

METAL FINISHING. (As per revised VTU syllabus: ) METAL FINISHING (As per revised VTU syllabus: 2015-16) Definition: It is a process in which a specimen metal (article) is coated with another metal or a polymer in order to modify the surface properties

More information

Surface Coating of Tungsten Carbide by Electric Exploding of Contact

Surface Coating of Tungsten Carbide by Electric Exploding of Contact Surface Coating of Tungsten Carbide by Electric Exploding of Contact Evgeny G. Grigoryev General Physics Department, Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409, Russia Abstract.

More information

PPS Outshines Stainless Steel in Chemically-Hostile Valve Applications

PPS Outshines Stainless Steel in Chemically-Hostile Valve Applications PPS Outshines Stainless Steel in Chemically-Hostile Valve Applications What is PPS? Polyphenylene Sulfide (PPS), is a high performance, fiber reinforced, advanced composite, linear thermoplastic polymer.

More information

BIMETALLIC BLISK DESIGN FOR HIGH TEMPERATURE TURBINES OF GAS TURBINE ENGINE OF DIFFERENT APPLICATION Dr. L. Magerramova

BIMETALLIC BLISK DESIGN FOR HIGH TEMPERATURE TURBINES OF GAS TURBINE ENGINE OF DIFFERENT APPLICATION Dr. L. Magerramova BIMETALLIC BLISK DESIGN FOR HIGH TEMPERATURE TURBINES OF GAS TURBINE ENGINE OF DIFFERENT APPLICATION Dr. L. Magerramova Central Institute of Aviation Motors (CIAM), Moscow, Russia Email: mag@ciam.ru, lamagerramova@mail.ru

More information

PES INSTITUTE OF TECHNOLOGY, BANGALORE SOUTH CAMPUS DEPARTMENT OF MECHANICAL ENGINEERING LESSON PLAN NON-TRADITIONAL MACHINING

PES INSTITUTE OF TECHNOLOGY, BANGALORE SOUTH CAMPUS DEPARTMENT OF MECHANICAL ENGINEERING LESSON PLAN NON-TRADITIONAL MACHINING PES INSTITUTE OF TECHNOLOGY, BANGALORE SOUTH CAMPUS DEPARTMENT OF MECHANICAL ENGINEERING LESSON PLAN NON-TRADITIONAL MACHINING Faculty name : JAGADEESH BAGALI Subject code : 10ME665 Total No. of Lecture

More information

Laboratory Experiments in Corrosion Engineering II

Laboratory Experiments in Corrosion Engineering II Lecture - 40 Laboratory Experiments in Corrosion Engineering II Keywords: Polarization Experiments, Pitting Potentials, Microbial Corrosion. A. Electrochemical tests in a given environment Polarization

More information

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS 1 R.Raja, 2 M.Rajkumar 1 Assistant Lecturer, St. Joseph College

More information

ELECTROCHEMICAL FINISHING SURFACES AFTER ROUGH MILLING

ELECTROCHEMICAL FINISHING SURFACES AFTER ROUGH MILLING ELECTROCHEMICAL FINISHING SURFACES AFTER ROUGH MILLING Adam Ruszaj, Jan Czekaj, Tatiana Miller, Sebastian Skoczypiec, The Institute of Metal Cutting, Krakow, Poland Summary In the paper experiments of

More information

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53 Steel Forgings: Design, Production, Selection, Testing, and Application Edward G. Nisbett ASTM Stock No. MNL53 INTERNATIONAL Standards Worldwide ASTM International 100 Barr Harbor Drive PO Box C700 West

More information

An Investigation on Metallic Bipolar Plate Corrosion in Simulated Anode and Cathode Environments of PEM Fuel Cells using Potential-pH Diagrams

An Investigation on Metallic Bipolar Plate Corrosion in Simulated Anode and Cathode Environments of PEM Fuel Cells using Potential-pH Diagrams Int. J. Electrochem. Sci., 1(2006)447-455 www.electrochemsci.org An Investigation on Metallic Bipolar Plate Corrosion in Simulated Anode and Cathode Environments of PEM Fuel Cells using Potential-pH Diagrams

More information

Electroplating, Anodizing & Metal Treatment Hand Book

Electroplating, Anodizing & Metal Treatment Hand Book Electroplating, Anodizing & Metal Treatment Hand Book Author: NPCS Board of Consultants & Engineers Format: Paperback ISBN: 9788178331386 Code: NI63 Pages: 720 Price: Rs. 1,475.00 US$ 150.00 Publisher:

More information

Join discussion of this test paper at

Join discussion of this test paper at 1.1 Carburized machine components have high endurance limit because carburization (a) raises the yield point of the material (b) produces a better surface finish (c) introduces a compressive layer on the

More information

Electroplating, Anodizing & Metal Treatment Hand Book

Electroplating, Anodizing & Metal Treatment Hand Book Electroplating, Anodizing & Metal Treatment Hand Book Author: NPCS Board of Consultants & Engineers Format: Paperback ISBN: 9788178331386 Code: NI63 Pages: 720 Price: Rs. 1,475.00 US$ 150.00 Publisher:

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Electrochemical Polishing of Microcomponents

Electrochemical Polishing of Microcomponents Proceedings of the 8th International Conference on MicroManufacturing University of Victoria, Victoria, BC, Canada, March 25-28, 2013 Electrochemical Polishing of Microcomponents ICOMM 2013 No. D. Berestovskyi

More information

Mechanism of Building-Up Deposited Layer during Electro-Spark Deposition

Mechanism of Building-Up Deposited Layer during Electro-Spark Deposition Journal of Surface Engineered Materials and Advanced Technology, 2012, 2, 258-263 http://dx.doi.org/10.4236/jsemat.2012.24039 Published Online October 2012 (http://www.scirp.org/journal/jsemat) Mechanism

More information

Metal Powder - the Raw Material of Future Production

Metal Powder - the Raw Material of Future Production Metal Powder - the Raw Material of Future Production BY GÜNTER BUSCH* SYNOPSIS Alongside Mobile Internet, Cloud Computing, Robotics, Energy Storage and Autonomous Vehicles, Additive Manufacturing is one

More information

Experimental apparatus

Experimental apparatus Experimental apparatus Metallothermic Reduction Components of reaction capsule Ta crucible Stainless steel foil Reaction capsule Reaction capsule Stainless steel reaction capsule Sc 2 O 3 or ScF 3 (+Al+CaCl

More information

FOR MACHINABLE AND FLAME HARDENABLE SURFACING. RECOMMENDED CURRENT RANGE & PACKING DETAILS Size (mm) Amps

FOR MACHINABLE AND FLAME HARDENABLE SURFACING. RECOMMENDED CURRENT RANGE & PACKING DETAILS Size (mm) Amps H-MACH-1 FOR MACHINABLE AND FLAME HARDENABLE SURFACING Fe Cr Mn EURO-TECH H-MACH-1 is an all position basic coated electrode which can be successfully used in thick surfacing and intermediate layers can

More information

Mold Design. Note. 13. Mold Manufacturing Techniques. Bong-Kee Lee School of Mechanical Engineering Chonnam National University.

Mold Design. Note. 13. Mold Manufacturing Techniques. Bong-Kee Lee School of Mechanical Engineering Chonnam National University. 13. Mold Bong-Kee Lee Chonnam National University Note material removing methods machining electrical discharge machining (EDM) electro chemical machining (ECM) electro chemical and chemical etchings laser

More information

CHAPTER 3 DEVELOPMENT OF ELECTROPLATING SETUP FOR PLATING ABS AND POLYAMIDES

CHAPTER 3 DEVELOPMENT OF ELECTROPLATING SETUP FOR PLATING ABS AND POLYAMIDES 82 CHAPTER 3 DEVELOPMENT OF ELECTROPLATING SETUP FOR PLATING ABS AND POLYAMIDES 3.1 BACKGROUND OF ELECTROPLATING 83 3.2 DETAILS OF THE DEVELOPMENT OF ELECTROPLATING SETUP 83 3.2.1 Polypropylene Tank for

More information

Machining Phenomena in EDM for Surface Modification with TiC Semi-sintered Electrode

Machining Phenomena in EDM for Surface Modification with TiC Semi-sintered Electrode Machining Phenomena in EDM for Surface Modification with TiC Semi-sintered Electrode Toshio Moro, Akihiro Goto, Nagao Saito EDM system department, MITSUBISHI ELECTRIC CORP., Nagoya, Japan* Naotake Mohri

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment. CORROSION WHAT IS CORROSION? Corrosion is the deterioration of a metal as a result of chemical reactions between it and the surrounding environment. Rusting is an example of corrosion, which is a spontaneous

More information

Predicting the Distribution of Electroplated Coatings Using ANSYS

Predicting the Distribution of Electroplated Coatings Using ANSYS Predicting the Distribution of Electroplated Coatings Using ANSYS Richard Eberhart Fisher Controls Intl., Inc. Abstract The performance of control valve internal parts can be greatly enhanced by coating

More information

Fig. 1. Pulsed Ion beam energy instantly melts a thin surface layer, which then cools at a rate of a billion degrees/sec.

Fig. 1. Pulsed Ion beam energy instantly melts a thin surface layer, which then cools at a rate of a billion degrees/sec. Introduction Manufacturers and end-users of critical metal parts and components are under increasing pressure to improve operating performance and reduce cost. Ranging from tools and dies used in the forging

More information

Forging die design and Forging defects

Forging die design and Forging defects Forging die design and Forging defects 1.1 Forging die-design aspects: Die design is more empirical and requires experience. Design of die depends on the processing steps, nature of work piece material,

More information

Typical aerospace-standard materials

Typical aerospace-standard materials JOHANN MAIER GmbH & Co. KG Schockenriedstraße 3 70565 Stuttgart-Vaihingen Typical aerospace-standard materials 1.4314.7 Stainless, austenitic steel 0,05C-1Cr-Ni X5 CrNi 1 1.4301 / AISI 304 60 * * Special

More information

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University 12. Mold Materials Bong-Kee Lee Chonnam National University Mold Materials easy toolmaking good performance during production good machining properties ease of hear treatment where hardening is required

More information

Training Session 5: Gas Turbine Repair

Training Session 5: Gas Turbine Repair Training Session 5: Gas Turbine Repair By Scott Hastie / Liburdi Turbine Services Presented at the 2015 Symposium on Industrial Application of Gas Turbines (IAGT) Banff, Alberta, Canada - October 2015

More information

Corrosion. Cause of Corrosion: Electrochemical Mechanism of Corrosion (Rusting of Iron)

Corrosion. Cause of Corrosion: Electrochemical Mechanism of Corrosion (Rusting of Iron) Corrosion Any process of deterioration (or destruction) and consequent loss of a solid metallic material, through an unwanted (or unintentional) chemical or electrochemical attack by its environment, starting

More information

family of stainless steels can be divided into five (5) categories:

family of stainless steels can be divided into five (5) categories: Welcome to the fifth issue of Tech Talk. This newsletter covers a range of topics on various welding products, applications, metallurgy, techniques, and economics. Previous issues are archived at www.unibraze.com.

More information

Continuous Casting Mould Plates For Slab/ Bloom/ Beam Blank/ Vertical Casters

Continuous Casting Mould Plates For Slab/ Bloom/ Beam Blank/ Vertical Casters R Complete Competence in Copper Continuous Casting Mould Plates For / Bloom/ Beam Blank/ Vertical Casters Mould Plate Bloom Mould Plate Beam Blank Mould Plate Casting Bloom Casting Beam Blank Casting s

More information

Choose Surface Treatments Early To Avoid Future Problems

Choose Surface Treatments Early To Avoid Future Problems Choose Surface Treatments Early To Avoid Future Problems By Edmund V. Aversenti, President and COO, General Magnaplate Corp. Too often, design engineers look at coating parts as an afterthought. Rather

More information

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels These steels contain a high percentage of chromium and sometimes other alloys and have been designed to prevent different types of corrosion. There are two kinds of corrosion: dry corrosion (often named

More information

SHAFT-MOUNTED FLAP WHEELS

SHAFT-MOUNTED FLAP WHEELS FLAP WHEELS 49 SHAFT-MOUNTED FLAP WHEELS Description: The abrasive flaps are radially arranged from the tool axis. RG shaft-mounted flap wheels are coupled to the electrical or pneumatic tool spindle by

More information

Material data sheet. EOS NickelAlloy IN718. Description

Material data sheet. EOS NickelAlloy IN718. Description EOS NickelAlloy IN718 EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information

More information

MATERIAL REMOVAL RATE IN ELECTROCHEMICAL DISCHARGE MACHINING OF SMALL DIAMETER HOLES

MATERIAL REMOVAL RATE IN ELECTROCHEMICAL DISCHARGE MACHINING OF SMALL DIAMETER HOLES Nonconventional Technologies Review Romania, December, 2015 2015 Romanian Association of Nonconventional Technologies MATERIAL REMOVAL RATE IN ELECTROCHEMICAL DISCHARGE MACHINING OF SMALL DIAMETER HOLES

More information

Effect of WEDM Parameters on Machinability of Titanium alloys Ti6AlNb

Effect of WEDM Parameters on Machinability of Titanium alloys Ti6AlNb Effect of WEDM Parameters on Machinability of Titanium alloys Ti6AlNb Vinod Kumar 1, Vikas Kumar 1, Kamal Kumar 2 1( Department of Mechanical Engineering, YMCA University of Science and Technology, Faridabad,

More information

Application and importance of copper and copper powder on powder metallurgy field

Application and importance of copper and copper powder on powder metallurgy field Application and importance of copper and copper powder on powder metallurgy field In recent years, powder metallurgy scholars have paid more attention to materials that have nanometer and composite feature.

More information

Development of 700 C Class Steam Turbine Technology

Development of 700 C Class Steam Turbine Technology 10 Development of 700 C Class Steam Turbine Technology EIJI SAITO *1 SHIN NISHIMOTO *2 HIROYUKI ENDO *3 RYUICHI YAMAMOTO *4 KENJI KAWASAKI *5 JUN SATO *6 Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has

More information

Experimental technique. Revision 1. Electroplating an iron key with copper metal

Experimental technique. Revision 1. Electroplating an iron key with copper metal Experimental technique. Revision 1 Electroplating an iron key with copper metal Aim To investigate whether Faraday s laws apply to the electroplating of a brass key with nickel Procedure The apparatus

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Microstructural evolution of SKD11 tool steel during multi-stage thixoforming and subsequent heat treatments

Microstructural evolution of SKD11 tool steel during multi-stage thixoforming and subsequent heat treatments Microstructural evolution of SKD11 tool steel during multi-stage thixoforming and subsequent heat treatments Yi Meng 1, a *, Hui-Min Zhou 1, Jia-Lin Gan 1 and Sumio Sugiyama 2 1 College of Materials Science

More information

AP 5301/8301 LABORATORY MANUAL

AP 5301/8301 LABORATORY MANUAL AP 5301/8301 LABORATORY MANUAL Department of Physics & Materials Science City University of Hong Kong Contents Table of Contents. 1 Project 1: Scanning Electron Microscopy (SEM). 2 Project 2: Microscopic

More information

Compare with Rolling process which generally produces continuous plates, sheets, shapes

Compare with Rolling process which generally produces continuous plates, sheets, shapes 1 One of oldest and most important metal working processes 4000 BC First used to make jewelry, coins, implements by hammering metals with stone Now: Large rotors for turbines Gears Bolts and rivets Cutlery

More information

CLADDING AND HARDFACING POWDERS

CLADDING AND HARDFACING POWDERS CLADDING AND HARDFACING POWDERS GTV consumables for Laser Cladding Version 1.1 Ni: NICKEL BASED POWDERS GTV No. Description Particle size Hardness C Ni Cr B Si Fe Mo Others 31.25.10 Inconel 625-160 +53

More information

EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized

EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOS M systems. This document provides information and data for parts built using powder (EOS

More information

Phase Transformation Die Casting Process for Manufacturing a Thin- Type Product and Its Mechanical Performance Assessment

Phase Transformation Die Casting Process for Manufacturing a Thin- Type Product and Its Mechanical Performance Assessment Key Engineering Materials Online: 2004-10-15 ISSN: 1662-9795, Vols. 274-276, pp 535-540 doi:10.4028/www.scientific.net/kem.274-276.535 2004 Trans Tech Publications, Switzerland Phase Transformation Die

More information

Statistical Modeling of Pin Gauge Dimensions of Root of Gas Turbine Blade in Creep Feed Grinding Process

Statistical Modeling of Pin Gauge Dimensions of Root of Gas Turbine Blade in Creep Feed Grinding Process Engineering, 2010, 2, 635-640 doi:10.4236/eng.2010.28081 Published Online August 2010 (http://www.scirp.org/journal/eng). Statistical Modeling of Pin Gauge Dimensions of Root of Gas Turbine Blade in Creep

More information

CHAPTER 14. Forging of Metals. Kalpakjian Schmid Manufacturing Engineering and Technology Prentice-Hall Page 14-1

CHAPTER 14. Forging of Metals. Kalpakjian Schmid Manufacturing Engineering and Technology Prentice-Hall Page 14-1 CHAPTER 14 Forging of Metals 2001 Prentice-Hall Page 14-1 Forging (a) (b) Figure 14.1 (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association.

More information

Working principle Equipments Process parameters MRR Electrode / Tool Power circuits Tool wear Dielectric Flushing Advantages Limitations Applications

Working principle Equipments Process parameters MRR Electrode / Tool Power circuits Tool wear Dielectric Flushing Advantages Limitations Applications Unit 3 - EDM Working principle Equipments Process parameters MRR Electrode / Tool Power circuits Tool wear Dielectric Flushing Advantages Limitations Applications Wire cut EDM Recent trends in EDM Synopsis

More information

ATI 601 ATI 601. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N06601)

ATI 601 ATI 601. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N06601) Nickel-base Alloy (UNS N06601) INTRODUCTION alloy (UNS Designation N06601) is an austenitic nickel-chromium-iron alloy designed for both heat and corrosion resistance. As compared to ATI 600 alloy (UNS

More information

Leveraging the Precision of Electroforming over Alternative Processes When Developing Nano-scale Structures

Leveraging the Precision of Electroforming over Alternative Processes When Developing Nano-scale Structures VOLUME 4 - ELECTROFORMING Leveraging the Precision of over Alternative Processes When Developing Nano-scale Structures Electrical and mechanical component and subsystem designers generally have five techniques

More information

How to achieve uniform thickness of the anodic aluminum oxide film? Leonid M. Lerner AlZi Anodizing Solutions Co.

How to achieve uniform thickness of the anodic aluminum oxide film? Leonid M. Lerner AlZi Anodizing Solutions Co. How to achieve uniform thickness of the anodic aluminum oxide film? Leonid M. Lerner AlZi Anodizing Solutions Co. 2014 AAC Conference September 16-18, Pittsburgh, PA, USA. 1 How to achieve uniform thickness

More information

WHITE PAPER. Introduction to Electroforming

WHITE PAPER. Introduction to Electroforming WHITE PAPER Introduction to Electroforming Table of Contents 2 2 3 5 Introduction What is electroforming? The electroforming process Modern applications of electroforming Introduction to Electrofarming

More information

Kinetics of low temperature plasma carburizing of austenitic stainless steels

Kinetics of low temperature plasma carburizing of austenitic stainless steels Journal of Materials Processing Technology 168 (2005) 189 194 Kinetics of low temperature plasma carburizing of austenitic stainless steels Y. Sun School of Materials Engineering, Nanyang Technological

More information

Electroplating. Copyright 2016 Industrial Metallurgists, LLC

Electroplating. Copyright 2016 Industrial Metallurgists, LLC Electroplating Northbrook, IL 847.528.3467 www.imetllc.com Copyright 2016 Industrial Metallurgists, LLC Course content 1. Process Steps (75 minutes) 2. Properties, Defects, and Evaluation (60 minutes)

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

Potentiodynamic Scanning (PDS) of Stainless Steel Karen Louise de Sousa Pesse

Potentiodynamic Scanning (PDS) of Stainless Steel Karen Louise de Sousa Pesse Potentiodynamic Scanning (PDS) of Stainless Steel 8-2-26 Supervision: Elien Wallaert Introduction In order to investigate the corrosion resistance of Stainless steel in a specific environment, the practical

More information