几种土壤交换性酸测定方法的效果比较 (LY/T ) N S. (HJ ) NaAc (LY/T ) KCl. BaF 2 (K Θ SP = ) H + Al 3+ Al ~ 1.

Size: px
Start display at page:

Download "几种土壤交换性酸测定方法的效果比较 (LY/T ) N S. (HJ ) NaAc (LY/T ) KCl. BaF 2 (K Θ SP = ) H + Al 3+ Al ~ 1."

Transcription

1 土壤 (Soils), 2017, 49(6): DOI: /j.cnki.tr 几种土壤交换性酸测定方法的效果比较 ( ) KCl BaCl 2 NaAc KCl- (Triethanolamine TEA) BaCl 2 -TEA 4 5 BaCl 2 -TEA >KCl-TEA >NaAc >BaCl 2 >KCl BaCl 2 KCl NaAc KCl-TEA BaCl 2 -TEA BaCl 2 S153.4 A [1-3] SO 2 NO X N S [4-6] [7-8] [9-11] H + Al 3+ Al 3+ H + Al 3+ ph (KCl NaCl BaCl 2 MgCl 2 ) ph (NaAc KAc CuAc 2 ) [12] BaCl 2 - (Triethanolamine TEA) [13] KCl (LY/T ) (HJ ) BaCl 2 (HJ ) NaAc (LY/T ) KCl H + Al 3+ HJ BaCl 2 H + Al 3+ Al 3+ NaF F BaCl 2 Ba 2+ BaF 2 (K Θ SP = ) KCl K + H + Al 3+ [14] KCl ph % Masud [15] KCl ph cmol (+)/kg [13] KCl 1.3 ~ 1.7 (Xm ) (XDJK2016C191) (1987 ) zhongyili@swu.edu.cn

2 KCl BaCl 2 NaAc KCl-TEA BaCl 2 -TEA KCl 5.00 g 1 mm 1 mol/l KCl 250 ml 1 mol/l KCl 100 ml 250 ml 5 min CO mol/l NaOH BaCl g 1 mm 1 mol/l BaCl ml 1 mol/l BaCl ml 250 ml mol/l NaOH NaAc 5.00 g 1 mm 1 mol/l NaAc 250 ml 1 mol/l NaAc 100 ml 250 ml mol/l NaOH KCl-TEA 2.00 g 1 mm 100 ml 50 ml ph = mol/l KCl mol/l TEA 1 min 1 min 10 ml 50 ml mol/l HCl BaCl 2 -TEA 2.00 g 1 mm 100 ml 50 ml ph = mol/l BaCl mol/l TEA 1 min 1 min 10 ml 50 ml mol/l HCl 1.3 [16] ph ( ) - NaOH - HCl-NH 4 F - NaOH - NH 4 Ac - ( 1.. 5)- (cation exchange capacity CEC) NH 4 Ac - K + Na + NH 4 Ac - Ca 2+ Mg 2+ NH 4 Ac - (Z-5000) 1.4 KCl BaCl 2 NaAc c ( V1 V0) 土壤交换性酸 cmol( )kg 1000 m 10 V 1 NaOH (ml) V 0 NaOH (ml) c NaOH (mol/l) m (g) KCl-TEA BaCl 2 -TEA c ( V0 V1) 5 土壤交换性酸 cmol( )kg 1000 m 10 V 1 HCl (ml) V 0 HCl (ml) c HCl (mol/l) m (g) = K + + Na + + Ca 2+ + Mg 2+ (effective cation exchange capacity ECEC)= + (%)=/ ECEC Excel SPSS ph 6.5 ph 6.0 ph 4.1 4

3 ph > > > ( 1) K + Mg 2+ 3 Ca 2+ > Mg 2+ > K + > Na + ( 2) 18.9 cmol(+)/kg 1.82 cmol(+)/kg 3 CEC CEC CEC 3 表 1 供试土壤基本理化性质 Table 1 Basic properties of tested soils ph (g/kg) (g/kg) (g/kg) (g/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 表 2 供试土壤的交换性盐基离子含量 (cmol(+)/kg) Table 2 Contents of base cations of tested soils K + Na + Ca 2+ Mg 2+ CEC BaCl 2 -TEA >KCl-TEA > NaAc >BaCl 2 >KCl BaCl 2 KCl 5 BaCl 2 -TEA 7.89 cmol(+)/kg KCl-TEA 7.06 cmol(+)/kg NaAc 5.59 cmol(+)/kg BaCl 2 KCl 3.55 cmol(+)/kg 3.35 cmol(+)/kg Ba 2+ K + H + Al 3+ Ba 2+ K + BaCl 2 -TEA KCl-TEA NaAc CH 3 COO OH Na + H + BaCl 2 KCl H + Al 3+ BaCl 2 KCl ( P<0.05 ) Fig. 1 图 1 不同方法测得土壤交换性酸含量 Contents of soil exchangeable acidity measured by different methods

4 ph ph 5 BaCl 2 -TEA 6.02 cmol(+)/kg KCl-TEA 3.74 cmol (+)/kg NaAc 2.80 cmol(+)/kg BaCl 2 KCl 0.45 cmol (+)/kg 0.23 cmol(+)/kg ph 6.0 ph Al 3+ + Al(OH) 3 Al(OH) 2 Al 3+ H + NaAc KCl-TEA BaCl 2 -TEA BaCl 2 -TEA 15.2 cmol(+)/kg 14.1 cmol (+)/kg KCl 6.91 cmol(+)/kg 0.76 cmol(+)/kg 8 cmol(+)/kg 13 cmol(+)/kg 3.35 ~ 7.89 cmol(+)/kg BaCl 2 -TEA KCl-TEA TEA TEA TEA TEA BaCl 2 -TEA KCl-TEA ph 8.0 ph Al(OH) 4 TEA BaCl 2 -TEA KCl-TEA ( 1) BaCl 2 -TEA KCl-TEA NaAc CH 3 COO CEC (ECEC) ECEC ECEC ECEC ( 2) CEC 4 ECEC 3 CEC NH + 4 NH + 4 ECEC CEC ECEC CEC 4 NaAc KCl-TEA BaCl 2 -TEA ECEC CEC KCl BaCl 2 ECEC CEC 3 CEC ECEC CEC NaAc KCl-TEA BaCl 2 -TEA KCl BaCl 2 BaCl 2 KCl KCl H + Al 3+ KCl BaCl 2 KCl 1.1 ( ) 1.9 ( ) 1.1 ( ) 1.7 ( ) KCl [13] KCl 1.3 ~ 1.7 图 2 土壤 CEC 和不同方法测得土壤交换性酸后计算得到的土壤 ECEC Fig. 2 Soil CECs and calculated soil ECECs with data of soil exchangeable acidity

5 ECEC % ~ 84.9% 62.0% ~ 97.7% 10.7% ~ 20.9% 32.1% ~ 89.0% BaCl 2 -TEA <KCl-TEA < NaAc <BaCl 2 <KCl KCl > > > BaCl 2 -TEA > = > BaCl 2 ph ph ph<5.0 <30% ph 5.0 ~ % ~ 60% ph 5.5 ~ % ~ 80% ph 6.0 ~ % ~ 100% [17] 图 3 不同方法测得土壤交换性酸后计算得到的土壤盐基饱和度 Fig. 3 Soil base saturations calculated with data of soil exchangeable acidity ph ph % 2 Ca 2+ Mg 2+ 3 ph 5.4 ph 5.1 ph 30% BaCl 2 -TEA KCl-TEA BaCl 2 -TEA KCl-TEA ph ph 3 H + Al 3+ H + Al 3+ H + Al 3+ 5 BaCl 2 -TEA >KCl-TEA >NaAc >BaCl 2 >KCl BaCl 2 -TEA KCl-TEA NaAc CEC ECEC BaCl 2 KCl BaCl 2 KCl KCl 1.5 H + Al 3+

6 [1] Chen D, Lan Z, Hu S, et al. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification[j]. Soil Biology and Biochemistry, 2015, 89: [2]. [J]., 2015, 47(2): [3],,,. [J]., 2015, 47(4): [4] Schrijver A, Frenne P, Staelens J, et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development[j]. Global Change Biology, 2012, 18(3): [5] Liang L Z, Zhao X Q, Yi X Y, et al. Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China[J]. Soil Use and Management, 2013, 29(2): [6] Lu X K, Mao Q G, Gilliam F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[j]. Global Change Biology, 2014, 20(12): [7] Li L, Wu H, Gestel C, et al. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China[J]. Environmental Pollution, 2014, 188: [8] Watmough S A, Whitfield C J, Fenn M E. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada[J]. Science of The Total Environment, 2014, 493: 1 11 [9] Yang Y, Ji C, Ma W, et al. Significant soil acidification across northern China s grasslands during 1980s 2000s[J]. Global Change Biology, 2012, 18(7): [10] Zhou J, Xia F, Liu X, et al. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China[J]. Journal of Soils and Sediments, 2013, 14(2): [11] Martins A P, Costa S E, Anghinoni I, et al. Soil acidification and basic cation use efficiency in an integrated no-till crop livestock system under different grazing intensities[j]. Agriculture, Ecosystems and Environment, 2014, 195: [12] Pansu M, Gautheyrou J. Handbook of soil analysis-mineralogical, organic and inorganic methods[m]. New York: Springer, 2003: [13],,. [M]. :, 2008 [14],,,. [J]., 2014, 28(3): [15] Masud M M, Guo D, Li J, et al. Hydroxyl release by maize (Zea mays L.) roots under acidic conditions due to nitrate absorption and its potential to ameliorate an acidic Ultisol[J]. Journal of Soils and Sediments, 2014, 14(5): [16]. [M]. :, 1999 [17]. [M]. :, 2000 Comparison of Soil Exchangeable Acidities by Different Measured Methods LI Zhongyi, BAI Yingyan, CHENG Yongyi, LI Yan, YANG Jianhong (College of Resources and Environment, Southwest University, Chongqing , China) Abstract: The contents soil exchangeable acidity of purplish soil, yellow earth, red earth and latosol were measured respectively by the methods of KCl leaching, BaCl 2 leaching, NaAc leaching, KCl-TEA (Triethanolamine) extraction and BaCl 2 -TEA extraction in order to accurately measure the content of soil exchangeable acidity in acidified soil. The results showed that the measured content of soil exchangeable acidity followed the order of BaCl 2 -TEA extraction > KCl-TEA extraction > NaAc leaching > BaCl 2 leaching > KCl leaching. Among the five measurement methods, the methods of BaCl 2 leaching and KCl leaching are the two novel methods which could be used to measure more accurately the content of soil exchangeable acidity of acidified soil. Comparatively, the contents of soil exchangeable acidity measured by BaCl 2 -TEA extraction, KCl-TEA extraction and NaAc leaching were a bit higher due to the influence of soil organic acids and Al oxides, however, further studies should be conducted on the measurement of soil exchangeable acidity and its influential factors because of the lack of standard method to verify the current experimental results. Key words: Soil exchangeable acidity; BaCl 2 leaching method; ECEC