MECHANICAL PROPERTIES AND TESTS. Materials Science

Size: px
Start display at page:

Download "MECHANICAL PROPERTIES AND TESTS. Materials Science"

Transcription

1 MECHANICAL PROPERTIES AND TESTS Materials Science

2 Stress Stress is a measure of the intensity of the internal forces acting within a deformable body. Mathematically, it is a measure of the average force per unit area of a surface within a the body on which internal forces act The SI unit for stress is Pascal (symbol Pa), which is equivalent to one Newton (force) per square meter (unit area). Three types of stresses -> Tensile; Compressive; Shear

3 Mechanism of Stress (Tensile)

4 Tensile, Compressive and Shear Stresses A1 Stress???

5 Strain Strain is deformation of a physical body under the action of applied forces It is the geometrical measure of deformation representing the relative displacement between particles in the material body Strain is a dimensionless quantity Strain accounts for elongation, shortening, or volume changes, or angular distortion Normal stress causes normal strain (tensile or compressive) Shear strain is defined as the change in right angle ( or angle change between two originally orthogonal material lines)

6 Types of Strains tensile load produces an elongation and positive linear strain. compressive load produces contraction and a negative linear strain. torsional deformation

7 Tensile Test and Stress-strain relationship

8 Tensile Test Used for determining UTS, yield strength, %age elongation, and Young s Modulus of Elasticity The ends of a test piece are fixed into grips. The specimen is elongated by the moving crosshead; load cell and extensometer measure, respectively, the magnitude of the applied load and the elongation

9 Stress-Strain Relationship

10

11

12

13

14

15 For structural applications, the yield stress is usually a more important property than the tensile strength, since once the yield stress has passed, the structure has deformed beyond acceptable limits.

16 Important Terms (Stress-Strain Rel.) Elastic Limit -> Maximum amount of stress up to which the deformation is absolutely temporary Proportionality Limit -> Maximum stress up to which the relationship between stress & strain is linear. Hooke s Law -> Within elastic limit, the strain produced in a body is directly proportional to the stress applied. ζ = E ε

17 Important Terms (Stress-Strain Rel.) Young s Modulus of elasticity - > the ratio of the uniaxial stress over the uniaxial strain in the range of stress in which Hooke's Law holds Elasticity -> the tendency of a body to return to its original shape after it has been stretched or compressed Yield Point -> the stress at which a material begins to deform plastically

18 Important Terms (Stress-Strain Rel.) Plasticity -> the deformation of a material undergoing non-reversible changes of shape in response to applied forces Ultimate Strength -> It is the maxima of the stress-strain curve. It is the point at which necking will start. Necking -> When tensile deformation becomes localized in a small region of the material, the deformation mode is called necking

19 Important Terms (Stress-Strain Rel.) Fracture Point -> The stress calculated immediately before the fracture. Ductility -> The amount of strain a material can endure before failure. Ductility is measured by percentage elongation or area reduction

20 Important Terms (Stress-Strain Rel.) A knowledge of ductility is important for two reasons: 1. It indicates to a designer the degree to which a structure will deform plastically before fracture. 2. It specifies the degree of allowable deformation during fabrication

21

22

23 Engineering stress strain behavior for Iron at three temperatures

24 Resilience Resilience is the capacity of a material to absorb energy when it is deformed elastically and then, upon unloading, to have this energy recovered Modulus of Resilience (U r ) is the strain energy per unit volume required to stress a material from an unloaded state up to the point of yielding.

25 Resilience Assuming a linear elastic region For SI units, this is joules per cubic meter (J/m 3, equivalent to Pa) Thus, resilient materials are those having high yield strengths and low moduli of elasticity; such alloys would be used in spring applications

26 EXAMPLE PROBLEM A piece of copper originally 305mm (12 in.) long is pulled in tension with a stress of 276MPa (40,000psi). If the deformation is entirely elastic, what will be the resultant elongation? Magnitude of E for copper from Table 6.1 is 110GPa

27 Poisson s Ratio Poisson s ratio is defined as the ratio of the lateral and axial strains Theoretically, Poisson s ratio for isotropic materials should be 1/4; furthermore, the maximum value for ν is 0.50 For isotropic materials, shear and elastic moduli are related G=0.4E

28 EXAMPLE PROBLEM 6.2 A tensile stress is to be applied along the long axis of a cylindrical brass rod that has a diameter of 10mm. Determine the magnitude of the load required to produce a mm change in diameter if the deformation is entirely elastic. For the strain in the x direction:

29 EXAMPLE PROBLEM 6.2

30 True stress = load/ actual area in the necked-down region, continues to rise to the point of fracture, in contrast to the engineering stress. σ = F/A o ε = (l i -l o /l o ) σt = F/A i ε T = ln(l i /l o )

31 True Stress and Strain The decline in the stress necessary to continue deformation past the point M, indicates that the metal is becoming weaker. Material is increasing in strength.

32 True Stress and Strain True stress ζ T is defined as the load F divided by the instantaneous cross-sectional area A i over which deformation is occurring True strain Є T is defined as: n= slope of True Stress-strain curve

33 True Stress and Strain If no volume change occurs during deformation that is, if A i l i = A 0 l 0 Then true and engineering stress and strain are related according to The equations are valid only to the onset of necking; beyond this point true stress and strain should be computed from actual load, crosssectional area, and gauge length measurements

34 EXAMPLE PROBLEM 6.4 A cylindrical specimen of steel having an original diameter of 12.8mm is tensile tested to fracture and found to have an engineering fracture strength σ f of 460MPa. If its cross-sectional diameter at fracture is 10.7mm, determine: (a) The ductility in terms of percent reduction in area (b) The true stress at fracture Ductility is computed as

35 EXAMPLE PROBLEM 6.4 True stress is defined by Equation where the area is taken as the fracture area A f However, the load at fracture must first be computed from the fracture strength as And the true stress is calculated as:

36 TOUGHNESS It is a property of material by virtue of which it resists against fracture under impact loads. Toughness is the resistance to fracture of a material when stressed Mathematically, it is defined as the amount of energy per volume that a material can absorb before rupturing Toughness can be determined by measuring the area (i.e., by taking the integral) underneath the stress-strain curve

37

38 Toughness (contd ) Toughness = Where ε is strain ε f is the strain upon failure ζ is stress The Area covered under stress strain curve is called toughness

39 Toughness (contd ) Toughness is measured in units of joules per cubic meter (J/m 3 ) in the SI system Toughness and Strength -> A material may be strong and tough if it ruptures under high forces, exhibiting high strains Brittle materials may be strong but with limited strain values, so that they are not tough Generally, strength indicates how much force the material can support, while toughness indicates how much energy a material can absorb before rupture

40 Ductile Material Uniform deformation Neck begins to form max. load Deformation concentrated in neck Fracture

41 Ductile Failure Copper Duralumin Ductile materials exhibit significant permanent deformation after yielding before fracture.

42 Brittle Materials Exhibit very little deformation after yielding and fracture immediately

43 As temperature increases: Ductility and toughness increase. Yield stress and the modulus of elasticity decrease. Temperature also affects the strain-hardening exponent of most metals, in that n decreases as temperature increases. Temperature Effects

44 HARDENING An increase in s y due to plastic deformation. s s y 1 s y 0 large hardening small hardening Curve fit to the stress-strain response: e s = K ( e ) n T T hardening exponent: n = 0.15 (some steels) to n = 0.5 (some coppers) true stress (F/A) true strain: ln(l/l o ) 44

45 Design or Safety Factors Design uncertainties mean we do not push the limit. Factor of safety, N s working = s y N Often N is between 1.2 and 4 Example: Calculate a diameter, d, to ensure that yield does not occur in the 1045 carbon steel rod below. Use a factor of safety of 5. s 220,000N ( ) d 2 / 4 working 5 = s y N d = m = 6.7 cm 1045 plain carbon steel: s y = 310 MPa TS = 565 MPa F = 220,000N 45 d L o

46 Hardness Hardness is the property of material by virtue of which it resists against surface indentation and scratches. Macroscopic hardness is generally characterized by strong intermolecular bonds Hardness is dependent upon strength and ductility Common examples of hard matter are diamond, ceramics, concrete, certain metals, and superhard materials (PcBN, PcD, etc)

47 Hardness Tests (BRINELL HARDNESS TEST) Used for testing metals and nonmetals of low to medium hardness The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece A hardened steel (or cemented carbide) ball of 10mm diameter is pressed into the surface of a specimen using load of 500, 1500, or 3000 kg.

48 BRINELL HARDNESS TEST P where: P = applied force (kgf) D = diameter of indenter (mm) d = diameter of indentation (mm) The resulting BHN has units of kg/mm 2, but the units are usually omitted in expressing the numbers

49 Rockwell Hardness Test A cone shaped indenter or small diameter ball (D = 1.6 or 3.2mm) is pressed into a specimen using a minor load of 10kg Then, a major load of 150kg (at max) is applied The additional penetration distance d is converted to a Rockwell hardness reading by the testing machine. This is an advantage as we don t need to make calculations.

50 Rockwell Hardness Test The differences in load and indenter geometry provide various Rockwell scales for different materials. The most common scales are listed in table below: Diamond Steel Diamond

51 Vickers Hardness Test Uses a pyramid shaped indenter made of diamond. It is based on the principle that impressions made by this indenter are geometrically similar regardless of load. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness Indenter= diamond Accordingly, loads of various sizes are applied, depending on the hardness of the material to be measured

52 Vickers Hardness Test Where: F = applied load (kg) D = Diagonal of the impression made the indenter (mm) The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force

53 Vickers Hardness Test

54 Vickers Hardness Test

55 Knoop Hardness Test It is a microhardness test - a test for mechanical hardness used particularly for very brittle materials or thin sheets A pyramidal diamond point is pressed into the polished surface of the test material with a known force, for a specified dwell time, and the resulting indentation is measured using a microscope Length-to-width ratio of the pyramid is 7:1

56 Knoop Hardness Test (contd ) The indenter shape facilitates reading the impressions at lighter loads HK = Knoop hardness value; F = load (kg); D = long diagonal of the impression (mm)

57 Hardness of Metals and Ceramics

58 Hardness of Polymers

59 Conversion of Hardness on Scales

60 IMPACT TEST

61 Impact Fracture Testing Fracture behavior depends on many external factors: Strain rate Temperature Stress rate Impact testing is used to ascertain the fracture characteristics of materials at a high strain rate and a triaxial stress state. In an impact test, a notched specimen is fractured by an impact blow, and the energy absorbed during the fracture is measured. There are two types of tests Charpy impact test and Izod impact test.

62 Impact Test: The Charpy Test The ability of a material to withstand an impact blow is referred to as notch toughness. The energy absorbed is the difference in height between initial and final position of the hammer. The material fractures at the notch and the structure of the cracked surface will help indicate whether it was a brittle or ductile fracture.

63 Impact Test (Charpy) Data for some of the Alloys In effect, the Charpy test takes the tensile test to completion very rapidly. The impact energy from the Charpy test correlates with the area under the total stress-strain curve (toughness)

64 Impact Test: The Izod Test Generally used for polymers. Izod test is different from the Charpy test in terms of the configuration of the notched test specimen

65 Impact Test (Izod) Data for various polymers

66 Impact Tests: Test conditions The impact data are sensitive to test conditions. Increasingly sharp notches can give lower impact-energy values due to the stress concentration effect at the notch tip The FCC alloys generally ductile fracture mode The HCP alloys generally brittle fracture mode Temperature is important The BCC alloys brittle modes at relatively low temperatures and ductile mode at relatively high temperature

67 Transition Temperatures As temperature decreases a ductile material can become brittle - ductile-to-brittle transition The transition temperature is the temp at which a material changes from ductile-to-brittle behavior Alloying usually increases the ductile-to-brittle transition temperature. FCC metals remain ductile down to very low temperatures. For ceramics, this type of transition occurs at much higher temperatures than for metals.

68 Ductile to Brittle Transition The results of impact tests are absorbed energy, usually as a function of temperature. The ABSORBED ENERGY vs. TEMPERATURE curves for many materials will show a sharp decrease when the temperature is lowered to some point. This point is called the ductile to brittle transition temperature (relatively narrow temperature range). A typical ductile to brittle transition as a function of temperature. The properties of BCC carbon steel and FCC stainless steel, where the FCC crystal structure typically leads to higher absorbed energies and no transition temperature.

69 Transition Temperatures BCC metals have transition temperatures FCC metals do not Can use FCC metals at low temperatures (eg Austenitic Stainless Steel)

70 Effect of Temperature on Properties Generally speaking, materials are lower in strength and higher in ductility, at elevated temperatures

71 Hot Hardness A property used to characterize strength and hardness at elevated temperatures is Hot Hardness It is the ability of a material to retain its hardness at elevated temperatures

72 Numerical Problems Problems 6.3 to 6.9; 6.14 to 6.23; 6.25 to 6.33; 6.46 to 6.48

73 Self Study

74 COMPRESSION Compression test is where specimen is subjected to a compressive load Carried out by compressing a solid cylindrical specimen between two well-lubricated flat dies Slender specimens can buckle during this test Cross-sectional area of the specimen will change along its height and obtaining the stress strain curves in compression is difficult When results of compression and tension tests on ductile metals are compared, true stress true strain curves coincide

75 COMPRESSION Behavior is not true for brittle materials as they are stronger and more ductile in compression than in tension When a metal is subjected to tension into the plastic range, the yield stress in compression is lower than that in tension Phenomenon known as Bauschinger effect

76 COMPRESSION Disk Test Disk test is where a disk is subjected to compression between two hardened flat plates Tensile stresses develop perpendicular to the vertical centerline along the disk Fracture begins and the disk splits in half vertically Tensile stress in the disk is P = load at fracture d = diameter of the disk t = thickness

77 TORSION

78 TORSION A workpiece may be subjected to shear strains Torsion test can be used to determine properties of materials in shear Performed on a thin tubular specimen The shear stress can be calculated from the formula T = torque r = average radius of the tube t = thickness of the tube at its narrow section

79 TORSION Shear strain can be calculated from l = length of tube subjected to torsion Φ = angle of twist in radians Ratio of shear stress to the shear strain in the elastic range is called shear modulus, or modulus of rigidity, G G is a quantity related to the modulus of elasticity E

80 BENDING

81 Bending Preparing specimens from brittle materials, such as ceramics and carbides, is difficult because of problems in shaping and machining them to certain dimensions. The most common test for brittle materials is the bend or flexure test.

82 Bend / Flexure Test Rectangular specimen supported at its ends. Load is applied vertically at 1 or 2 pts. The stress at fracture in bending is known as the modulus of rupture, flexural strength, or transverse rupture strength.

83 Section 6.6 The Bend Test for Brittle Materials Bend test - Application of a force to the center of a bar that is supported on each end to determine the resistance of the material to a static or slowly applied load. Flexural strength or modulus of rupture -The stress required to fracture a specimen in a bend test. Flexural modulus - The modulus of elasticity calculated from the results of a bend test, giving the slope of the stress-deflection curve.

84 The stress-strain behavior of brittle materials compared with that of more ductile materials

85 (a) The bend test often used for measuring the strength of brittle materials, and (b) the deflection δ obtained by bending

11/2/2018 7:58 PM. Chapter 6. Mechanical Properties of Metals. Mohammad Suliman Abuhaiba, Ph.D., PE

11/2/2018 7:58 PM. Chapter 6. Mechanical Properties of Metals. Mohammad Suliman Abuhaiba, Ph.D., PE 1 Chapter 6 Mechanical Properties of Metals 2 Assignment 7, 13, 18, 23, 30, 40, 45, 50, 54 4 th Exam Tuesday 22/11/2018 3 WHY STUDY Mechanical Properties of Metals? How various mechanical properties are

More information

Engineering Materials

Engineering Materials Engineering Materials Mechanical Properties of Engineering Materials Mechanical testing of engineering materials may be carried out for a number of reasons: The tests may simulate the service conditions

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. 1 2 Mechanical properties. 3 The intended learning outcomes from this lecture summary are that you

More information

Mechanical Properties of Materials

Mechanical Properties of Materials INTRODUCTION Mechanical Properties of Materials Many materials, when in service, are subjected to forces or loads, it is necessary to know the characteristics of the material and to design the member from

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

Chapter Outline Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline Mechanical Properties of Metals How do metals respond to external loads? Chapter Outline Mechanical Properties of Metals How do metals respond to external loads?! Stress and Strain " Tension " Compression " Shear " Torsion! Elastic deformation! Plastic Deformation " Yield Strength

More information

MECHANICAL PROPERTIES PROPLEM SHEET

MECHANICAL PROPERTIES PROPLEM SHEET MECHANICAL PROPERTIES PROPLEM SHEET 1. A tensile test uses a test specimen that has a gage length of 50 mm and an area = 200 mm 2. During the test the specimen yields under a load of 98,000 N. The corresponding

More information

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals Materials Engineering 272-C Fall 2001, Lectures 9 & 10 Introduction to Mechanical Properties of Metals From an applications standpoint, one of the most important topics within Materials Science & Engineering

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) of Materials Course KGP003 Ch. 6 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Mohs scale

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Outline Tension and compression

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom Chapter 4 MECHANICAL PROPERTIES OF MATERIAL By: Ardiyansyah Syahrom Chapter 2 STRAIN Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1 Expanding

More information

Chapter 2: Mechanical Behavior of Materials

Chapter 2: Mechanical Behavior of Materials Chapter : Mechanical Behavior of Materials Definition Mechanical behavior of a material relationship - its response (deformation) to an applied load or force Examples: strength, hardness, ductility, stiffness

More information

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Mechanical behaviour of ceramics 7.5. Mechanical behaviour of polymers

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414 FME201 Solid & Structural Mechanics I Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 11am -1pm (CELT) Tutorial Tue 12-1pm (E207) 10/1/2013 1 CHAPTER OBJECTIVES Show relationship of stress

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

Tensile/Tension Test Fundamentals

Tensile/Tension Test Fundamentals CIVE.3110 Engineering Materials Laboratory Fall 2016 Tensile/Tension Test Fundamentals Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister You need to be able to: Name the properties determined in a tensile test including UTS,.2% offset yield strength, Elastic Modulus,

More information

Mechanical Characterisation of Materials

Mechanical Characterisation of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology, Dhaka MME298 Structure and Properties of Biomaterials Sessional 1.50 Credits 3.00 Hours/Week July

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Mechanical Properties: In the course of operation or use, all the articles and structures are subjected to the action of external forces, which create stresses that inevitably cause

More information

Mechanical Properties

Mechanical Properties Stress-strain behavior of metals Elastic Deformation Plastic Deformation Ductility, Resilience and Toughness Hardness 108 Elastic Deformation bonds stretch δ return to initial Elastic means reversible!

More information

MECHANICS OF MATERIALS. Mechanical Properties of Materials

MECHANICS OF MATERIALS. Mechanical Properties of Materials MECHANICS OF MATERIALS Mechanical Properties of Materials By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Understand the concept of tension and

More information

STRENGTH OF MATERIALS laboratory manual

STRENGTH OF MATERIALS laboratory manual STRENGTH OF MATERIALS laboratory manual By Prof. Shaikh Ibrahim Ismail M.H. Saboo Siddik College of Engineering, MUMBAI TABLE OF CONTENT Sr. No. Title of Experiment page no. 1. Study of Universal Testing

More information

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 8: Failure Dr. Coates Canopy fracture related to corrosion of the Al alloy used as a skin material. 8.2 Fundamentals of Fracture Fracture is the separation

More information

THE MECHANICAL PROPERTIES OF STAINLESS STEEL

THE MECHANICAL PROPERTIES OF STAINLESS STEEL THE MECHANICAL PROPERTIES OF STAINLESS STEEL Stainless steel is primarily utilised on account of its corrosion resistance. However, the scope of excellent mechanical properties the within the family of

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

MECHANICAL PROPERTIES. (for metals)

MECHANICAL PROPERTIES. (for metals) MECHANICAL PROPERTIES (for metals) 1 Chapter Outline Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Properties in Shear. Figure 7c. Figure 7b. Figure 7a Properties in Shear Shear stress plays important role in failure of ductile materials as they resist to normal stress by undergoing large plastic deformations, but actually fail by rupturing under shear

More information

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS 1. INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective is

More information

The Mechanical Properties of Polymers

The Mechanical Properties of Polymers The Mechanical Properties of Polymers Date: 14/07/2018 Abu Zafar Al Munsur Behavior Of Material Under Mechanical Loads = Mechanical Properties. Term to address here Stress and strain: These are size-independent

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

Question Paper Code : 11410

Question Paper Code : 11410 Reg. No. : Question Paper Code : 11410 B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Fourth Semester Mechanical Engineering ME 2254 STRENGTH OF MATERIALS (Common to Automobile Engineering and Production

More information

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS 1. Bending Test (Slide 3) 2. Shear Test (Slide 8) 3. Hardness (Slide 14) 4. Effect of Temperature on Properties

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Concepts of stress and strain

Concepts of stress and strain Chapter 6: Mechanical properties of metals Outline Introduction Concepts of stress and strain Elastic deformation Stress-strain behavior Elastic properties of materials Plastic deformation Yield and yield

More information

3. Mechanical Properties of Materials

3. Mechanical Properties of Materials 3. Mechanical Properties of Materials 3.1 Stress-Strain Relationships 3.2 Hardness 3.3 Effect of Temperature on Properties 3.4 Fluid Properties 3.5 Viscoelastic Properties Importance of Mechanical Properties

More information

Workshop Practice TA 102

Workshop Practice TA 102 Workshop Practice TA 102 Lec 2 & 3 :Engineering Materials By Prof.A.Chandrashekhar Engineering Materials Materials play an important role in the construction and manufacturing of equipment/tools. Right

More information

MECHANICAL PROPERTIES.

MECHANICAL PROPERTIES. MECHANICAL PROPERTIES. Hardness, strength, ductility and elasticity are among the mechanical properties of a material that would probably first come to mind. In order to know how each of these characteristics

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES Dr. Mert Yücel YARDIMCI Istanbul Okan University Deparment of Civil Engineering Chapter Outline Terminology for Mechanical Properties The Tensile Test:

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH Plastically deforming metal at low temperatures affects physical

More information

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals 1496T_c06_131-173 11/16/05 17:06 Page 166 166 Chapter 6 / Mechanical Properties of Metals IMPORTANT TERMS AND CONCEPTS Anelasticity Design stress Ductility Elastic deformation Elastic recovery Engineering

More information

Chapter 7. Mechanical Properties

Chapter 7. Mechanical Properties Chapter 7 Mechanical Properties Chapter 7 Plastic Deformation, Ductility and Toughness Issues to address Stress and strain: What are they and why are they used instead of load and deformation? Elastic

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

TENSION TEST L 0 = 5.65 S 0 MECHANICAL TESTS BY TENSION TEST IS POSSIBLE TO DETERMINATE THE FOLLOWING MACHANICAL PROPERTIES:

TENSION TEST L 0 = 5.65 S 0 MECHANICAL TESTS BY TENSION TEST IS POSSIBLE TO DETERMINATE THE FOLLOWING MACHANICAL PROPERTIES: TENSION TEST This test measuresthe load, applied by mechanical or hydraulic test equipment, necessary to rapture a specimen. The test is performed at room temperature. The specimen properties and the procedures

More information

Chapter 6:Mechanical Properties

Chapter 6:Mechanical Properties Chapter 6:Mechanical Properties Why mechanical properties? Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles, pedestrians materials

More information

Chapter 6: Mechanical Properties: Part One

Chapter 6: Mechanical Properties: Part One Slide 1 Chapter 6: Mechanical Properties: Part One ` 6-1 Slide 2 Learning Objectives 1. Technological significance 2. Terminology for mechanical properties 3. The tensile test: Use of the stress strain

More information

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility.

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility. WEEK FOUR Until now, we Defined stress and strain Established stress-strain relations for an elastic material Learned stress transformation Discussed yield (failure) criteria This week, we will Define

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. Civil Engineering CE6411 STRENGTH OF MATERIALS LABORATORY

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. Civil Engineering CE6411 STRENGTH OF MATERIALS LABORATORY Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. Civil Engineering : II Year / IV Semester CE6411 STRENGTH OF MATERIALS LABORATORY OBJECTIVE: ANNA UNIVERSITY CE-6411 STRENGTH

More information

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures SMU 2113 ENGINEERING SCIENCE PART 1 Introduction to Mechanics of Materials and Structures These slides are designed based on the content of these reference textbooks. OBJECTIVES To introduce basic principles

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

CHAPTER 3 - MECHANICAL PROPERTIES. Mechanical properties are the characteristic responses of a material to applied stresses. Selection of mechanical

CHAPTER 3 - MECHANICAL PROPERTIES. Mechanical properties are the characteristic responses of a material to applied stresses. Selection of mechanical CHAPTER 3 - MECHANICAL PROPERTIES Mechanical properties are the characteristic responses of a material to applied stresses. Selection of mechanical tests for a particular application is based primarily

More information

MSE 3143 Ceramic Materials

MSE 3143 Ceramic Materials MSE 3143 Ceramic Materials Mechanical Properties of Ceramics Assoc.Prof. Dr. Emre YALAMAÇ Res.Asst. B.Şölen AKDEMİR 2017-2018 Fall 1 OUTLINE Elasticity & Strength Stress & Strain Behaviour Of Materials

More information

FACULTY OF ENGINEERING UNIVERSITY OF MAURITIUS. Mechanical properties of Materials UTOSP 1293 Basics of Metallurgy Prepared by s.

FACULTY OF ENGINEERING UNIVERSITY OF MAURITIUS. Mechanical properties of Materials UTOSP 1293 Basics of Metallurgy Prepared by s. FACULTY OF ENGINEERING UNIVERSITY OF MAURITIUS Mechanical properties of Materials UTOSP 1293 Basics of Metallurgy Prepared by s. Venkannah MECHANICAL PROPERTIES Engineers are basically concerned with the

More information

EXPERIMENT NO.1 AIM: - OBJECT: - To determined tensile test on a metal. APPRETERS:- THEORY:-

EXPERIMENT NO.1 AIM: - OBJECT: - To determined tensile test on a metal. APPRETERS:- THEORY:- EXPERIMENT NO.1 AIM: - OBJECT: - APPRETERS:- DIAGRAM:- THEORY:- To determined tensile test on a metal. To conduct a tensile test on a mild steel specimen and determine the following: (i) Limit of proportionality

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

CHAPTER 6: Mechanical properties

CHAPTER 6: Mechanical properties CHAPTER 6: Mechanical properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Properties of Engineering Materials

Properties of Engineering Materials Properties of Engineering Materials Syllabus Mechanical Properties, Tensile, Fatigue, Creep, Impact, Hardness, Chemical Properties, Physical properties, Corrosion and Cathodic Protection, Carbon Steel,

More information

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN CITY AND GUILDS 910 Unit 130 MECHANICS O MACHINES AND STRENGTH O MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN Outcome 1 Explain static equilibrium, Newton's laws, and calculation of reaction

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

Strength of Material-I Lab (ME-214-F) LIST OF EXPERIMENTS

Strength of Material-I Lab (ME-214-F) LIST OF EXPERIMENTS Strength of Material-I Lab (ME-214-F) LIST OF EXPERIMENTS 1.To study the Brinell Hardness testing machine and the Brinell hardness test. 2. To study the Rockwell Hardness testing machine and perform the

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3.

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3. The Avogadro's number = 6.02 10 23 1 lb = 4.45 N 1 nm = 10 Å = 10-9 m SE104 Structural Materials Sample Midterm Exam Multiple choice problems (2.5 points each) For each problem, choose one and only one

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 4 Properties in Bending and Shear Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

Material Properties 3

Material Properties 3 Material Properties 3 Real Stress and Strain True M Corrected Stress M Engineering Strain Several Alloys Material n MPa psi Low-carbon steel 0.26 530 77,000 (annealed) Alloy steel 0.15 640 93,000 (Type

More information

MATERIALS: Clarifications and More on Stress Strain Curves

MATERIALS: Clarifications and More on Stress Strain Curves A 3.0 m length of steel rod is going to be used in the construction of a bridge. The tension in the rod will be 10 kn and the rod must extend by no more than 1.0mm. Calculate the minimum cross-sectional

More information

Tensile/Tension Test Advanced Topics

Tensile/Tension Test Advanced Topics CIVE.3110 Engineering Materials Laboratory Fall 2017 Tensile/Tension Test Advanced Topics Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

MECHANICAL PROPERTIES OF THIOUREA BASED ORGANIC AND SEMIORGANIC SINGLE CRYSTALS

MECHANICAL PROPERTIES OF THIOUREA BASED ORGANIC AND SEMIORGANIC SINGLE CRYSTALS 153 CHAPTER 7 MECHANICAL PROPERTIES OF THIOUREA BASED ORGANIC AND SEMIORGANIC SINGLE CRYSTALS 7.1 INTRODUCTION Hardness of a material is the resistance it offers to indentation by a much harder body. It

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 7: Mechanical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 7-1 ISSUES TO ADDRESS... Stress and strain: What are they and why are they

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module 2 Selection of Materials and Shapes Lecture 1 Physical and Mechanical Properties of Engineering Materials Instructional objectives At the of this lecture, the student should be able to appreciate

More information

Vickers Berkovich Knoop Conical Rockwell Spherical Figure 15 a variety of different indenter's shapes and sizes

Vickers Berkovich Knoop Conical Rockwell Spherical Figure 15 a variety of different indenter's shapes and sizes Hardness Test of Ceramic materials Hardness is a measure of a materials resistance to penetration by a hard indenter of defined geometry and loaded in prescribed manner, it is one of the most frequently

More information

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors MME 291: Lecture 10 Mechanical Properties of Materials 2 Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Plastic stress- behaviour of metals Energy of mechanical ldeformation Hardness

More information

Deformation, plastic instability

Deformation, plastic instability Deformation, plastic instability and yield-limited design Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Material

More information

P A (1.1) load or stress. elongation or strain

P A (1.1) load or stress. elongation or strain load or stress MEEN 3145 TENSION TEST - BACKGROUND The tension test is the most important and commonly used test in characterizing properties of engineering materials. This test gives information essential

More information

Materials Properties 2

Materials Properties 2 Materials Properties 2 Elastic Deformation Most metals can only obey hook s law for s up to 0.005 Elastic Plastic y P Nearly all engineering is performed in the elastic region 0.002 Elastic Plastic y P

More information

Testing of Materials

Testing of Materials Testing of Materials (MM 15 025) B. Tech, 6 th Semester Prepared by Dr. Sushant Kumar BadJena Department of Metallurgy & Materials Engineering VEER SURENDRA SAI UNIVERSITY OF TECHNOL BURLA - 768018 1 THE

More information