John Borland 1, Joshua Herman 2, Steve Novak 2, Hiroshi Onoda 3, Yoshiki Nakashima 3, Karim Huet 4, Walt Johnson 5 and Abhijeet Joshi 6

Size: px
Start display at page:

Download "John Borland 1, Joshua Herman 2, Steve Novak 2, Hiroshi Onoda 3, Yoshiki Nakashima 3, Karim Huet 4, Walt Johnson 5 and Abhijeet Joshi 6"

Transcription

1 P, Sb and Sn Ion Implantation with Laser Melt-LPC (Liquid Phase Crystallization) For High Activation n+ Ultra-Shallow Junction in Ge Epilayer and Surface Strain-Ge Formation For Mobility Enhancement John Borland, Joshua Herman 2, Steve Novak 2, Hiroshi Onoda 3, Yoshiki Nakashima 3, Karim Huet 4, Walt Johnson 5 and Abhijeet Joshi 6 J.O.B. Technologies, 2 CNSE/SUNY Polytechnic Institute, 3 Nissin Ion Equipment, 4 LASSE/Screen, 5 KLA-Tencor and 6 Active Layer Parametrics IWJT-205 June -2, 205 Kyoto, Japan & Semicon/West July 6, 205

2 Outline Introduction Device Roadmap to High Mobility Channels at 7/0nm Node Issues with Ge n+ USJ Formation & High Dopant Activation Strain-Ge High Mobility Channel Material Experimentation 70nm Ge-epi/SiGe-buffer/Si P(00) wafer P, Sb and Sn Implantation 308nm Eximer Laser Annealing Results Rs Dopant Activation SIMS Dopant Profiles XRD Strain-Ge Analysis Differential Hall Mobility Depth Profiles J.O.B. Technologies (Strategic Summary Marketing, Sales & Technology) 2

3 204=$336B 204 total smartphone sales were.24b units. Q4/4=367.5B smartphones =69% of cell phone sells! Q/5=7.7B PC/tablets J.O.B. Technologies (Strategic Marketing, Sales & Technology) 3

4 Motorola Droid J.O.B. Technologies (Strategic Marketing, Sales & Technology) 48 hrs Morris Chan chairman of TSMC wants week cell phone battery life so need low leakage devices! 4

5 IEDM-203 short course *206: >50%SiGe 00%Ge-FinFET at 0nm *208: Nano-wire at 5nm (Si, SiGe and Ge) 7/5/205 Advanced Integrated Photonics, Inc. - Proprietary 5

6 00nm Ge Thermal Surface Loss at 600C B=35keV/2E5 7/5/205 6 Oh & Campbell, Univ of Texas, J. Electronic Mats., vol.33, no.4, p. 364, 2004.

7 Anneals appear to have caused Ge loss Assuming repeatable anneal conditions. Following High Temp Anneals Only: 700 ºC loss is 33% 900 ºC loss is 50% Very low temperature anneal (375 ºC) prior to high temp. anneal greatly mitigates Ge loss. Following Very Low Temp Anneals (375 ºC) + High Temp Anneal: 700 ºC loss is 7% 900 ºC loss is ~ 0% Epion & J.O.B. Technologies,

8 Random RBS channel 30 kev Ge (5E3 GCIB dose) Random - Ge peak detail Counts As-GCIB'd VLTA+700ºC 700ºC VLTA+900ºC 900ºC 2.99E+6 Ge/cm 2 3.2E6 Ge/cm E6 Ge/cm 2 2.0E6 Ge/cm 2.47E6 Ge/cm Channel 375C then 900C anneal shows no Ge loss 900C alone shows 50% Ge loss Epion & J.O.B. Technologies,

9 J.O.B. Technologies (Strategic Marketing, Sales & Technology) Borland & Konkola, AIP, IIT-204 9

10 Borland & Konkola, IIT-204 SRP for As-implant um Ge-epi wafers after RTA annealing SRP for Sb-implant um Ge-epi wafers after RTA annealing SRP for P-implant and co-implant in um Ge-epi wafers after 625 o C RTA annealing SRP for P-implant and co-implant in um Ge-epi wafers after 900 o C RTA annealing 0

11 P=2E5 (625C & 900C & 950C) O,P CONCENTRATION (atoms/cc) Si,Ge INTENSITY (atom%) E+2 APIC Corp: Sample GEPLO-2 (P,O,Ge,Si) E+03 E+20 Ge-> Ge-> Si-> Si-> E+02 E+9 P O P E+0 E+8 O O E+00 E+7 E-0 E+6 E-02 E+5 E DEPTH (µm) Fig #2 C0ELD047_YR_22 Fig #06 #09 C0ELD047_YR_ C0ELD047_YR_2 Sample GEPL0-5 Sample (P,O,Ge,Si) GEPLO-2 GEPLO-4 (smooth (P,O,Ge,Si) area) 2/5/204 2/6/204 7/5/205 Kennel, Intel, ECS Oct 202 paper 324 Borland & Konkola, IIT-204

12 IEDM-202 Paper 23.3: YJ Lee of NDL on Full Low Temperature Microwave Processed Ge CMOS Achieving Diffusion-Less Junction and Ultrathin 7.5nm Ni Mono- Germanide. J.O.B. Technologies (Strategic Marketing, Sales & Technology) 2

13 Phos 5Ω/ 7/5/205 3 Mazzocchi et al., IEEE-RTP 2009

14 Thareja et al., Stanford, IEDM-200 ref 7/5/205 4

15 J.O.B. Technologies (Strategic Marketing, Sales & Technology) 5

16 Raman by WaferMasters J.O.B. Technologies (Strategic Marketing, Sales & Technology) 6 Raman by WaferMasters

17 Rs (Ω/ ) P-SEN-5E5 Sb-SEN-5E5 P-E6-LMA P-E6-RTA Sb-E6-RTA P-LASSE-09 P-TSMC Sb-Stanford As-SEN-5E5 Sn+P-Nissin-5E5 Sb-E6-LMA As-E6-RTA P-NDL P-LASSE-4 P-Stanford As-Stanford P-TSMC P-NDL P-LASSE P&As-Stanford Sb-Stanford E5/cm2 dose E6/cm2 dose Sb-RTA-melt Sb-JOB-RTA As-JOB-RTA P-RTA-melt Sb-JOB-LMA P-JOB-RTA P-JOB-LMA Depth (A) 7

18 Trumble, Bell Labs, 959 Stanford Sb-LMA Excico P-LMA As-LSA As-MLD IBM Sb-RTA 7/5/205 8

19 Blanket Ge-layer first then Ge-Fin etch Selective Ge-epi Fin IEDM-203 short course Borland: Localized Ge-LPE by Laser Melt Oct 2004 ECS: Ge-GCIB/Infusion (E7/cm2) June 203 IWJT: Ge-plasma implant (E7/cm2) Oct 204 ECS: Ge-beamline implant (5E6/cm2) 7/5/205 9

20 HF-vs-No HF Cleaning For Ge Infusion J.O.B. Technologies (Strategic Marketing, Sales & Technology)

21 Localized/Selective Ge & SiGe Formation By Liquid Phase Epitaxy (LPE) Using Ge+B Plasma Ion Implantation And Laser Melt Anealing IWJT June 6, 203 JOB Technology, Micron, Innovavent, Excico, KLA-Tencor, CNSE, EAG & UCLA Ge 3keV (~7nm) at E6/cm2 & E7/cm2 B2H6 500V (~7nm) at 4E5/cm2 & 4E6/cm2 Ge+B Plasma Implanted Wafers Provided by Micron Laser Melt Annealing Provided by Innovavent & Excico J.O.B. Technologies (Strategic Marketing, Sales & Technology) 2

22 Melt Depth (A) nm Ge-PAI Intel 308nm Ge-PAI 0pulses 308nm 55nm Excico Innovavent 55nm 0% Ge 55nm 55% Ge Ge=0% Ge=0% SHI-527nm Laser Power Level (J/cm2) 308nm 55% Ge 308nm 0% Ge

23 Excico-Therma-Wave (TW) BH500V/4E5 GEE6+BH4E5 GEE7+BH4E5 BH500V/4E GEE7+BH4E6 Dopant Activation threshold? TW a-ge J.O.B. Technologies (Strategic Marketing, Sales & Technology) Poly-Ge Melt threshold by TRR! Laser Power (J/cm2) LPE-Ge 23

24 B, C, O Concentration (at/cm3) Ge Arb units B, C, O Concentration (at/cm3) Ge Arb. Units B, C, O Concentration (at/cm3) Ge Arb. Units 0.0J/cm2.0J/cm2 2.5J/cm2.00E E E E E E+2.00E+20 2C 8O B+28Si 28Si+74Ge 0..00E+2.00E+20 2C 6O B+28Si 28Si+74Ge 0..00E+2.00E+20 2C 6O B+28Si 0 28Si+74Ge.00E E E E E E E E Depth (nm) Depth (nm) E Depth (nm) 0.00 J.O.B. Technologies (Strategic Marketing, Sales & Technology) 24

25 Mobility (cm 2 V - s - ) ALP Hall Analysis of 308nm Slot#4:Ge=E6+B=4E5 Slot#8: Ge=E7+B=4E >4x hole-mobility! Mobility JA4ED2- Ge=E7/cm2 + BH=4E6/cm2 Drift Ge=E6/cm2 + BH=4E5/cm Ge=0%+BH=4E6/cm Depth (Å) Borland et al., IWJT-203

26 Liquid Phase Epitaxy (LPE) Formation of Localized High Quality/Mobility Ge & SiGe by High Dose Ge-Implantation with Laser Melt Annealing for 0nm and 7nm Node Oct 6, 204 ECS Conference on SiGe & Ge Technology John Borland,2, Michiro Sugitani 3, Peter Oesterlin 4, Walt Johnson 5, Temel Buyuklimanli 6, Robert Hengstebeck 6, Ethan Kennon 7, Kevin Jones 7 & Abhijeet Joshi 8 JOB Technologies, Aiea, Hawaii 2 AIP, Honolulu, Hawaii 3 SEN, Shinagawa, Tokyo, Japan 4 Innovavent, Gottingen, Germany 5 KLA-Tencor, Milpitas, California 6 EAG, East Windsor, New Jersey 7 University of Florida, Gainsville, FL 8 Active Layer Parametrics, LA, CA

27 TW Ge=3keV/5E6 +Sb=3keV/3E5 Ge=3keV/5E6 +Sb=3keV/3E3 300ns Ge+Sb3E3 200ns Ge+Sb3E3 300ns Ge+Sb3E5 200ns Ge+Sb3E5 300ns Sb3E3 200ns Sb3E3 300ns Sb3E5 200ns Sb3E5 600ns Ge+Sb3E3 600ns Ge+Sb3E5 600ns Sb3E3 600ns Sb3E5 500 Sb=3keV/3E5 000 Sb=3keV/3E3 55nm laser Laser Power Level (J/cm2)

28 O,Si,Ge,Sb CONCENTRATION (atoms/cc) E+23 E+22 E+2 O Ge Sb Si Sb Si Si Sb+Ge 3E5/5E6 No Anneal Sb+Ge 3E5 LMA 4J 200ms Ge Sb 3E5 LMA 4J 200ms O E+20 E+9 O Ge E+8 E+7 Sb E+6 E DEPTH (nm) J.O.B. Technologies (Strategic Marketing, Sales & Technology) 28

29 Mobility[cm2/V-s] Avg. Drift Mobility Ge=00% % Ge Ge+Sb 3E3 4J/cm2 for 600ns Si=00% Sb 3E5 4J/cm2 for 600ns Ge+Sb 3E5 4J/cm2 for 600ns Ge+Sb 3E5 4J/cm2 for 200ns Ge=00% Ge=25% Ge=00% Si=00% 0 E+2 E+3 E+4 E+5 E+6 Sb Concentration Borland et al., ECS Oct B

30 IEDM-203 Stanford/Synopsys paper: 4%GeSnchannel for pmos & 00%Ge-channel nmos 7/5/205 30

31 Outline Introduction Experimentation 70nm Ge-epi/SiGe-buffer/Si P(00) wafer P, Sb and Sn Implantation at 5E5/cm2 P=4keV, Sb=keV & Sn=0keV P, Sn+P, Sb and Sn+Sb 308nm Excimer Laser Annealing J/cm2 Results Rs Dopant Activation SIMS Dopant Profiles XRD Strain-Ge Analysis Differential Hall Mobility Depth Profiles Summary J.O.B. Technologies (Strategic Marketing, Sales & Technology) 3

32 Concentration (/cm3) Half-Wafer Sn-Implant 5E5/cm2 Full Wafer P or Sb 5E5/cm2 Implant.00E+22.00E+2.00E+20.00E+9.00E+8.00E+7.00E+6.00E+5.00E+4.00E+3.00E Depth (nm) J.O.B. Technologies (Strategic Marketing, Sales & Technology) P/Sb in Ge Sb in c-ge kev 5E5 P in a-ge 4keV 5E5 P in c-ge 4keV 5E5 Sb in a-ge 4keV 5E5 Sb in c-ge 4keV 5E5 Sb in a-ge 7.2keV 5E5 Sb in c-ge 7.2keV 5E5 Sb in a-ge kev 5E5 Sn+P-SIMS, Sn=2.5% ~4.5E5/cm2 Sn+Sb-SIMS, Sn=4.5% 32 ~2.3E5/cm2 Maybe due to retrograde surface with Sb co-implant!

33 Half-Wafer Sn-Implant 5E5/cm2 Before Implant After Implant Before Implant After Implant J.O.B. Technologies (Strategic Marketing, Sales & Technology) 33

34 J.O.B. Technologies (Strategic Marketing, Sales & Technology) 34

35 IWJT-205 Paper S5-2 by Nishimura of Univ of Tokyo on Recent Progress of Junction Technology for Germanium CMOS. In Fig.4 below they used Raman analysis to quantify implant annealing damage recovery from the P=30keV/3E5 implant in to Ge-Cz wafers. They commented that even after high temperature annealing at 850 o C the Raman Ge peak did not recover to the reference Ge-Cz wafer level concluding there still remains some residual implant damage. Fig.5 shows the effects of P implant dose from E3/cm 2 to 3E5/cm 2 on resistivity and FWHM Raman Ge-peak with 600 o C 5 min SPC (solid phase crystallization) annealing and the critical P-implant dose is <2E4/cm 2 to be defect free after annealing. J.O.B. Technologies (Strategic Marketing, Sales & Technology) 35

36 Outline Introduction Issues with Ge n+ USJ Formation & High Dopant Activation Strain-Ge High Mobility Channel Material Experimentation 70nm Ge-epi/SiGe-buffer/Si P(00) wafer P, Sb and Sn Implantation 308nm Eximer Laser Annealing Results Rs Dopant Activation SIMS Dopant Profiles XRD Strain-Ge Analysis Differential Hall Mobility Depth Profiles Summary J.O.B. Technologies (Strategic Marketing, Sales & Technology) 36

37 Rs (ohms/sq) Implant Damage Acceptor Defects? P=5E5 P+Sn=5E5 Sb=5E5 Zaima, Nagoya U., ECS Oct 204, paper P7-772 Ge compressive strain by P+Sn? 00 Sb+Sn=5E5 0 P+Sn=400A P=400A Sb=260A J.O.B. Technologies (Strategic Marketing, Sales & Technology) P+Sn=400A P+Sn=450A P=450A P=460A Ge tensile strain by Sb? Sb=260A Sb=320A P+Sn=450A P=450A Sb=380A Laser Anneal Power (J/cm2) 37

38 B CONCENTRATION (atoms/cc) E+2 E+20 B E+9 E+8 AIP Ge 5e5 B No Anneal E+7 E+6 Carrier Concentration E DEPTH (µm) LD047_ym20 Sample GHC (B) all data Borland & Konkola, AIP, IIT-204

39 Rs (ohms/sq) Si-wafer Sb RTA 050C Sb Laser Melt Ge-Stanford P&As laser Ge-Excico P laser melt Semicon/West -204 Ultratech As-LSA Sb Laser Melt Ge-Stanford Sb laser melt Sb RTA 050C IIT-204 MWA P+Ge, P+Ge+C Ar/Xe+As-RTA Hiroshima & Nagoya Microwave 5min 750C 90min 850C 60min 050C 0min Laser Melt=3J Laser Melt=5J P-JOB/CNSE/LASSE no cap Sb-JOB/CNSE/LASSE no cap AIP Ge+oxide cap P at 625C P at 900C Sb-JOB/LASSE SiN cap P-JOB/LASSE SiN cap.00e+3.00e+4.00e+5.00e+6.00e+7 Phos Dose (/cm2) 39

40 Sb-melt solid solubility limit in Ge! P-melt solid solubility limit in Ge! N+ Xj P=398A Sn+P=387A Sb=256A Sn+Sb=389A J.O.B. Technologies (Strategic Marketing, Sales & Technology) 40

41 P-melt solid solubility limit in Ge! No Anneal=400A 0.6J/cm2=450A & Melt Depth=0A.0J/cm2=460A & Melt Depth=<00A.4J/cm2=450A & Melt Depth=250A J.O.B. Technologies (Strategic Marketing, Sales & Technology) 4

42 P-melt solid solubility limit in Ge! No Anneal=387A 0.6J/cm2=400A & Melt Depth=0A.0J/cm2=450A & Melt Depth=<00A.4J/cm2=450A & Melt Depth=280A.5J/cm2=800A & Melt Depth=625A J.O.B. Technologies (Strategic Marketing, Sales & Technology) 42

43 No Anneal=326A 0.6J/cm2=326A & Melt Depth=0A.0J/cm2=400A & Melt Depth=<00A.4J/cm2=350A & Melt Depth=280A.5J/cm2=740A & Melt depth=600a Sn=5E5/cm2 Sn=4E4/cm2 Sn solid solubility limit in Ge ~4-5E20/cm3 J.O.B. Technologies (Strategic Marketing, Sales & Technology) 43

44 Sb-melt solid solubility limit in Ge! No Anneal=260A 0.6J/cm2=270A & Melt Depth=<00A.0J/cm2=320A & Melt Depth=50A.4J/cm2=380A & Melt Depth=280A J.O.B. Technologies (Strategic Marketing, Sales & Technology) 44

45 Sb-melt solid solubility limit in Ge! No Anneal=389A 0.6J/cm2=420A & Melt Depth=0A.0J/cm2=450A & Melt Depth=280A.4J/cm2=680A & Melt Depth=550A J.O.B. Technologies (Strategic Marketing, Sales & Technology) 45

46 Sn solid solubility limit in Ge ~4-5E20/cm3 No Anneal=353A 0.6J/cm2=380A & Melt Depth=0A.0J/cm2=440A & Melt Depth=280A.4J/cm2=630A & Melt Depth=560A J.O.B. Technologies (Strategic Marketing, Sales & Technology) 46

47 P Sn Sheet Resistance P Sheet Resistance Sb Sn Sheet Resistance Sb Sheet Resistance 47

48 Rs (Ω/ ) P-SEN-5E5 Sb-SEN-5E5 Sn+P-Nissin-5E5 Sn+Sb-Nissin-5E5 Sb-E6-LMA As-E6-RTA P-NDL P-LASSE-4 P-Stanford As-Stanford As-SEN-5E5 P-Nissin-5E5 Sb-Nissin-5E5 P-E6-LMA P-E6-RTA Sb-E6-RTA P-LASSE-09 P-TSMC Sb-Stanford 000 P-FLA As-LSA P-This work Sn+P-This work Sb-RTA-melt 00 0 P-TSMC E5/cm2 dose Sb-This work E6/cm2 dose P-LASSE P&As-Stanford Sn+Sb-This work P-NDL Sb-Stanford Sb-JOB-RTA As-JOB-RTA P-RTA-melt Sb-JOB-LMA P-JOB-RTA P-JOB-LMA Depth (A) 48

49 Trumble, Bell Labs, 959 Stanford Sb-LMA Excico P-LMA JOB Sb-LMA As-LSA P-RTA As-MLD IBM Sb-RTA 7/5/205 49

50 JB+40 (Phos implant) Increasing Laser Power JB- JB-92 JB-74 JB-55 JB-36 JB-8 JB+00 JB+20 JB+38 JB+57 JB+76 J.O.B. Technologies (Strategic Marketing, Sales & 60Technology) Series Series Series Series Series Series Series Series Series

51 JE Increasing JE2+40 (Sb implant) JE2- JE2-92 JE2-74 JE2-55 JE2-36 JE2-8 JE2+00 JE2+20 JE2+38 JE J.O.B. Technologies (Strategic 5 Marketing, Sales & Laser Power 60 Technology) Series Series Series Series Series Series Series Series Series

52 JB-40 (Phos+Sn implants) 000 Series Increasing Laser Power JB-40- JB JB JB JB-40-8 JB JB JB JB J.O.B. Technologies (Strategic Marketing, Sales & 60Technology) JB JB Series Series Series Series Series Series Series Series

53 JE (Sb+Sn implants) Increasing Laser Power JE JE JE JE JE JE J.O.B. Technologies (Strategic Marketing, Sales & 60Technology) JE2-40- JE JE JE JE Series Series Series Series Series Series Series Series Series

54 cm2/v-s Bulk Trends Mobility Sn+Sb enhances electron mobility so degrades hole mobility? Sn+P degrades electron mobility so enhances hole mobility? P Sn Mobility P Mobility Sb Sn Mobility Sb Mobility J/cm2 54

55 cm2/v-s Layer Mobility Layer Mobility: Sb and Sn+Sb Sb.4, Measured Sb., Measured Sb Sn.6, Measured Sb Sn.4, Measured Sb Sn., Measured Depth (A) 55

56 See large variation in reported Ge electron & hole mobilities reported in the literature! Electron mobility Hole mobility H2 anneal Ge-Cz U of Tokyo IBM 50% SiGe p+fin B-JOB laser P or As Excico Sn+P Sb-JOB laser P-JOB laser P Sn+Sb Sn 7/5/205 56

57 Outline Introduction Experimentation Results Summary: Laser-LPC (Liquid Phase Crystallization) critical to achieve controlled n+ USJ down to sub-0nm with high dopant activation without diffusion. Best reported Ge n+ USJ activation level of E2/cm3 at 0nm is for Sb implant with laser-lpc Best reported Ge n+ USJ activation level of 3-5E20/cm3 at 0-40nm is for P implant with laser-lpc. Sn implant can be engineered to: Improve Electron Mobility by 2x and uniform depth with Sb implant n+ doping Is neutral to degrade Electron Mobility by 3x with P implant n+ doping. Next try Sn implant for Ge p+ USJ Hole Mobility Enhancement (B, BF2, B8, In, Ga) J.O.B. Technologies (Strategic Marketing, Sales & Technology) 57