SUPPORTING INFORMATION: Cerium Oxide Nanocrystal Embedded Bimodal. Micro-Mesoporous Nitrogen-Rich Carbon Nanospheres as

Size: px
Start display at page:

Download "SUPPORTING INFORMATION: Cerium Oxide Nanocrystal Embedded Bimodal. Micro-Mesoporous Nitrogen-Rich Carbon Nanospheres as"

Transcription

1 SUPPORTING INFORMATION: Cerium Oxide Nanocrystal Embedded Bimodal Micro-Mesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries Lianbo Ma, a Renpeng Chen, a Guoyin Zhu, a Yi Hu, a Yanrong Wang, a Tao Chen, a Jie Liu, ab and Zhong Jin a * a Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, , China. b Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA. * Address correspondence to: zhongjin@nju.edu.cn (Prof. Z. Jin)

2 Ref. This work Sulfur materials (Morphology) CeO 2 /MMNC nanospheres Table S1. Performance comparison of CeO 2 /MMNC nanospheres with other representative sulfur host materials for Li-S batteries in the literatures. host Sulfur content (wt.%) Sulfur loading in (mg cm -2 ) electrodes Current density (C, 1675 ma g -1 ) Cycle number Discharge capacity (mah g -1 ) Capacity % % % retention (From the first cycle) S1 Carbon/TiN ~800 ~69.0% S2 Layered doubled hydroxide/graphene oxide ~45.0% S3 CNTs/V 2 O 5 layer ~ % S4 S5 S6 S7 Nb 2 O 5 /mesoporous carbon microspheres Polypyrrole-MnO 2 coaxial nanotubes TiO 2 hollow nanospheres Ti 3 C carbon ~ % ~70 1.0~ % ~61 0.4~ % % S8 CNTs/V 2 O 5 layer ~ % S9 S10 S11 S12 S13 S14 S15 S16 MXene Nanosheet/Carbon- Nanotube Si/SiO al Porous Carbon Spheres TiO 2 /nitrogen-dope graphene Activated carbon cloth/al 2 O 3 layer Cobalt/N-doped graphitic carbon Co-doped porous carbon polyhedrons Hollow sulfide polyhedra Titanium cobalt monoxide@carbon hollow spheres ~ % % % ~70% ~ % % ~60% %

3 S17 S18 S19 Porous graphene/fe 2 O 3 MnO Hollow Nanoboxes TiO 2 /porous N-doped carbon ~361 54% ~ % %

4 Figure S1. XRD pattern of Zn 3 [Co(CN) 6 ] 2 nh 2 O/PVP precursor nanospheres in accordance with cubic-phase Zn 3 [Co(CN) 6 ] 2 nh 2 O (JCPDS card, No , space group: Fm-3m, a = 9.940, b = 9.940, c = 9.940).

5 Figure S2. SEM image of Zn 3 [Co(CN) 6 ] 2 nh 2 O/PVP precursor nanospheres, revealing an average size of ~600 nm.

6 Figure S3. The optimized structures of S 8 and polysulfides, exhibiting the three-dimensional cluster shapes.

7 Figure S4. Binding geometric configurations and binding energies of S 8 and Li 2 S x species with pristine MMNC material. The binding energies between S 8 /Li 2 S x with pristine MMNC are much lower than those between the sulfur species and CeO 2 nanocrystals, suggesting the weak interactions.

8 Figure S5. (a) CV curve of CeO 2 /MMNC composite at 0.05 mv s -1. (b) High-resolution XPS spectrum at S 2p region after the adsorption test of Li 2 S 4 with CeO 2 /MMNC.

9 Figure S6. Raman spectra of MMNC and CeO 2 /MMNC materials. The Raman spectrum of CeO 2 /MMNC product exhibits the typical Raman peak of CeO 2 (F 2g mode) at ~458 cm -1.

10 Figure S7. Survey XPS spectrum of CeO 2 /MMNC material, showing the co-existence of C, N, Ce and O elements.

11 Figure S8. High-resolution XPS spectra at (a) N 1s region and (b) Ce 3d region.

12 Figure S9. TGA curves of CeO 2 /MMNC-S-x composites measured under N 2 atmosphere from room temperature to 600 C with a heating rate of 10 C/min.

13 Figure S10. Morphology and composition characterizations of MMNC-S-70% composite. (a,b) SEM images, (c) TEM image and (d) EDX spectrum of MMNC-S-70%.

14 Figure S11. TGA curves of MMNC-S-x composites measured under N 2 atmosphere from room temperature to 600 C with a heating rate of 10 C min -1.

15 Figure S12. CV curves of MMNC-S-70% and CeO 2 /MMNC-S-70% composite cathodes with a scan rate of 0.2 mv s -1.

16 Figure S13. Electrochemical performance of CeO 2 /MMNC-S-x cathodes. (a,c) CV curves (at a scanning rate of 0.2 mv s -1 ) and (b,d) galvanostatic charge/discharge profiles (at a current density of 0.2 C) of CeO 2 /MMNC-S-60% and CeO 2 /MMNC-S-80% cathodes, respectively.

17 Figure S14. Nyquist plots of CeO 2 /MMNC-S-x cathodes. These plots show low resistance characteristics, suggesting that the CeO 2 /MMNC-S-x cathodes possess good electrical conductivity.

18 Figure S15. Cycling performance of CeO 2 /MMNC-S-70% cathode under 1.0 and 2.0 C in the electrolyte without LiNO 3 additive.

19 Figure S16. (a,b) SEM images of CeO 2 /MMNC-S-70% composite after long-term cycling test at 2.0 C for 1,000 cycles. The CeO 2 /MMNC-S-70% composite well maintains the original morphology before cycling, indicating the high structural integrity.

20 Figure S17. Electrochemical performances of MMNC-S-x cathodes. (a) CV curves at 0.2 mv s -1 and (b) galvanostatic charge/discharge profiles at 0.2 C of MMNC-S-70% cathode. (c) Cycling performances of MMNC-S-x cathodes at 0.2 C. (d) Rate performances of MMNC-S-x cathodes.

21 Figure S18. (a) Long-term cycling performance of MMNC-S-x cathodes at 1.0 C. (b) Long-term cycling performance and corresponding Coulombic efficiency of MMNC-S-70% cathode at 2.0 C.

22 Figure S19. Electrochemical performance of soft-packaged Li-S batteries (~24 cm 2 in area, sulfur loading is 3.8 mg cm -2 ) with CeO 2 /MMNC-S-70% composite as the cathode. (a) The initial charge/discharge profile of the soft-packaged Li-S batteries at 0.1 C. (b) Photograph that shows the soft-packaged Li-S battery powering a LED device.

23 Supporting References (S1) Jeong, T. G.; Choi, D. S.; Song, H.; Choi, J.; Park, S.; Oh, S. H.; Kim, H.; Jung, Y.; Kim, Y. T. Heterogenous Catalysis for Lithium-Sulfur Batteries: Enhanced Rate Performance by Promoting Polysulfide Fragmentations. ACS Energy Lett. 2017, 2, (S2) Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries. Adv. Mater. 2016, 28, (S3) Liu, Z.; Xiao, Q. F.; Wu, H. B.; Sun, F.; Liu, X. Y.; Li, F.; Le, Z. Y.; Shen, L.; Wang, G.; Cai, M.; Lu, Y. F. Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life. ACS Nano 2017, 11, (S4) Tao, Y. Q.; Wei, Y. J.; Liu, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Kinetically-Enhanced Polysulfide Redox Reactions by Nb 2 O 5 Nanocrystals for High-Rate Lithium-Sulfur Battery. Energy Environ. Sci. 2016, 9, (S5) Zhang, J.; Shi, Y.; Ding, Y.; Zhang, W. K.; Yu, G. H. In Situ Reactive Synthesis of Polypyrrole-MnO 2 Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium-Sulfur Battery. Nano Lett. 2016, 16, (S6) Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; MaDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO 2 Yolk-Shell Nanoarchitecture with Internal Void Space for Long-Cycle Lithium-Sulphur Batteries. Nat. Commun. 2013, 4, (S7) Bao, W. Z.; Su, D. W.; Zhang, W. X.; Guo, X.; Wang, G. X. 3D Metal

24 Carbon Hybrid Architecture as a New Polysulfide Reservior for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2016, 26, (S8) Carter, R.; Oakes, L.; Muralidharan, N.; Cohn, A. P.; Douglas, A.; Pint, C. L. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V 2 O 5 and Sulfur-Filled Carbon Nanotubes for Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, (S9) Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts. Adv. Mater. 2017, 29, (S10) Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery. Adv. Mater. 2016, 28, (S11) Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic Layer Deposited TiO 2 on a Nitrogen-Doped Graphene/Sulfur Electrode for High Performance Lithium-Sulfur Batteries. Energy Environ. Sci. 2016, 9, (S12) Han, X. G; Xu, Y. H.; Chen, X. Y.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Zhu, H. L.; Liu, Y. L.; Li, H. Q.; Rubloff, G.; Wang, C. S.; Hu, L. B. Reactivation of Dissolved Polysulfides in Li-S Batteries Based on Atomic Layer Deposition of Al 2 O 3 in Nanoporous Carbon Cloth. Nano Energy 2013, 2, (S13) Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A Novel Synergistic Composite with Multi-Functional Effects for High-Performance Li-S Batteries.

25 Energy Environ. Sci. 2016, 9, (S14) Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. M.; Yin, L. W. Reduced Graphene Oxide Wrapped MOFs-Derived Cobalt-Doped Porous Carbon Polyhedrons as Sulfur Immobilizers as Cathodes for High Performance Lithium Sulfur Batteries. Nano Energy 2016, 23, (S15) Xu, H. H.; Manthiram, A. Hollow Cobalt Sulfide Polyhedra-Enabled Long-Life, High Areal-Capacity Lithium-Sulfur Batteries. Nano Energy 2017, 33, (S16) Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A Sulfur Host Based on Titanium Monoxide@Carbon Hollow Spheres for Advanced Lithium-Sulfur Batteries. Nat. Commun. 2016, 7, (S17) Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Propelling Polysulfides Transformation for High-Rate and Long-Life Lithium-Sulfur Batteries. Nano Energy 2017, 33, (S18) Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated Design of MnO Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries. Small 2017, 13, (S19) An, Y. L.; Zhang, Z.; Fei, H. F.; Xiong, S. L.; Ji, B.; Feng, J. K. Ultrafine TiO 2 Confined in Porous-Nitrogen-Doped Carbon from Metal-Organic Frameworks for High-Performance Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9,