Multi-scale modelling for energy storage devices

Size: px
Start display at page:

Download "Multi-scale modelling for energy storage devices"

Transcription

1 February 2018 Multi-scale modelling for energy storage devices MANIFEST Researcher Workshop Samuel J. Cooper, Dami Taiwo, Vladimir Yufit, Farid Tariq, Enrique Ruiz-Trejo, Antonio Bertei, Ann Huang, Barun Chakrabarti, Moshiel Biton, Nigel P. Brandon

2 Faraday Challenge 4 Fast-start projects starting 2018 Multi-scale modelling - Imperial Solid state batteries - Oxford Degradation - Cambridge Recycling - Birmingham 2

3 Multiscale modelling Lead by Greg Offer at Imperial Consortium includes: Imperial Greg Offer (PI), Billy Wu, Monica Marinescu, Aron Walsh, Sam Cooper, Jacqueline Edge (PM) Bath Saiful Islam, Benjamin Morgan UCL Paul Shearing, Dan Brett WMG Emma Kendrick, Dhammika Widanalage, James Marco Lancaster Harry Hoster, Dénes Csala Oxford Dave Howey, Charles Monroe, Colin Please, Jon Chapman Southampton - Chris Skylaris, Dennis Kramer 3

4 Multiscale modelling 5 Expeditions XP1 - COLDSTART (Lithium intercalation at low T) XP2 - CELLDO (Cell model with defined parameterisation approach) XP3 - BATPACK (Pack level models with thermal coupling) XP4 - ROMCon (Reduced order models for battery control) XP5 - LONGTERM (Bridge the atomistic and continuum models) 5 Cross Cutting activities CC1 - PHYSMAT (Fundamental Physics & Materials Science) CC2 - MATHS (Mathematical Methods and Solvers) CC3 - VISDAM (Visualisation & data management) CC4 - TEST (Parameterisation & validation) CC5 - PEACE (Parameter estimation & analysis continuum models) 4

5 Industry Pull Need for design Tools Understanding Fast Charging Degradation & Lifetime 10-9 s & 10 9 s multi-scale modelling 10-9 s & 10 9 s 10-9 m time & length 10 1 m AGM, JM, Nexeon, CoSeC, nvidia XP1: Low Temperature Critical transition molecular and continuum models XP5: Degradation XP2: Cell Design Williams, JLR, RR, Ford, Ricardo, JM, Arcola, Siemens, Potenza, CAT, Conti, BMW, BBOXX Complexity reduction XP3: Pack Design Design Tools without loss of important fidelity Shell XP4: Control Other FI projects CC1 Physics CC2 Mathematical methods and solvers CC3 Experimental parameterisation and validation CC4 Visualisation and data management CC5 Parameter Estimation

6 Individual contribution PDRA Novel isotopic approach to characterising solid state diffusion and surface exchange processes. PhD Materials stability (impact of trapping). Responsibility to communicated finding and assumption up (to continuum team) and down (to atoms team).

7 Innovate UK 6 project starting at Imperial in collaboration with industry ABLE M-KOPA, Denchi Power ATESTS Rolls Royce BATMAN Perkins, AVID tech. CoRuBa Fergusson s Advanced Composite Technology IMPACT Arcola, Reaction Engines, Flint Engineering Brunel THT Thermal Hazard Technology 7

8 Looking for a job? We re currently looking for 12 postdocs and many PhDs! Please get in touch and I can point you in the right direction

9 Batteries and fuel cells 9

10 Electrode microstructure for Performance optimisation Bulk properties volume fractions connectivity area per unit volume Degradation Local hot spots Structural evolution 10

11 3D Imaging Facilities Lab X-ray CT* unit with high-efficiency flat panel detector. Up to 1 µm spatial resolution. Capability to incorporate in-situ rigs for dynamic experiments. Access to FIB-SEM tomography equipment. High spatial resolution (<10 nm for FIB imaging). Better suited for nanostructured material analysis. *From energy storage capital grant : EPSRC Capital for Great Technologies call - Grid-Scale Energy Storage 11

12 Zinc-based flow batteries Morphological degradation of Zn Load / Power generator Zn(OH)4 2- KOH additives Zn Zn + 4OH - Zn(OH) e - OH - OH - Air 1/2O2 + H2O + 2e - 2OH - Pump Air Zn dendrite formation during the first charge M. Biton,F. Tariq,V. Yufit, Z. Chen,N. Brandon, Acta Materialia 2017, 141,

13 Zinc-based flow batteries Morphological degradation of Zn Load / Power generator In-situ observation of Zn dendritic growth Zn(OH)4 2- KOH additives Zn Zn + 4OH - Zn(OH) e - OH - OH - Air 1/2O2 + H2O + 2e - 2OH - Pump Air M. Biton,F. Tariq,V. Yufit, Z. Chen,N. Brandon, Acta Materialia 2017, 141,

14 Vanadium redox flow batteries Carbon paper modification No rgo Single side rgo Double side rgo Total specific surface area with XCT [μm 2 μm 3 ] BET specific surface area [μm 2 μm 3 ] Untreated CP One-sided Double sided B. Chakrabarti, D. Nir, V. Yufit, F. Tariq, J. Rubio-Garcia, R. Maher, A. Kucernak, P. Aravind, N. Brandon, ChemElectroChem 2017, 4,

15 Lithium-ion batteries Thick electrodes with controlled porosity Image ref: Deville, S., Ice templating of porous materials In collaboration with Prof. P. Grant and Dr. A. Huang (Oxford) Manufacture of thick high energy density electrodes Improve battery power through microstructure control Cross section SEM Si/SiO X X-ray µct 15

16 4.52 Non-ordered porosity Tortuosity factor, Ordered porosity Porosity (%) Lithium-ion batteries Thick electrodes with controlled porosity 40 Ordered Non-ordered % 24.7% Ordered Non-ordered X-dir Y-dir Z-dir 16

17 Lithium-ion batteries Thick electrodes with controlled porosity Ordered porosity Non-ordered porosity 17

18 Structure electrode modelling Hierarchical electrodes fabricated by Ann Huang Nano-scale porosity/nanotube model - homogenised using TauFactor 2D model built by Antonio Bertei N-P + Diffusion + B-V

19 Solid Oxide Fuel Cells Microstructural degradation in NiScSZ (xy) slice FIB-SEM -Z Im / W cm x OCV 5% H 2 /3% H 2 O ohmic oxygen transfer ScSZ-YSZ 0.5 h distributed charge transfer at TPB 2 h 24 h 80 h gas diffusion test rig 200 h Z Re / W cm -2 Degraded anode Initial anode 1 μm 1 μm A.Bertei, E.Ruiz-Trejo, K.Kareh, V.Yufit, X.Wang, F.Tariq, N.P.Brandon, Nano Energy 2017, 36,

20 TPB density ( m m -3 ) NiScSz area ( m 2 m -3 ) Solid Oxide Fuel Cells Microstructural degradation in NiScSZ e Degraded anode Initial anode 1 μm 1 μm (xy) slice Ni + ScSZ 1 μm 1 μm Ni + ScSZTPBs 1 µm 1 µm TPBs µm µm Initial Degraded Initial Degraded A.Bertei, E.Ruiz-Trejo, K.Kareh, V.Yufit, X.Wang, F.Tariq, N.P.Brandon, Nano Energy 2017, 36,

21 Simulated impedance S. J. Cooper, A. Bertei, D. P. Finegan, and N. P. Brandon, Simulated impedance of diffusion in porous media, Electrochim. Acta, vol. 251, pp , 2017.

22 Thank you