STUDIES ON SMALL IONIC DIFFUSIVITY CONCRETE

Size: px
Start display at page:

Download "STUDIES ON SMALL IONIC DIFFUSIVITY CONCRETE"

Transcription

1 319 STUDIES ON SMALL IONIC DIFFUSIVITY CONCRETE He Xingyang, 1 Chen Yimin, 1 Ma Baoguo, 2 Li Yongxin, 1 Zhang Hongtao, 1 and Zhang Wensheng 1 1 China Building Materials Academy, Beijing, 124, PRC 2 Wuhan University of Technology, Wuhan, 437, PRC Abstract Many results of systematic analyses of concrete deterioration in marine environment show that nearly all deteriorations are concerned with the ionic diffusion. In order to increase its life-serving, concrete materials in marine environment should satisfy the mechanics qualities required by structural design, but also be a kind of small-ionic-diffusivity concrete (SIDC). In this paper, one kind of SIDC had been manufactured by means of the compounding of mineral admixture and high effective water reducer. The results of experiments indicate that the addition of mineral admixture decreases greatly the speed of ionic diffusion. The effective chloride diffusion coefficient of the SIDC can be lowered two orders of magnitude compared to control concrete. Furthermore, the relative expansion ratio of concrete with the compound of fly ash and micro silicon is only 53.9% of that of control concrete in ASTM C112-95A at the 54th week. The composition and microstructure of SIDC had been studied in this paper. It is shown by tests that the addition of mineral admixture leads to the thinning of pore size of cement paste, reduction of unfavorable crystal phase and increase of chloride ion binding, which result in the improvement of anti-ion diffusion character of SIDC.

2 32 International Workshop on Sustainable Development and Concrete Technology 1. Introduction The engineering quality and theoretical study of marine and coastal concrete materials are the foundation to improve service life of the marine engineering projects as well as coastal buildings. Many results of systematic analyses of concrete deterioration under multiple corrosion-factor effect show that nearly all deteriorations are concerned with the ionic diffusion. Chloride diffusion and sulfate attack are without question two main deteriorating factors concerned with the ionic diffusion. The chloride-induced corrosion can cause significant deterioration of reinforced concrete structures, resulting costly repair [1]. On the other hand, in many regions of the world, soil and water contain adequate sulfate to cause deterioration of structure concrete [2]. For this reason, the development of high-performance concrete with capability of resisting chloride diffusion and sulfate attack has been the subject of research for many years. In order to enlarge its service life under multiple corrosion-factor effect, concrete materials should satisfy the physical mechanics qualities required by structural design, but also have a good resistance to all kinds of ions [3]. This is to say, it should be a kind of small-ionic-diffusivity concrete (SIDC). In former papers, mineral admixtures such as fly ash, slag, and silica fume had been incorporated into the mixes to increase concretes resistance to chloride diffusion or sulfate diffusion. However, the information on its influence on chloride diffusion and sulfate diffusion in concrete is scarce. In the present paper, the resistance to chloride diffusion and sulfate diffusion for different concrete mixes with and without mineral admixtures was studied. The composition, structure and the influence on durability of SIDC had been studied by means of SEM, MIP, etc.

3 He Xingyang et al Raw Materials and Experimental Procedure 2.1. Raw materials Cement used in this test was ASTM Type 1 portland cement (OPC) with a relative density of 3.15 and fineness of 35 m 2 /Kg. The loose density of silica fume adopted was.2 g/cm 3 with average size of.4 µm. The chemical admixture adopted in the study was FDN. The coarse aggregate used was crushed limestone with a maximum size of 2 mm. The fine aggregate used was natural river sand with a fineness modulus of 2.8. The compositions and specific surface area of cement and mineral materials were showed in Table 1. The spectrum of fly ash A and B were shown in Figs. 1 and 2. Table 1: Chemical component and specific surface area of cement and mineral admixtures Chemical BET surface Blaine specific SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO SO 3 R 2 O IL component area (m 2 /Kg) surface area (m 2 /Kg) Cement Fly ash A Fly ash B Slag / 43 Silica fume / Fig. 1: XRD spectrum of fly ash A Fig. 2: XRD spectrum of fly ash B

4 322 International Workshop on Sustainable Development and Concrete Technology 2.2. Experimental procedure The studies designed nine mixes. Details of mixes were showed in Table 2. Every mix contained nine 1*1*1-mm cubic specimens, three Φ1*1-mm cylindrical specimens, and three 75*75*28-mm prism specimens. Compressive tests were carried out on 1*1*1-mm cubic specimens at age of 7, 28, and 9 days. The chloride diffusion test was carried out according to the diffusion tank test [4]. Three cylindrical specimens were used to prepare Φ1*2-mm slice specimens for the chloride diffusion test by cutting out the central part of the specimens. The resistance to chloride diffusion was evaluated with the amount of chloride penetrating through concrete slice. The 75*75*28-mm specimens immersed in 5% Na 2 SO 4 solution were used to do the sulfate attack experiment. The expansion values of specimens are used to assess concretes resistance to sulfate attack according to ASTM C112-95A. The scanning electron microscope (SEM) image was observed by SX-4 SEM. Cumulative pore size distributions were obtained by mercury intrusion using an automatic scanning porosimetry (942) Table 2: Mixture of concrete Sample OPC Water Fly ash A Fly ash B Slag MS F-agg C-agg FDN A % B % C % D % E % F % G % H % I %

5 He Xingyang et al Experimental Results and Discussion 3.1. Compressive strength The compressive strengths of concrete at ages of 7, 28, and 9 days were shown in Fig. 3. It can be observed from the figure that there is some decrease in the early age strengths of concretes mixed with mineral admixtures. But at the age of 9 days, the compressive strengths of mixes with mineral admixture nearly reach the compressive strengths of the control mix (mix A) except mixes with the addition of 5% fly ash, even exceed that of the control mix. compressive strength(mpa) R7 R28 R9 A B C D E F G H I Fig. 3: Compressive strengths of concrete at various stages 3.2. Resistance to chloride diffusion The amounts of chloride penetrating through various concrete slices were shown in Figs As shown in Fig. 4, the chloride-ion concentrations of mix B and mix C are much lower than those of mix A during the test period of 1 year. Except the inclusion of fly ash A, all other ingredients in mix B and mix C and mix A are the same. This indicates that some amount of fly ash A in concrete can improve obviously the concrete resistance to chloride diffusion. Results shown in Fig. 5 indicated that some addition of fly ash B can also improve the resistance to chloride diffusion. But the effect of fly ash B is lower than that of fly ash A. It may be relate to high content of aluminum of fly ash A.

6 324 International Workshop on Sustainable Development and Concrete Technology Con. of Chloride ( mol) A: cont r ol B: 25% FA A C: 5% FA A 2 4 weeks 6 Fi g. 4 Compar i son of mi xes B, C and A Con. of Chloride (mol) B: 25% FA A D: 25% FA B E: 5% FA B 2 4 weeks 6 Fi g. 5 Compar i son of mi xes D, E and B Con. of Chloride (mol) B: 25% FA A F: 25% SL G: 5% SL 2 4 weeks 6 Fi g. 6 Compar i son of mi xes F, G and B Con. of Chloride (mol) B: 25% FA A H: 25% FA A+1% SF I : 25% FA A+5% SF 2 4 weeks 6 Fi g. 7 Compar i son of mi xes B, H and I Concentrations of chloride ions penetrated through species containing various additions of slag and fly ash A were shown in Fig. 6. As slag was added into the concrete, the chloride-ion concentrations decreased. It shows that addition of slag can improve concrete resistance to chloride diffusion. In the range of 25%-5% by mass of cement, the improvement of slag increases with the dosage of slag increasing. The influence of microsilica (MS) in combination with fly ash on chloride diffusion can be evaluated by comparing chloride-ion diffusion concentration of set H, I, and B, shown in Fig. 7. Fig. 7 indicates that the mixes resistance to chloride diffusion is improved by addition of microsilica, and this improvement is increased as more microsilica is incorporated. As shown in Figs. 4-7, the curve of chloride concentration became linear after a certain time about 33 weeks. That is to say, the chloride diffusion had reached a steady state at that time. According to Fick Rule, the diffusion coefficient of concrete

7 He Xingyang et al. 325 can be calculated in steady state [3]. The calculated diffusion coefficients of mixes were shown in Table 3. Table 3 indicates that the diffusion coefficients of mix B and D are, respectively, 7.7% and 11.1% of that of mix A, which means 25% addition of fly ash by mass of cement improves greatly resistance to chloride diffusion. As fly ash combined with microsilica, the improvement is more obvious. The diffusion coefficient of mix H is only.84% of that of mix A, reduced two orders of magnitude. Table 3 also shows that the improvement of slag isn t higher than that of fly ash. Table 3: Chloride diffusion coefficients Mix Linear equation of 33rd-54th week chloride concentration R 2 D eff 1-1 (cm 2 /s) A Y= X B Y= X C Y= X D Y= X E Y= X F Y= X G Y= X H Y= X I Y= X Resistance to sulfate attack In this study, the relative expansion values of all specimens immersed in 5% sulfate solution were measured for one year. In Table 4, the measured results indicate that 25% addition of fly ash A, fly ash B and slag by weight of cement all improve sulfate resistance of concrete. The improvement of slag is the best among three mineral admixtures, and the relative expansion value of mix F with 25% addition of slag is only 65.4% of the relative expansion value of mix A at the 54th week. As the dosage of admixtures reach 5% weight of cement, the improving effect of all mineral admixtures have a certain degree of decline. The mix with slag has the least decline among all mixes with 5% mineral admixture by weight of cement. The reason is

8 326 International Workshop on Sustainable Development and Concrete Technology maybe that the expansion of concrete is related to the strength of concrete at a certain degree. As the mixes have upper strength and same permeability, mixes of upper strength can t easily display their expansion relative to mixes of lower strength. Table 4: Expansion ratios of mixes under sulfate attack at 54th week A B C D E F G H I Expansion ratio (%) In addition, the addition of 25% of fly ash in combination with 5%-1% of microsilicon reduces greatly the relative expansion ratios. Mix H compounded with 25% of fly ash and 1% of microsilicon has the least expansion values at every measuring time in one year. At the 54th week, the relative expansion value of mix H is only 53.9% of the relative expansion value of mix A. It is necessary to point out that the mixes with the incorporation of fly ash and microsilicon also have upper resistance to chloride diffusion. It can be concluded that incorporation of combination of fly ash and microsilicon is one of the best ways to achieve a superior resistance to ion diffusion Analysis of micropore structure The volume of pores in hardened cement paste decreased greatly with the hydration of clinker. During the course, the structure of the paste becomes more and more dense; however, the various sizes of pores exist at all hydration ages, such as large spherical pores, capillary pores, micro pores and gel pores. The effect of large spherical pores and capillary pores on the strength and permeability of hardened cement paste is higher [5]. In this study, the incorporation of mineral admixture into mixes obviously improved the resistance to ion diffusion. To study the mechanism of the improvement, the mercury intrusion porosimeter test was carried out with samples from mix A and B at the age of 3 and 9 days. The results are shown in Figs. 8 and 9. In Fig. 8, it can be observed that the volume of pores whose diameters vary from 2 nanometers to 9 nanometers in sample B is lower than that in sample A at the age of 3 days. It

9 He Xingyang et al. 327 demonstrates that the addition of fly ash increases the pile compaction of cement particles and fly ash particles in mix B. In Fig. 9, with the hydration of clinker, we can see that the structure of the paste becomes more and more dense. Another observation is that the pore ratio and diameter in group b are lower than those in group A at the age of 9 days. The addition of fly ash thins the pore size of cement paste. It seems that the change of pore ratio and diameter caused by the addition of mineral admixtures leads to the improvement in the resistance to ion diffusion. 5 4 C 1C+.. 25FA A C+. 25FA A C cumulative intrusion,(ml/g) cumulative intrusion,(ml/g) Pore Diameter(micron) Pore Diameter(micron) Fig.8: MIP results for the different pastes at 3 days Fig.9: MIP results for pastes at 9 days 3.5. SEM analysis of hydrated structure and raw materials SEM images of hydrated structure Figs and Figs are, respectively, SEM images of pure cement and cement in combination with 25% fly ash A at the age of 9 days. It was shown in Figs that main hydrate productions of pure cement are C-S-H (gel) and a few Ca(OH) 2. From Figs. 1 and 12, it can be observed that they don t have obvious difference between micro structures of sample A and sample B except Fig.1: SEM images of Sample A(1 ) that there are some fly ash particles in various diameters in sample B and some of them had reacted with Ca(OH) 2. Fig. 13 shows the inner hydrate productions and outer hydrate productions of fly ash. The

10 328 International Workshop on Sustainable Development and Concrete Technology pozzolanic reaction increases the permeability of concrete and decreases the content of unfavorable crystal phase. What s more, the second hydration reaction improves the bond of particles. Especially, the decrease in the content of unfavorable crystal phase directly reduce reagent of sulfate attack. All of those are helpful to improve the resistance of concrete with mineral admixture to ion diffusion. Fig. 14 is SEM image of slice specimen of sample B, which was taken after the chloride diffusion test. In Fig. 14, it s demonstrated that C-A-H had reacted with chloride ion and formed Friedel salt (chloroaluminate crystals). The chloride had been bound into hydrate productions, which decreased the pace of chloride ion diffusion. It is maybe the reason why the improvement of fly ash A in the resistance to chloride ion diffusion is better than that of fly ash B. Fig.11: CSH and Ca(OH) 2 in sample A (1 ) Fig.12: SEM images of sample B (1 ) Fig. 13: Hydrating surface of fly ash Fig. 14: Micrograph of chloroaluminate particle in sample B (2 ) crystals (68 )

11 He Xingyang et al. 329 Fig.15: Air pores and absorption products Fig.16: Inner structure of fly ash on the surface of fly ash particle (18 ) particle (7 ) SEM images of fly ash In the current paper, the addition of fly ash obviously improved the resistance to chloride ion diffusion. The effect of fly ash is even better than that of slag. To study the mechanism of the phenomena, the SEM test was carried out with the microstructure of fly ash A. Figs are SEM images of fly ash A. It s demonstrated in Figs that the particles of fly ash are mostly spherical particles and have complex inner surface structure. That BET surface area of fly ash is far larger than that of cement (in Table 1) also proves that fly ash has complex inner surface structure. In Fig. 8, it s shown that much mercury was remained in concrete in MIP test. It also testifies that there are many non-connected pores in fly ash. The complex inner surface and non-connected pores have the function of absorbing chloride ion. It s helpful to decrease the speed of chloride ion diffusion. 4. Conclusions The following conclusions could be obtained based on the test results of this study: The addition of mineral admixtures decreases the compressive strengths of concrete at the early age. But at the age of 9 days, the compressive strengths of mixes with mineral admixture nearly reach that of the control mix, even exceed that of the control mix.

12 33 International Workshop on Sustainable Development and Concrete Technology The additions of mineral admixtures such as fly ash, slag and microsilicon, improve greatly the concrete resistance to ion diffusion. Especially, the addition of 25% fly ash in combination with 1% microsilicon by weight of cement can reduce the chloride diffusion coefficient two orders of magnitude compared to control concrete, and also decrease the relative expansion ratio to 53.9% of control concrete in ASTM C112-95A. It can be concluded that incorporation of combination of fly ash and microsilicon is one of the best ways to achieve a superior resistance to ion diffusion. The addition of mineral admixtures leads to the thinning of pore size of cement paste, compact of hydration productions phase and reduction of unfavorable crystal phase. All of those result in the increase of the resistance to ion diffusion. The improvement of fly ash in the resistance to chloride diffusion is better than that of slag, while the improvement of slag in the resistance to sulfate diffusion is better than that of fly ash. The inner surface structure and the non-connected pores of fly ash have the function of absorbing chloride ion, which is helpful to decrease the speed of chloride ion diffusion. C-A-H can react with chloride ion and form Friedel salt (chloroaluminate crystals). It is maybe the reason why the improvement of fly ash A in the resistance to chloride ion diffusion is better than that of fly ash B. Acknowledgments The authors gratefully acknowledge the financial support of National 973 Plan (21).

13 He Xingyang et al. 331 References 1. Berke, N.S., D.W. Pfeifer, and T.G. Weil. Protection Against Chloride-Induced Corrosion. Concrete International 1(12), December 1988, pp Metha, P.K. Effect of Fly Ash Composition on Sulfate Resistance of Cement. ACI Materials Journal 83(6), November-December 1986, pp He Xingyang. Research on small ionic Diffusivity Concrete. Dissertation, Wuhan University of Technology, Wuhan, 21 (in Chinese). 4. Zongjin Li, Jun Peng, and Baoguo Ma. Investigation Chloride Diffusion for High-Performance Concrete Containing Fly Ash, Micro silica and Chemical Admixtures. ACI Materials Journal 96(3), May-June 1999, pp Powers, T.C., and T.L. Brownyand. Studies of physical properties of hardened portland cement paste (nine parts). Proceedings ACI, Vol. 43, October 1946.

IMPROVEMENT OF CONCRETE DURABILITY BY COMPLEX MINERAL SUPER-FINE POWDER

IMPROVEMENT OF CONCRETE DURABILITY BY COMPLEX MINERAL SUPER-FINE POWDER 277 IMPROVEMENT OF CONCRETE DURABILITY BY COMPLEX MINERAL SUPER-FINE POWDER Chen Han-bin, Chen Jian-xiong, Xiao Fei, and Cui Hong-ta College of Material Science, Chongqing University, Chongqing, PRC Abstract

More information

MICROSTRUCTURE OF LONG TERM MARINE IMMERGED ANTI-WASHOUT CONCRETE

MICROSTRUCTURE OF LONG TERM MARINE IMMERGED ANTI-WASHOUT CONCRETE MICROSTRUCTURE OF LONG TERM MARINE IMMERGED ANTI-WASHOUT CONCRETE Shaowei Yang and Hengjing Ba School of Civil Engineering, Harbin Institute of Technology, Harbin, China Abstract In this contribution,

More information

Combination of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concretes

Combination of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concretes Combination of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concretes M. Collepardi, J.J. Ogoumah Olagot, R. Troli, F. Simonelli, S. Collepardi Enco, Engineering

More information

Comparison of Properties of Fresh and Hardened Concrete Containing Finely Ground Glass Powder, Fly Ash, or Silica Fume

Comparison of Properties of Fresh and Hardened Concrete Containing Finely Ground Glass Powder, Fly Ash, or Silica Fume Article Comparison of Properties of Fresh and Hardened Concrete Containing Finely Ground Glass Powder, Fly Ash, or Silica Fume Rungrawee Wattanapornprom a, and Boonchai Stitmannaithum b Faculty of Engineering,

More information

SULFATE AND CHLORIDE RESISTANCE PROPERTIES OF PORTLAND CEMENT BLENDS

SULFATE AND CHLORIDE RESISTANCE PROPERTIES OF PORTLAND CEMENT BLENDS Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) SULFATE AND CHLORIDE

More information

LECTURE NO. 10 & 11 (Part II) MINERAL ADMIXTURES

LECTURE NO. 10 & 11 (Part II) MINERAL ADMIXTURES Objectives: LECTURE NO. 10 & 11 (Part II) MINERAL ADMIXTURES To introduce the mineral admixtures By: Dr. Shamshad Ahmad To explain in detail fly ash and silica fume used as mineral admixtures INTRODUCTION

More information

Concrete Deterioration Caused by Sulfuric Acid Attack

Concrete Deterioration Caused by Sulfuric Acid Attack 1DBMC International Conférence On Durability of Building Materials and Components LYON [France] 17-2 April 25 Concrete Deterioration Caused by Sulfuric Acid Attack K. Kawai, S. Yamaji, T. Shinmi Department

More information

IMPROVING SULFATE RESISTANCE OF MORTARS PRODUCED WITH SANDS CONTAMINATED BY NATURAL SULFATE

IMPROVING SULFATE RESISTANCE OF MORTARS PRODUCED WITH SANDS CONTAMINATED BY NATURAL SULFATE International RILEM Conference on Material Science MATSCI, Aachen 2010 Vol. III, AdIPoC 231 IMPROVING SULFATE RESISTANCE OF MORTARS PRODUCED WITH SANDS CONTAMINATED BY NATURAL SULFATE H. N. Atahan, D.

More information

BLENDED CEMENT IS A BAD RECOMMENDATION FOR MAGNESIUM SULFATE ATTACK

BLENDED CEMENT IS A BAD RECOMMENDATION FOR MAGNESIUM SULFATE ATTACK - October 8, Nanjing, China BLENDED CEMENT IS A BAD RECOMMENDATION FOR MAGNESIUM SULFATE ATTACK Ahmed M. Diab, Abd Elwahab M.Awad, Hafez E. Elyamany and Abd Elmoty M. Abd Elmoty Structural Engineering

More information

Study on durability of concrete by using accelerated chloride migration test

Study on durability of concrete by using accelerated chloride migration test Study on durability of concrete by using accelerated chloride migration test * Shih-Wei Cho 1) and Chung-Chia Yang 2) 1) Department of Architecture, China University of Science and Technology, Taipei,

More information

D DAVID PUBLISHING. Effects of Nano Silica, Micro Silica, Fly Ash and Bottom Ash on Compressive Strength of Concrete. 1.

D DAVID PUBLISHING. Effects of Nano Silica, Micro Silica, Fly Ash and Bottom Ash on Compressive Strength of Concrete. 1. Journal of Civil Engineering and Architecture 9 (215) 1146-1152 doi: 1.17265/1934-7359/215.1.2 D DAVID PUBLISHING Effects of Nano Silica, Micro Silica, Fly Ash and Bottom Ash on Compressive Strength of

More information

CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS

CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS 45 CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS 3.1 GENERAL In the present investigation, it was planned to cast M40 & M50 grade concrete with and without supplementary cementitious material such

More information

Influences of CNT replacement on strengths and porosities of cement-silica fume mortars

Influences of CNT replacement on strengths and porosities of cement-silica fume mortars Influences of CNT replacement on strengths and porosities of cement-silica fume mortars *Sungwoo Oh 1), Kyeong Seok Oh 2), Young-keun Cho 3), and Sang Hwa Jung 4) 1), 2), 3), 4) Construction Technology

More information

Effect of a MgO-CaO Composed Expansive Agent on the Properties of high performance concrete

Effect of a MgO-CaO Composed Expansive Agent on the Properties of high performance concrete Effect of a MgO-CaO Composed Expansive Agent on the Properties of high performance concrete J.P. Liu 1, Q. Tian 1, Y.J. Wang 1, S.Z. Zhang 1, F. Guo 1, C.W. Miao 1 State key Laboratory of High performance

More information

EFFECT OF FREEZE-THAW DAMAGE ON CONCRETE MECHANICAL PROPERTIES

EFFECT OF FREEZE-THAW DAMAGE ON CONCRETE MECHANICAL PROPERTIES EFFECT OF FREEZE-THAW DAMAGE ON CONCRETE MECHANICAL PROPERTIES Yanxia Liu (1), Gaixin Chen (1), Guojin Ji (1), Xiangzhi Kong (1), Lintao Ma (1) (1) State Key Laboratory of Simulation and Regulation of

More information

INVESTIGATION INTO THE USE OF MICROSILICA AND FLY ASH IN SELF COMPACTING CONCRETE

INVESTIGATION INTO THE USE OF MICROSILICA AND FLY ASH IN SELF COMPACTING CONCRETE www.arpapress.com/volumes/vol24issue2/ijrras_24_2_03.pdf INVESTIGATION INTO THE USE OF MICROSILICA AND FLY ASH IN SELF COMPACTING CONCRETE Victor Ajileye Faseyemi Technical Manager Al Andalus Factory for

More information

Hydration and Hardness Features of Green Concrete

Hydration and Hardness Features of Green Concrete Hydration and Hardness Features of Green Concrete Sun Wen-biao Department of Safety Engineering Henan Institute of Engineering Zhengzhou, China ABSTRACT Green cement that contained about 7 percent of slag

More information

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012 Journal of the Korea Concrete Institute Vol.16 No.1, pp.13~138, February, 24 today s construction industry. Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 112 Nam-Shik Ahn 1)* Dept.

More information

Supplementary Cementitious Materials (SCMs) Cement Hydration: 3/29/2017. SCMs effect on hydration. Hydration Schematic

Supplementary Cementitious Materials (SCMs) Cement Hydration: 3/29/2017. SCMs effect on hydration. Hydration Schematic Supplementary Cementitious Materials (SCMs) Ohio Precast Concrete Association March 2017 Meeting Jay Whitt Lehigh Cement Technical Services Engineer Supplementary Cementitious Materials (SCMs) Cement Hydration:

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.7, pp 340-344, 2015 Preliminary Study on the Electrical Resistance and Capillary Absorption of Nano SiO 2 in High

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April ISSN International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-218 1197 Effects of Sulphate in sea water on mechanical strength of concrete under various environmental conditions

More information

Subject Index C , 16 C , 12 C , 110 C , , 32

Subject Index C , 16 C , 12 C , 110 C , , 32 STP897-EB/Jan. 1986 Subject Index A Admixtures (see also Fly ash; Limestone; Silica fume; Slags) accelerating, 109 chemical, 106-127 mineral, 106-143 compressive strength, 115, 116, 118, 120 drying shrinkage,

More information

An Experimental Investigation on Properties of Concrete by Using Activated Flyash

An Experimental Investigation on Properties of Concrete by Using Activated Flyash An Experimental Investigation on Properties of Concrete by Using Activated Flyash P. Gopalsamy 1, E. Poornima 2, P. Karthik 3 1, 2, 3 Department of Civil Engineering, MAMCET, Trichy, Tamilnadu, India-621105

More information

PROPERIES OF BINDER SYSTEMS CONTAINING CEMENT, FLY ASH AND LIMESTONE POWDER. Krittiya Kaewmanee 1. Somnuk Tangtermsirikul 2

PROPERIES OF BINDER SYSTEMS CONTAINING CEMENT, FLY ASH AND LIMESTONE POWDER. Krittiya Kaewmanee 1. Somnuk Tangtermsirikul 2 1 2 PROPERIES OF BINDER SYSTEMS CONTAINING CEMENT, FLY ASH AND LIMESTONE POWDER 3 4 5 Krittiya Kaewmanee 1 Somnuk Tangtermsirikul 2 6 7 8 9 11 12 1 Graduate student, School of Civil Engineering and Technology,

More information

Utilization of micro silica as partial replacement of OPC & SRC in concrete

Utilization of micro silica as partial replacement of OPC & SRC in concrete International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 3(March 2014), PP.67-73 Utilization of micro silica as partial replacement of

More information

Concrete. Chapter 11 Durability of Concrete & Mix Design. Materials of Construction-Concrete 1. Wikipedia.org

Concrete. Chapter 11 Durability of Concrete & Mix Design. Materials of Construction-Concrete 1. Wikipedia.org Wikipedia.org Concrete Chapter 11 Durability of Concrete & Mix Design Materials of Construction-Concrete 1 Durability of hardened concrete Materials of Construction-Concrete 2 Leaching and efflorescence

More information

Qingke Nie 1 Changjun Zhou 2 Huawei Li 1 Xiang Shu 3 Baoshan Huang 3. Hebei Research Inst. of Construction & Geotechnical Investigation Co., Ltd.

Qingke Nie 1 Changjun Zhou 2 Huawei Li 1 Xiang Shu 3 Baoshan Huang 3. Hebei Research Inst. of Construction & Geotechnical Investigation Co., Ltd. Qingke Nie 1 Changjun Zhou 2 Huawei Li 1 Xiang Shu 3 Baoshan Huang 3 3 Hebei Research Inst. of Construction & Geotechnical Investigation Co., Ltd. 3 Harbin Institute of Technology 3 The University of Tennessee,

More information

Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage

Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage P. Arjunan 1, M. R. Silsbee 2, and D. M. Roy 2, 1 Custom Building Products, 6515, Salt Lake Ave,

More information

Influence of Nano-Silica Particles on Mechanical Properties and Permeability of Concrete

Influence of Nano-Silica Particles on Mechanical Properties and Permeability of Concrete Influence of Nano-Silica Particles on Mechanical Properties and Permeability of Concrete Mostafa.Khanzadi 1 Mohsen.Tadayon 2 Hamed.Sepehri and Mohammad.Sepehri 4 1 Assistant professor, Department of Civil

More information

Journal of Engineering Sciences, Assiut University, Vol. 34, No. 4, pp , July 2006

Journal of Engineering Sciences, Assiut University, Vol. 34, No. 4, pp , July 2006 Journal of Engineering Sciences, Assiut University, Vol. 34, No. 4, pp. 1061-1085, July 2006 COMPRESSIVE STRENGTH AND DURABILITY OF CEMENT CONCRETE CONTAINING ALKALI WASTES OF OIL AND CELLULOSE PAPER INDUSTRIES

More information

â â Èß º º μ μ πß π Õπ μ Use of Waste Ash from Agricultural by-products in Concrete Work

â â Èß º º μ μ πß π Õπ μ Use of Waste Ash from Agricultural by-products in Concrete Work RMUTP Research Journal, Vol. 2, No. 1, March 2008 49 â â Èß º º μ μ πß π Õπ μ Use of Waste Ash from Agricultural by-products in Concrete Work ß âõπ 1 * ª π ª 2 1 π «Õßπ ºπ. æ π. 10300 2» μ å «« μ å À «Õπ

More information

Influence of Carbonation on the Chloride Diffusion in Concrete

Influence of Carbonation on the Chloride Diffusion in Concrete Influence of Carbonation on the Chloride Diffusion in Concrete Sang-Hwa Jung 1,a, Young-Jun Choi 1,b, Bong-Chun Lee 1,c 1 Construction Material Research Center, Korea Institute of Construction Materials,

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 EFFECT OF SUPPLEMENTARY CEMENTITIOUS MATERIALS ON THE RESISTANCE OF MORTAR TO PHYSICAL SULFATE SALT ATTACK Semion Zhutovsky University of Toronto, Canada R. Douglas

More information

Advances in Engineering Research, volume 103 Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016)

Advances in Engineering Research, volume 103 Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016) Advances in Engineering Research, volume 103 Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016) Effects of Recycled Coarse Aggregate Reinforcing Treated

More information

STRENGTH AND SORPTIVITY OF CONCRETE USING FLY ASH AND SILPOZZ IN MARINE ENVIRONMENT

STRENGTH AND SORPTIVITY OF CONCRETE USING FLY ASH AND SILPOZZ IN MARINE ENVIRONMENT Journal of Engineering Science and Technology Vol. 13, No. 12 (2018) 4310-4325 School of Engineering, Taylor s University STRENGTH AND SORPTIVITY OF CONCRETE USING FLY ASH AND SILPOZZ IN MARINE ENVIRONMENT

More information

THE INFLUENCE OF TRIETANOLAMINE (TEA) ON CHARACTERISTICS OF FRESH AND HARDENED MORTARS CONTAINING LIMESTONE POWDER

THE INFLUENCE OF TRIETANOLAMINE (TEA) ON CHARACTERISTICS OF FRESH AND HARDENED MORTARS CONTAINING LIMESTONE POWDER NATURA MONTENEGRINA, Podgorica, 9(3):867-881 THE INFLUENCE OF TRIETANOLAMINE (TEA) ON CHARACTERISTICS OF FRESH AND HARDENED MORTARS CONTAINING LIMESTONE POWDER Jozefita MARKU*, Vaso KOZETA**, Caja SHQIPONJA

More information

Pozzolanic reaction of glass powder and its influences on concrete properties

Pozzolanic reaction of glass powder and its influences on concrete properties Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 214 Pozzolanic reaction of glass powder and its influences on concrete properties Hongjian

More information

Time-Dependent Chloride Binding Capacity of Various Types of Cement Pastes

Time-Dependent Chloride Binding Capacity of Various Types of Cement Pastes ScienceAsia 30 (2004): 127-134 Time-Dependent Chloride Binding Capacity of Various Types of Cement Pastes Taweechai Sumranwanich a and Somnuk Tangtermsirikul a, * a School of Building Facilities and Civil

More information

Open Access Performance of Glass Concrete Subjected to Freeze-Thaw Cycling

Open Access Performance of Glass Concrete Subjected to Freeze-Thaw Cycling Send Orders of Reprints at reprints@benthamscience.org 392 The Open Construction and Building Technology Journal, 212, 6, 392-397 Open Access Performance of Glass Concrete Subjected to Freeze-Thaw Cycling

More information

MICROSTRUCTURE AND SHRINKAGE BEHAVIOR OF MASSIVE CONCRETE CONTAINING PFBC COAL ASH

MICROSTRUCTURE AND SHRINKAGE BEHAVIOR OF MASSIVE CONCRETE CONTAINING PFBC COAL ASH 8 - November 24, Barcelona, Spain MICROSTRUCTURE AND SHRINKAGE BEHAVIOR OF MASSIVE CONCRETE CONTAINING PFBC COAL ASH A. Nakashita (), S. Kondo (2), I. Maruyama (2) and R. Sato (2) () CHUGOKU ELECTRIC POWER

More information

Effect of application timing of silicate-based surface penetrants on the mass transport properties of concrete

Effect of application timing of silicate-based surface penetrants on the mass transport properties of concrete Effect of application timing of silicate-based surface penetrants on the mass transport properties of concrete Nozomu Someya 1* and Yoshitaka Kato 2 1 Department of Civil Engineering, Graduate School of

More information

Durability of Marine Concrete with Mineral Admixture and Marine Aquatic Organism Layer

Durability of Marine Concrete with Mineral Admixture and Marine Aquatic Organism Layer Durability of Marine Concrete with Mineral Admixture and Marine Aquatic Organism Layer Amry Dasar 1, Hidenori HAMADA 1, Yasutaka SAGAWA 1 and Takanori IKEDA 2 1 Kyushu University, Japan 2 Maeda Corporation,

More information

The cementitious binder derived with fluorogypsum and low quality of fly ash

The cementitious binder derived with fluorogypsum and low quality of fly ash Cement and Concrete Research 30 (2000) 275 280 The cementitious binder derived with fluorogypsum and low quality of fly ash Peiyu Yan a, *, Wenyan Yang b a Department of Civil Engineering, Tsinghua University,

More information

Effect of wheat straw ash on mechanical properties of autoclaved mortar

Effect of wheat straw ash on mechanical properties of autoclaved mortar Cement and Concrete Research 32 (2002) 859 863 Effect of wheat straw ash on mechanical properties of autoclaved mortar Nabil M. Al-Akhras*, Bilal A. Abu-Alfoul Civil Engineering Department, Jordan University

More information

CARBONATION OF MEDIUM STRENGTH SCC

CARBONATION OF MEDIUM STRENGTH SCC SCC 9-China, June 5-7 9, Beijing, China CARBONATION OF MEDIUM STRENGTH SCC Youjun Xie (1),Kunlin Ma (1,) and Guangcheng Long (1) (1) Civil Engineering and Architecture College, Central South University,

More information

Sustainable Cement-Gypsum Composite with Reduced Ettringite Expansion

Sustainable Cement-Gypsum Composite with Reduced Ettringite Expansion Sustainable Cement-Gypsum Composite with Reduced Ettringite Expansion Agnieszka J Klemm 1, Piotr Konca 2, and Piotr Klemm 2 1 School of Built and Natural Environment, Glasgow Caledonian University, 7 Cowcaddens

More information

ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 9, NO. 5 (2008) PAGES STUDIES ON ACID RESISTANCE OF TERNARY BLENDED CONCRETE

ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 9, NO. 5 (2008) PAGES STUDIES ON ACID RESISTANCE OF TERNARY BLENDED CONCRETE ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 9, NO. (8) PAGES 473-486 STUDIES ON ACID RESISTANCE OF TERNARY BLENDED CONCRETE P. Murthi * and V. Sivakumar Kongu Engineering College, Perundurai,

More information

Durability Properties of High Performance Fiber Reinforced Cementitious Composites Incorporating High Volumes of Fly Ash

Durability Properties of High Performance Fiber Reinforced Cementitious Composites Incorporating High Volumes of Fly Ash Proceedings of the EUROCOALASH 2012 Conference, Thessaloniki Greece, September 25-27 2012 http:// www.evipar.org/ Durability Properties of High Performance Fiber Reinforced Cementitious Composites Incorporating

More information

PERFORMANCE AND COMPATABILITY OF PERMEABILITY REDUCING AND OTHER CHEMICAL ADMIXTURES IN AUSTRALIAN CONCRETES

PERFORMANCE AND COMPATABILITY OF PERMEABILITY REDUCING AND OTHER CHEMICAL ADMIXTURES IN AUSTRALIAN CONCRETES PERFORMANCE AND COMPATABILITY OF PERMEABILITY REDUCING AND OTHER CHEMICAL ADMIXTURES IN AUSTRALIAN CONCRETES by Robert L Munn, Gary Kao, Zhen-Tian Chang Synopsis: A substantial research program has been

More information

Experimental Investigation to Study Effect of Polyester Fibre on Durability of HVFA Concrete through RCPT Method

Experimental Investigation to Study Effect of Polyester Fibre on Durability of HVFA Concrete through RCPT Method IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 6 (June. 2013), V2 PP 22-27 Experimental Investigation to Study Effect of Polyester Fibre on Durability of HVFA

More information

Effect of Different Supplementary Cementitious Material on the Microstructure and its Resistance Against Chloride Penetration of Concrete

Effect of Different Supplementary Cementitious Material on the Microstructure and its Resistance Against Chloride Penetration of Concrete Proceedings Advanced Materials for Construction of Bridges, Buildings, and Other Structures III Engineering Conferences International Year 2003 Effect of Different Supplementary Cementitious Material on

More information

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete CIVL 1112 Contrete Introduction from CIVL 1101 1/10 Concrete is an artificial conglomerate stone made essentially of Portland cement, water, and aggregates. While cement in one form or another has been

More information

Microsilica in Concrete

Microsilica in Concrete Microsilica in Concrete Henan Superior Abrasives I/E Co., Ltd Microsilica is a byproduct from silicon metal or ferrosilicon industries, where these metals are produced in submerged electric arc furnaces.

More information

Fly Ash, Slag, Silica Fume, and Natural Pozzolans

Fly Ash, Slag, Silica Fume, and Natural Pozzolans Silica Fume, and Fly Ash, Slag, Silica Fume, and Also known as Supplementary Cementing Materials (SCMs) a material that, when used in conjunction with portland cement, contributes to the properties of

More information

Influence of Micro/Nano Sized Fly Ash on the Properties of Cement Mortar

Influence of Micro/Nano Sized Fly Ash on the Properties of Cement Mortar Influence of Micro/Nano Sized Fly Ash on the Properties of Cement Mortar D. K. Bera, A. K. Rath Faculty School of Civil Engineering, KIIT University, Bhubaneswar Odisha, 751024,India S. K. S. Parashar

More information

FREEZING AND THAWING RESISTANCE OF DRY COMPACTED SEGMENTAL RETAINING WALL UNITS

FREEZING AND THAWING RESISTANCE OF DRY COMPACTED SEGMENTAL RETAINING WALL UNITS FREEZING AND THAWING RESISTANCE OF DRY COMPACTED SEGMENTAL RETAINING WALL UNITS Kevin A. MacDonald, Mark R. Lukkarila Braun Intertec Corporation Minneapolis, MN, 55439, USA ABSTRACT In 1998 the Minnesota

More information

CHAPTER 3 MATERIALS AND MIX PROPORTIONING

CHAPTER 3 MATERIALS AND MIX PROPORTIONING 33 CHAPTER 3 MATERIALS AND MIX PROPORTIONING 3.1 GENERAL The mix design for self-compacting concrete warrants thorough knowledge of properties of materials used. In this chapter, the properties of the

More information

Influence of Curing-Form Material on the Chloride Penetration of Off- Shore Concrete

Influence of Curing-Form Material on the Chloride Penetration of Off- Shore Concrete International Journal of Concrete Structures and Materials Vol.6, No.4, pp.251 256, December 2012 DOI 10.1007/s40069-012-0026-8 ISSN 1976-0485 / eissn 2234-1315 Influence of Curing-Form Material on the

More information

Compliance criteria for quality concrete

Compliance criteria for quality concrete Available online at www.sciencedirect.com Construction and Building Materials 22 (2008) 1029 1036 Construction and Building MATERIALS www.elsevier.com/locate/conbuildmat Compliance criteria for quality

More information

Recycling of Glass in Concrete

Recycling of Glass in Concrete Recycling of Glass in Concrete Ram Bhupal Reddy A Lecturer & Head Department of Civil Engineering RGUKT, RK Valley, Kadapa Rajeswari A Teaching Assistant Department of Civil Engineering RGUKT, RK Valley,

More information

Effect of Nano-Clay on The Mechanical Properties of Fresh and Hardened Cement Mortar Comparing with Nano-Silica

Effect of Nano-Clay on The Mechanical Properties of Fresh and Hardened Cement Mortar Comparing with Nano-Silica Effect of Nano-Clay on The Mechanical Properties of Fresh and Hardened Cement Mortar Comparing with Nano-Silica 1 Prof.Dr. Sayed Abd El-Baky 2 Dr. Sameh Yehia 3 Dr. Enas A. Khattab 4 Ibrahim S. Khalil

More information

Influence of Silica Fume, Fly Ash, Super Pozz and High Slag Cement on Water Permeability and Strength of Concrete

Influence of Silica Fume, Fly Ash, Super Pozz and High Slag Cement on Water Permeability and Strength of Concrete Influence of Silica Fume, Fly Ash, Super Pozz and High Slag Cement on Water Permeability and Strength of Concrete Modern Academy for Engineering and Technology, Cairo, Egypt ABSTRACT In this study, effects

More information

An Experimental Study On Strength & Durability Of Concrete Using Partial Replacement Of Cement With Nano Silica

An Experimental Study On Strength & Durability Of Concrete Using Partial Replacement Of Cement With Nano Silica An Experimental Study On Strength & Durability Of Concrete Using Partial Replacement Of Cement With Nano Silica Karthika P Abstract: Nano science and technology is a new field of emergence in materials

More information

COMPRESSIVE STRENGTH OF A CONCRETE MIX FOR PAVEMENT BLOCKS INCORPORATING INDUSTRIAL BY- PRODUCT

COMPRESSIVE STRENGTH OF A CONCRETE MIX FOR PAVEMENT BLOCKS INCORPORATING INDUSTRIAL BY- PRODUCT COMPRESSIVE STRENGTH OF A CONCRETE MIX FOR PAVEMENT BLOCKS INCORPORATING INDUSTRIAL BY- PRODUCT R Mokoena* and M B Mgangira ** CSIR Built Environment, P O Box 395, Pretoria, 1. *Tel: (+27) 12 841 2933;

More information

Influence of Colloidal Nano-SiO 2 Addition as Silica Fume Replacement Material in Properties of Concrete

Influence of Colloidal Nano-SiO 2 Addition as Silica Fume Replacement Material in Properties of Concrete Influence of Colloidal Nano-SiO 2 Addition as Silica Fume Replacement Material in Properties of Concrete A.M. Raiess Ghasemi, T. Parhizkar, and A.A. Ramezanianpour Building and Housing Research Center,

More information

Analysis on Mix Design of High Strength Concrete (M90)

Analysis on Mix Design of High Strength Concrete (M90) Analysis on Mix Design of High Strength Concrete (M90) CHAITANYA RAJ 1, DIVYANSHI TYAGI 2, GAURAV BUDHANI 3 B.TECH STUDENT 3rd Year Department of Civil Engineering ABES Engineering College Ghaziabad ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Open Access Experimental Research on The Effect of Silica Fume on Tensile Basic Creep of Early-age Concrete

Open Access Experimental Research on The Effect of Silica Fume on Tensile Basic Creep of Early-age Concrete Send Orders for Reprints to reprints@benthamscience.ae The Open Civil Engineering Journal, 2015, 9, 997-1001 997 Open Access Experimental Research on The Effect of Silica Fume on Tensile Basic Creep of

More information

COMPRESSIVE STRENGTH OF A CONCRETE MIX FOR PAVEMENT BLOCKS INCORPORATING INDUSTRIAL BY- PRODUCT

COMPRESSIVE STRENGTH OF A CONCRETE MIX FOR PAVEMENT BLOCKS INCORPORATING INDUSTRIAL BY- PRODUCT COMPRESSIVE STRENGTH OF A CONCRETE MIX FOR PAVEMENT BLOCKS INCORPORATING INDUSTRIAL BY- PRODUCT R MOKOENA* and M MGANGIRA ** CSIR Built Environment, P O Box 395, Pretoria, 1. *Tel: (+27) 12 841 2933; Email:

More information

Improvement of Self-Compacting Cement Slurry for Autoclaved SIFCON Containing High Volume Class C Fly Ash

Improvement of Self-Compacting Cement Slurry for Autoclaved SIFCON Containing High Volume Class C Fly Ash Improvement of Self-Compacting Cement Slurry for Autoclaved SIFCON Containing High Volume Class C Fly Ash Mert Yücel YARDIMCI, Serdar AYDIN, Hüseyin YİĞİTER, Halit YAZICI Dokuz Eylul University Engineering

More information

2 LITERATURE REVIEW IJSER

2 LITERATURE REVIEW IJSER International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 171 An Experimental Study on Strength & Durability of Concrete Using Partial Replacement of Cement with Nano Silica

More information

Optimizing Sonication Time and Solid to Liquid Ratio of Nano-Silica in High Strength Mortars

Optimizing Sonication Time and Solid to Liquid Ratio of Nano-Silica in High Strength Mortars e-issn 2455 1392 Volume 3 Issue 4, April 217 pp. 6 16 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Optimizing Sonication Time and Solid to Liquid Ratio of Nano-Silica in High Strength

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 16, Special. 1, pp. s138~s143 (2015) J O U R N A L O F Ceramic Processing Research Effect of incorporation of self healing admixture (SHA) on physical and mechanical

More information

Mineral-based secondary binders, utilization, and considerations in mix design. Exercise 5

Mineral-based secondary binders, utilization, and considerations in mix design. Exercise 5 Mineral-based secondary binders, utilization, and considerations in mix design Exercise 5 Mineral-based secondary binders Fly ash filler secondary binder (pozzolan) Ground granulated blastfurnace slag

More information

Durability Performance of Australian Commercial Concrete Modified with Permeability Reducing Admixture

Durability Performance of Australian Commercial Concrete Modified with Permeability Reducing Admixture Durability Performance of Australian Commercial Concrete Modified with Permeability Reducing Admixture Robert L Munn, Gary Kao*, Z Tian Chang, ACCI, School of Civil & Environmental Engineering, UNSW *

More information

DIFFUSION OF Cl - IONS IN PARTIALLY DRY AND SATURATED CRACKED REINFORCED CONCRETE MEMBERS

DIFFUSION OF Cl - IONS IN PARTIALLY DRY AND SATURATED CRACKED REINFORCED CONCRETE MEMBERS - Technical paper - DIFFUSION OF Cl - IONS IN PARTIALLY DRY AND SATURATED CRACKED REINFORCED CONCRETE MEMBERS Pa Pa WIN* 1, Atsuhiko MACHIDA*, Daisuke MORI* 3 and Hansu PARK* ABSTRACT: Both of the ingression

More information

Relationship between Ultrasonic Pulse Velocity and Compressive Strength of Self Compacting Concrete incorporate Rice Husk Ash and Metakaolin

Relationship between Ultrasonic Pulse Velocity and Compressive Strength of Self Compacting Concrete incorporate Rice Husk Ash and Metakaolin International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-5, May 2015 Relationship between Ultrasonic Pulse Velocity and Compressive Strength of Self Compacting

More information

Shrinkage characteristics of ground granulated blast furnace slag high content cement

Shrinkage characteristics of ground granulated blast furnace slag high content cement Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision Caspeele, Taerwe & Frangopol (Eds) 2019 Taylor & Francis Group, London, ISBN 978-1-138-62633-1 Shrinkage characteristics

More information

The Effect of Micro Silica on Permeability and Chemical Durability of Concrete Used in the Corrosive Environment

The Effect of Micro Silica on Permeability and Chemical Durability of Concrete Used in the Corrosive Environment Iran. J. Chem. & Chem. Eng. Vol. 24, No.2, 2005 The Effect of Micro Silica on Permeability and Chemical Durability of Concrete Used in the Corrosive Environment Nilforoushan, Mohammad Reza * + Faculty

More information

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY CHARACTERISTICS OF HIGH PERFORMANCE CONCRETE USING GGBS AND MSAND

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY CHARACTERISTICS OF HIGH PERFORMANCE CONCRETE USING GGBS AND MSAND EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY CHARACTERISTICS OF HIGH PERFORMANCE CONCRETE USING GGBS AND MSAND Christina Mary V. and Kishore CH. Faculty of Building and Environment, Sathyabama

More information

Eric Samson Cementitious Barriers Partnership SIMCO Technologies Inc. August 2014

Eric Samson Cementitious Barriers Partnership SIMCO Technologies Inc. August 2014 SIMCO Experimental Results Eric Samson Cementitious Barriers Partnership SIMCO Technologies Inc. August 2014 Summary Concrete mixture characterization Saltstone characterization Effect of damage on transport

More information

Assoc.Prof.BOONCHAI STITMANNAITHUM. Department of Civil Engineering, Faculty of Engineering Chulalongkorn University, Thailand

Assoc.Prof.BOONCHAI STITMANNAITHUM. Department of Civil Engineering, Faculty of Engineering Chulalongkorn University, Thailand Modeling of Chloride Penetration into Concrete Structures under Flexural Cyclic Load and Tidal Environment Assoc.Prof.BOONCHAI STITMANNAITHUM Department of Civil Engineering, Faculty of Engineering Chulalongkorn

More information

Effect Of Curing Age On The Compressive Strength Of Concrete Made From Local Granite Chippings

Effect Of Curing Age On The Compressive Strength Of Concrete Made From Local Granite Chippings Effect Of Curing Age On The Compressive Strength Of Concrete Made From Local Granite Chippings Okonkwo V. O. Department of Civil Engineerig Nnamdi Azikiwe University Awka, Nigeria odinakao@gmail.com Nwokike

More information

ance Conc Reactivity Metakaolin

ance Conc Reactivity Metakaolin SP-228 21 Proper opertie ties of High-Per erform ormanc ance Conc oncret ete e Cont ontainin aining High Reactivity Metakaolin by A. Bonakdar, M. Bakhshi, and M. Ghalibafian Synopsis: High Reactivity Metakaolin

More information

What s in the Mix. Aim of this presentation Basic principles of mix design Overview of constituents Cement Aggregates Coarse Fine.

What s in the Mix. Aim of this presentation Basic principles of mix design Overview of constituents Cement Aggregates Coarse Fine. What s in The Mix What s in the Mix The aim of this lecture is not to teach you how to perform a mix design but hopefully to help you understand the mix and how it is designed. Aim of this presentation

More information

Experimental Case Study Demonstrating Advantages of Performance Specifications Karthik Obla 1 Fernando Rodriguez 2 and Soliman Ben Barka 3

Experimental Case Study Demonstrating Advantages of Performance Specifications Karthik Obla 1 Fernando Rodriguez 2 and Soliman Ben Barka 3 Experimental Case Study Demonstrating Advantages of Performance Specifications Karthik Obla 1 Fernando Rodriguez 2 and Soliman Ben Barka 3 NRMCA is working on an initiative to evolve specifications from

More information

Effect of Fly Ash and Silica Fumes on Strength, Stress Strain Behaviour of M 25 Concrete Mix

Effect of Fly Ash and Silica Fumes on Strength, Stress Strain Behaviour of M 25 Concrete Mix International Journal of Civil and Structural Engineering Research ISSN 2348-767 (Online) Vol. 3, Issue 2, pp: (62-69), Month: October 21 - March 216, Available at: www.researchpublish.com Effect of Fly

More information

THE USE OF NATURAL POZZOLANS IN LIGHTWEIGHT CONCRETE

THE USE OF NATURAL POZZOLANS IN LIGHTWEIGHT CONCRETE A.16 THE USE OF NATURAL POZZOLANS IN LIGHTWEIGHT CONCRETE S. Pantawee- Graduate Student; T. Sinsiri- Lecturer Suranaree University of Technology, NakhonRatchasima, Thailand ABSTRACT: This paper presents

More information

The Influence of Slag and Fly Ash on the Carbonation of Concretes. By M. Collepardi, S. Collepardi, J.J. Ogoumah Olagot and F.

The Influence of Slag and Fly Ash on the Carbonation of Concretes. By M. Collepardi, S. Collepardi, J.J. Ogoumah Olagot and F. The Influence of Slag and Fly Ash on the Carbonation of Concretes By M. Collepardi, S. Collepardi, J.J. Ogoumah Olagot and F. Simonelli Synopsis: The paper shows the influence of mineral additions (in

More information

Effect of silica fume on the resistance to chloride ion penetration in high performance concrete

Effect of silica fume on the resistance to chloride ion penetration in high performance concrete American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-2 pp-01-05 www.ajer.org Research Paper Open Access Effect of silica fume on the resistance to chloride ion penetration

More information

Center for By-Products Utilization

Center for By-Products Utilization Center for By-Products Utilization SHRINKAGE OF CONCRETE WITH AND WITHOUT FLY ASH By Tarun R. Naik, Yoon-moon Chun, and Rudolph N. Kraus Report No. CBU-25-25 REP-596 January 27 For Presentation and Publication

More information

Effect of Zinc Oxide Nanoparticle on Strength of Cement Mortar

Effect of Zinc Oxide Nanoparticle on Strength of Cement Mortar IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 05 November 2016 ISSN (online): 2349-784X Effect of Zinc Oxide Nanoparticle on Strength of Cement Mortar D. Nivethitha S.

More information

The durability of normal strength concrete: an experimental study

The durability of normal strength concrete: an experimental study Materials Characterisation VII 195 The durability of normal strength concrete: an experimental study V. Patel & N. Shah Civil Engineering Department, Charotar University of Science and Technology, India

More information

Influence of high-volume mineral mixtures and the steam-curing temperatures on the properties of precast concrete

Influence of high-volume mineral mixtures and the steam-curing temperatures on the properties of precast concrete Indian Journal of Engineering & Materials Sciences Vol. 24, October 217, pp. 397-45 Influence of high-volume mineral mixtures and the steam-curing temperatures on the properties of precast concrete Zengqi

More information

PARTIAL REPLACEMENT OF CEMENT IN CONCRETE WITH SUGAR CANE BAGASSE ASH- BEHAVIOUR IN HCl SOLUTION

PARTIAL REPLACEMENT OF CEMENT IN CONCRETE WITH SUGAR CANE BAGASSE ASH- BEHAVIOUR IN HCl SOLUTION http:// PARTIAL REPLACEMENT OF CEMENT IN CONCRETE WITH SUGAR CANE BAGASSE ASH- BEHAVIOUR IN HCl SOLUTION ABSTRACT K Meeravali 1, K V G D Balaji 2, T. Santhosh Kumar 3 1 PG Student, 2 Professor, 3 Assistant

More information

Exposure Test on Two Surface Anticorrosion Technologies for Marine Concrete Structure

Exposure Test on Two Surface Anticorrosion Technologies for Marine Concrete Structure 4 th International Conference on the Durability of Concrete Structures 24 26 July 2014 Purdue University, West Lafayette, IN, USA Exposure Test on Two Surface Anticorrosion Technologies for Marine Concrete

More information

Improvement of Concrete Sustainability and Performance using Portland-Limestone Cements

Improvement of Concrete Sustainability and Performance using Portland-Limestone Cements Strength. Performance. Passion. Improvement of Concrete Sustainability and Performance using Portland-Limestone Cements 2013 Louisiana Transportation Conference February 19, 2013 Tim Cost, P.E., F. ACI

More information

Self-Compacting Concrete Incorporating Various Ratios of Rice Husk Ash in Portland Cement*

Self-Compacting Concrete Incorporating Various Ratios of Rice Husk Ash in Portland Cement* CMU. J. Nat. Sci. (2013) Vol. 12(2) 111 DOI: 10.12982/CMUJNS.2013.0010 Self-Compacting Concrete Incorporating Various Ratios of Rice Husk Ash in Portland Cement* Gritsada Sua-Iam 1 and Natt Makul 2* 1

More information

CIV2226: Design of Concrete and Masonry Structures

CIV2226: Design of Concrete and Masonry Structures CIV2226: Design of Concrete and Masonry Structures Concrete Technology... 2 Concrete Mix Design... 2 Portland Cement... 4 Supplementary Cementitious Materials... 5 Concrete Aggregates... 6 Chemical Admixtures...

More information

ENVIRONMENT-PROTECTING UNBAKED CEMENT AND ITS HYDRATE MECHANISM

ENVIRONMENT-PROTECTING UNBAKED CEMENT AND ITS HYDRATE MECHANISM 131 ENVIRONMENT-PROTECTING UNBAKED CEMENT AND ITS HYDRATE MECHANISM An Ming-zhe, 1 Zhang Li-jun, 1 Zhang Meng, 1 and Wang Fu-chuan 2 1 College of Civil Engineering and Architecture, Beijing Jiaotong University,

More information

MINERAL ADMIXTURES IN CONCRETE

MINERAL ADMIXTURES IN CONCRETE MINERAL ADMIXTURES IN CONCRETE by Dr J D BAPAT Seminar on Admixtures in Concrete 28 June 2011 Institution of Engineers, Shivajinagar Pune, Maharashtra, India FOREWORD THIS PRESENTATION GIVES BRIEF VIEW

More information