Performance Comparison of Mineral Filled Olefins

Size: px
Start display at page:

Download "Performance Comparison of Mineral Filled Olefins"

Transcription

1 Performance Comparison of Mineral Filled Olefins Imerys Performance Additives, Maz Bolourchi Senior Manager, Polymer Applications

2 Outline Table of contents IMERYS Minerals in Plastics/Automotive Talc, Mica & Wollastonite Performances against Chopped Glass Fiber Screening Approach & Objectives Findings Trends/Relationships Case Studies Performance Comparison Conclusions Talc Mica Wollastonite 2

3 IMERYS Leading Global Supplier of Performance Minerals for Plastics 2015 Sales 4,087 million Energy Solutions & Specialties Filtration & Performance Additives Ceramic Materials High Resistance Minerals 3 Talc, Mica & Wollastonite

4 Imerys, Leading supplier of mineral products in : 3 Talc, 2 Wollastonite & 2 Mica mines 9 processing (milling, beneficiation, etc.) operations Large portfolio of: Purity, Particle Size & Morphology Laboratory in San Jose, CA. Processing Testing Analytical Product Stewardship Yellowstone, MT Argonaut, VT Penhorwood, ONT Mica Mines, Boucherville QC Kings Mountain, NC Wollastonite Mine, Oakhill, NY 4

5 Talc Properties & Structure Hydrated magnesium silicate: Mg 3 Si 4 O 10 (OH) 2 Naturally occurring Softest mineral; 1 on Mohs scale Platy crystalline structure Hydrophobic exterior; relatively inert Delaminating Exterior Hydroxyl group Exterior SiO 2 Layers 10 Å Contains other minerals/impurities (Chlorite, Dolomite, Magnesite, etc.) Talc Parameters: Purity Morphology Particle Size Macro-crystalline Micro-crystalline 5

6 Mica Properties & Structure Chemistry/Type Phlogopite & Muscovite Similar to Talc Si substitution with Al Interlayer ionic bond Ionic interlayer interaction; more difficult to delaminate Mohs hardness of 3 Morphology - Platy Delamination possible but more difficult than talc. Surface modification possible 6

7 Wollastonite Properties & Structure Chemistry Calcium Silicate (CaSiO 3 ) Naturally occurring white mineral Morphology: Acicular Mohs hardness = 4.5 Surface modification possible Si blue, O red, Ca - yellow 7

8 Processing Optimization (Compounding) Critical processing parameters include Extruder type & L/D Screw design & RPM Throughput; SME Feed location; side or upstream Processing temperature Resin & rheology Screen Pack Aggressive Mild Distributive Mixing Dispersive Mixing Distributive & Dispersive Mixing Processing parameters critical in achieving optimal end performance 8

9 Processing Optimization: Various Minerals 3500 Effect of Mineral & Process on Stiffness/Impact Balance Composition: 80% Hifax CA 387A (Reactor TPO), 20% Mineral by wt. Neat Resin Flex Modulus, MPa Notched Izod, kj/m2 CaCO3 - Supercoat Mica 150S Mica 325K HAR - H92 Nyglos 4W Chopped Glass Fiber Melt compound on 25mm co-rotating/intermeshing TSE (46:1, L/D) ISO test specimen prepared on Arburg 66T Injection molding

10 Processing Optimization: Various Minerals Effect of Process on Morphology and Stiffness 1742 MPa 2790 MPa 2977 MPa Chopped Glass Fiber Neat 1400 MPa 2050 MPa Nyglos 4W 1450 MPa 1800 MPa Mica 150S 10

11 11 Results: Performance Comparison Composition: 80% Hifax CA 387A (Reactor TPO), 20% Mineral by wt Neat Resin CaCO3, Super Coat Mica, 325HK Jetfine 3CW HAR H92 Mica,150S Flex Modulus, MPa Nyglos 4W Glass Fiber Base Resin GCC Mica Talc Wollastonite Chopped GF Neat Resin CaCO3, Super Coat Mica, 325HK Jetfine 3CW HAR H92 Mica,150S Notched Izod, kj/m2 Nyglos 4W Glass Fiber

12 Results: Performance Comparison g/10min Composition: 80% Hifax CA 387A (Reactor TPO), 20% Mineral by wt. Findings 15.4 Neat Resin 18.0 CaCO3, Super Coat Melt Flow, 230C/2.16kg Mica, 325HK Jetfine 3CW Base Resin GCC Mica Talc Wollastonite Chopped GF Superior attributes with Chopped GF in Modulus (Strength, HDT and Shrinkage) but inferior in other properties: Impact retention (both Notched Izod & Multiaxial Impact) Flow Anisotropic Warpage Surface finish/aesthetic Equipment wear HAR H92 Mica,150S Balance of Properties often Critical 17.7 Nyglos 4W 5.3 Glass Fiber 12

13 Screening Objectives/Approach Objectives Evaluate commercial Talc, Mica & Wollastonite grades in PP Copolymer at 20% by wt. loading Identify performance space, trends/relationships Approach Melt compound via 25mm co-rotating/intermeshing TSE (46:1, L/D) Screw Design Profile at 15kg/hr & 200/450 screw RPM, Atmospheric Vent Materials Resin: Braskem PP Copolymer # T16200Q4 Minerals: Talc (15 grades), Mica (10 grades) and Wollastonite (4 grades - neat & surface treated) 13

14 Test Results - Talc Macro-Crystalline Talc Micro-Crystalline Talc HAR T84 HAR H92 Jetfine 3CC JetFil 700C JetFil 625C JetFil T590 JetFil T290 Jetfine 3CW JetWhite 7C JetWhite 6C JetWhite 5C N 674-DT2 Nicron 554 Nicron 403 Silverline 002 Flex Modulus, MPa HAR T84 HAR H92 Jetfine 3CC JetFil 700C JetFil 625C JetFil T590 JetFil T290 Jetfine 3CW JetWhite 7C JetWhite 6C JetWhite 5C N 674-DT2 Nicron 554 Nicron 403 Silverline 002 Notched Izod, kj/m 2 2 µm 2 µm 0.8 µm 1.5 µm 2.2 µm 4.5 µm 8.5 µm 1.1 µm 2 µm 2.5 µm 3.9 µm 1.9 µm 3.3 µm 4.8 µm 12 µm 2 µm 2 µm 0.8 µm 1.5 µm 2.2 µm 4.5 µm 8.5 µm 1.1 µm 2 µm 2.5 µm 3.9 µm 1.9 µm 3.3 µm 4.8 µm 12 µm Composition: Braskem PP Copolymer & 20% Mineral by wt. Baseline Braskem PP Copolymer Fex modulus: 850 Mpa, Notched Izod No Break 14

15 15 Test Results - Talc Multiaxial Impact at 0ºC, 4.4 m/s (ISO 6603) Impact Rating Total Energy HAR T84 HAR H92 Jetfine 3CC JetFil 700C Jetfil 625C JetFil T590 JetFil T290 JetFine 3CW JetWhite 7C JetWhite 6C JetWhite 5C N674DT2 Nicron 554 Nicron 403 Silverline 002 Impact Rating & Total Energy (J) Impact Rating 3 Extended Ductile 2 Ductile 1 Semi - Ductile 0 Brittle Finer d50 psd = Superior Impact Retension Composition: Braskem PP Copolymer & 20% Mineral by wt.

16 16 Test Results - Talc HAR T84 HAR H92 Jetfine 3CC JetFil 700C JetFil 625C JetFil T590 JetFil T290 Jetfine 3CW JetWhite 7C JetWhite 6C JetWhite 5C N 674-DT2 Temeprature (C) Nicron 554 Nicron 403 Silverline 002 Heat Deflection Temperature at 0.45 psi Composition: Braskem PP Copolymer & 20% Mineral by wt.

17 Test Results - Talc 100 Brightness HAR T84 HAR H92 Jetfine 3CC CIE, L* JetFil 700C JetFil 625C JetFil T590 JetFil T290 Jetfine 3CW JetWhite 7C JetWhite 6C JetWhite 5C N 674-DT2 Nicron 554 Nicron 403 Silverline 002 Composition: Braskem PP Copolymer & 20% Mineral High Brightness Grades Talc Findings HAR Best reinforcing talc Particle size: Particle size results in Modulus & Impact retention; finer particles are generally better Purity influences Brightness ( Purity Brightness) Macro-crystalline generally superior in mechanicals vs. Micro-crystalline 17

18 18 Test Results - Mica Muscovite High Brightness Muscovite Phlogopite C-3000 WG 325 4K 325-G 500-C 250-L 325- HK 80-SF 200-S 150-S Flex Modulus, MPa Notched Izod, kj/m2 C-3000 WG 325 4K 325-G 500-C 250-L 325- HK 80-SF 200-S 150-S 25 µm 35 µm 45 µm 26 µm 32 µm 48 µm 25 µm 45 µm 55 µm 150 µm 25 µm 35 µm 45 µm 26 µm 32 µm 48 µm 25 µm 45 µm 55 µm 150 µm Composition: Braskem PP Copolymer & 20% Mineral Baseline Braskem PP Copolymer Fex modulus: 850 Mpa, Notched Izod No Break

19 Test Results - Mica Multiaxial Impact at 0 ºC, 4.4 m/s (ISO 6603) Impact Rating & Total Energy (J) Impact Rating Total Energy C-3000 Impact Rating 3 Extended Ductile 2 Ductile 1 Semi - Ductile 0 Brittle WG 325 4K 325-G 500-C 250-L Suzorite 325- HK All Mica grades exhibit Brittle Failure Suzorite 80-SF Suzorite 200-S Suzorite 80-SF Suzorite 150-S Composition: Braskem PP Copolymer & 20% Mineral 19

20 Test Results - Mica Heat Deflection Temperature at 0.45 psi 130 Temeprature (C) C-3000 WG 325 4K 325-G 500-C 250-L 325- HK 80-SF 200-S 150-S Composition: Braskem PP Copolymer & 20% Mineral Coarser Mica Grades yield Superior HDT 20

21 Test Results - Mica Brightness CIE, L* Higher Brightness Grades C-3000 WG 325 4K 325-G 500-C 250-L 325- HK 80-SF 200-S 150-S Composition: Braskem PP Copolymer & 20% Mineral Mica Findings Coarse grade, Mica 150-S best reinforcing (similar to HAR talc); both at 2200 MPa Effect of Particle size (opposite to talc): Particle size provides Modulus. Impact retention generally poor (killer variable) Purity influences Brightness ( Purity Brightness) Overall lower L* value than talc 21

22 Test Results - Wollastonite Flex Mod, MPa Notched Izod, kj/m ,097 2,063 Length: 63 µm Diameter: 7 µm Aspect Ratio: Nyglos 4W Nyglos 4W 26.4 Nyglos Length: 156 µm Diameter: 12 µm Aspect Ratio: 13 1,911 Nyglos Neat Surface Treated 1,809 Nyglos Nyglos 8 Length: 234 µm Diameter: 18 µm Aspect Ratio: 13 Nyglos 12 Length: 300 µm Diameter: 30 µm Aspect Ratio: 10 Neat Surface Treated Nyglos 20 Composition: Braskem PP Copolymer & 20% Mineral Baseline Braskem PP Copolymer Fex modulus: 850 Mpa, Notched Izod No Break 22

23 Test Results - Wollastonite Multiaxial Impact at 0 ºC, 4.4 m/s (ISO 6603) Impact Rating & Total Energy (J) Impact Rating 3 Extended Ductile 2 Ductile 1 Semi - Ductile 0 Brittle Impact Rating Total Energy Nyglos 4W Nyglos Nyglos Nyglos Brittle Failure; slightly better than Mica but inferior to Talc Composition: Braskem PP Copolymer & 20% Mineral 23

24 24 Test Results - Wollastonite Nyglos 4W (SF5) Nyglos (SF5) Nyglos (SF5) Temeprature (C) Nyglos (SF5) Heat Deflection Temperature at 0.45 psi Composition: Braskem PP Copolymer & 20% Mineral

25 Test Results - Wollastonite CIE, L* Brightness Neat Surface Treated Nyglos 4W Nyglos 8 Nyglos 12 Nyglos 20 Composition: Braskem PP Copolymer & 20% Mineral Wollastonite Findings Increase in reinforcement & impact strength with surface treatment ( by 10-19% & 50% respectively) Effect of aspect ratio (for surface treated grades) higher aspect ratio yields Modulus. Higher reinforcement ( 10%) compared to talc or mica (2450 vs Mpa) Impact decreases with increase in particle length/diameter (coarser products); overall inferior to talc Superior brightness Boost with surface treatment Finer grades overall better 25

26 26 Test Results - CLTE Neat Braskem HICP HAR T84 JetFine3CC JetWhite 6C JetWhite 5C JetFil T290 Suzorite 325-HK Suzorite 80-SF Suzorite 150-S Nyglos 4W Nyglos Nyglos CLTE (10^-6 C) Chopped GF CLTE of Talc, Mica, Wollastonite and Chopped Glass Fiber // Composition: Braskem PP Copolymer & 20% Mineral

27 Performance Comparison (Talc/Mica/Wollastonite/GF) Mineral selection/grade largely dependent on CTQ, end performance requirements along with price (overall cost to performance) Talc, generally mineral of choice if stiffness/impact balance is key; commonly used with olefins/automotive formulations Mica & Wollastonite more prevalently used with engineered resins (PA6, 6/6) Each mineral has its own unique strengths/weaknesses Performance Grid for 20% Mineral in 20MFI PP Copolymer Property Talc Mica Wollastonite Chopped GF Modulus/Stiffness ½ ++++ Impact Notched Izod Impact Multiaxial Impact Rheology Melt Flow Color/Brightness HDT ++½ ++½ Shrinkage ½ CLTE ½ Scratch Resistance ++½ Nucleation of PP Surface Treatment This Study Prior Study/Knowledge 27

28 Conclusions Various Talc, Mica, Wollastonite grades evaluated versus chopped glass fiber Process Optimization Critical to establish for each mineral Chopped Glass Fiber Highest reinforcement Best modulus/strength; workhorse in many applications in which impact is less critical Does have limitations/challenges (impact, flow, wear, surface aesthetic, etc.) Stiffness/Impact balance inferior to talc & Wollastonite Talc Excellent stiffness/impact balance Best performance with finer grades (Increase in stiffness/impact with lower psd) Color influenced by ore body & purity HAR for maximum stiffness & low shrinkage/clte Jetfine 3CW for optimum balance of stiffness/impact & impact ductility at -30 C Jetfine 3CC for optimum scratch resistance & stiffness/impact balance JetWhite for color sensitive high bright applications Nicron 674 for moderate reinforcement 28

29 Conclusions Mica High reinforcement/inferior impact retention Highest reinforcement with coarser grades (increase in stiffness with higher particle size) Impact considerably lower than talc or Wollastonite Grades available for maximum stiffness & high brightness Surface treatment possible (but not evaluated in study) Wollastonite Excellent reinforcement, highest brightness (exceeds talc/mica), impact inferior to talc; Best stiffness/impact with surface treated product Good flow & high brightness Surface treated Nyglos 4W for good reinforcement & impact retention Surface treated Nyglos 8, 12 and 20 for maximum reinforcement; some loss in impact 29

30 Thank you for your attention! To receive a copy of presentation slides, please contact: Maziyar.Bolourchi@imerys.com