Spin- and charge density around Rh impurity in α -Fe studied by Mössbauer spectroscopy

Size: px
Start display at page:

Download "Spin- and charge density around Rh impurity in α -Fe studied by Mössbauer spectroscopy"

Transcription

1 Spin- and charge density around Rh impurity in α -Fe studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer 1* and J. Żukrowski 57 Fe 1 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University PL-3-84 Cracow, ul. Podchorążych, Poland Solid State Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology PL-3-59 Cracow, Al. Mickiewicza 3, Poland * Corresponding author: sfrueben@cyf-kr.edu.pl PACS: 75.5.Bb, 75.3.Fv, Lr, y Keywords: spin and charge density, Mössbauer spectroscopy, impurities in metals Short title: Spin- and charge density in α -FeRh Accepted on October 7 th 8 in The Journal of Alloys and Compounds as a regular paper [Section: Physics] Submitted on September nd 8 Journal of Alloys and Compounds 477(1-), 4-7 (9) May 7 th 9 DOI: Abstract Random solution of rhodium in ferromagnetic α -Fe of the BCC structure has been 57 investigated by means of the 14.4 kev Mössbauer transition in Fe at room temperature. Rhodium atoms have been randomly substituted on the iron sites with the concentration up to 15 at.%. Contributions to the hyperfine field and isomer shift on the iron nuclei have been determined as the function of the distance between iron nucleus and rhodium impurity up to the third co-ordination shell. Rhodium atom as the nearest iron neighbor changes iron hyperfine field by +.73 T, as the second neighbor makes change by +.7 T and finally as the third neighbor changes the field by +.43 T. Corresponding changes in the isomer shift are as follows:.15 mm/s,.5 mm/s and +.39 mm/s. The average hyperfine field and the isomer shift increase linearly versus rhodium concentration at rates. 156 T/at.% and x 1 mm/(s at.%), respectively. Hence, addition of rhodium lowers the electron density -3 1 ρ on the iron nucleus at the rate ρ / c = 1. 5 x 1 electron a.u. (at.%). 1

2 1. Introduction Mössbauer spectroscopy is sensitive to the local environment of the resonant atom. In particular one can investigate influence of the adjacent impurity on the hyperfine field and isomer shift experienced by the resonant nucleus [1, ]. Perturbations to the spin- and charge density on the iron nucleus due to the impurity located on the regular lattice site of the BCC iron could be seen to the second or sometimes to the third co-ordination shell [3, 4]. Rhodium dissolves randomly in the BCC α -Fe up to about 11 at.% at low temperature equilibrium [5]. However, the α -phase is stable at low temperature up to about 55 at.% of rhodium. For the rhodium concentration range at.% one can observe a tendency for ordering into the B structure. No ordering occurs for rapidly quenched samples with the rhodium concentration less than 19 at.% [5]. Chemically disordered α -phase is ordered ferromagnetically at room temperature. The Curie temperature decreases with the rhodium addition, but it is still quite above the room temperature even for the most rhodium abundant disordered BCC phase. The iron-rhodium system has been investigated by the Mössbauer spectroscopy in the past [6-9], but usually for the high rhodium concentrations or for the rhodium concentrations leading to the ordered B phase. We have investigated random solutions of rhodium in the α -Fe for the rhodium concentration up to 15 at.% by means of the room temperature Mössbauer spectroscopy.. Experimental Samples were prepared by arc melting of the appropriate amounts of the constituent elements under protective argon atmosphere. Natural iron of the at.% purity and rhodium of at.% purity were used to make samples. Samples of about 1. 5 g were prepared by melting constituents three times to assure ingot homogeneity. Rapid cooling of the samples from the melt assured random distribution of the rhodium impurity. No weight losses were observed during sample preparation, and therefore the starting composition could be treated as the resulting sample composition. Mössbauer absorbers were prepared as powders embedded 57 in the epoxy disks with about 3 mg Fe/cm. A commercial Co(Rh) source was used. Transmission geometry with the source and absorbers kept at room temperature has been applied. Raw spectra were collected in 496 channels in the round-corner triangular mode with the help of the MsAa-3 spectrometer [1, 11]. All spectral shifts are reported versus room temperature total shift in α -Fe. 3. Data evaluation Folded spectra were evaluated within the model described previously [4, 1]. A transmission integral approximation was used. The model depends on the following assumptions. It is assumed that Rh impurities are located at random on the regular iron sites within the BCC structure. Furthermore, it is assumed that perturbations due to various impurities are additive in the algebraic sense. Those perturbations depend only on the distance between impurity and the resonant iron nucleus. Hence, one can define a contribution to the iron hyperfine field B s caused by the impurity in the s - th co-ordination shell of the resonant atom, and a corresponding contribution Ss to the isomer shift. The perturbation of the hyperfine field is due to the perturbation of the spin density on the iron nucleus, while the perturbation of the isomer shift is caused by the corresponding perturbation of the electron charge density. Subsequent co-ordination shells are taken into account till the most distant discernible shell, i.e., s =1,,...,. Shells beyond the last shell taken into account contribute to the

3 remaining hyperfine field B and spectral shift S. The average field < B > and average shift < S > could be obtained in straightforward way within this model. Essential results for = and = 3 models are shown in Table 1. Figure 1 shows spectra fitted within the = 3 model. Rhodium doped samples contain traces of the iron oxide, and a contribution of this oxide to the spectra has been taken into account during data processing. The oxide subspectrum is described by a doublet, the latter having total shift +.3(1) mm/s versus room temperature α -Fe, splitting. 34(1) mm/s, and a contribution to the total absorption crosssection of 3. 5() % averaged over various samples. On the other hand, Figure shows evolution of the model parameters versus Rh concentration c. Data were independently fitted to the Hesse-Rübartsch model [13, 14] in the thin absorber approximation and for the distribution of the hyperfine field B. Table summarizes the average field < B > and the average shift < S > obtained by this method versus Rh concentration. Distributions of the hyperfine field obtained by means of the = model, = 3 model, and by the Hesse- Rübartsch method are shown in Figure 3 for selected Rh concentrations. Fig. 1 Mössbauer transmission spectra are shown for various rhodium concentrations. 3

4 Table 1 Essential results obtained within models with = and = 3. The last row for each model shows respective averages, where appropriate. The averages have been calculated for the rhodium concentration c ranging from 1 at.%. Symbols < B > and < S > stand for the average field and shift, respectively. Symbols B and S denote contributions to the field and shift due to the atoms beyond the th co-ordination shell. Symbols B 1, B and B3 stand for contributions to the field caused by the rhodium atom located as the first, second and third neighbor, respectively. Symbols S 1, S and S 3 denote corresponding contributions to the shift. c < B > B B 1 B B 3 < S > S S 1 S S 3 (at.%) ±.1 ±. ±. ±.3 ±. ±.3 ±. ±. ±.3 ±. ± = = Table Average hyperfine field and spectral shift obtained by means of the Hesse-Rübartsch method versus rhodium concentration. c (at.%) ±.1 < B > ±. < S > ±

5 Fig. Parameters of = and = 3 models plotted versus rhodium concentration. Straight lines are obtained including data for the rhodium concentration up to 1 at.%. The symbol ρ stands for the average electron density on the iron nucleus, while the symbol ρ Fe denotes corresponding electron density in the pure α -Fe. Fig. 3 Hyperfine field B distribution within: =, = 3 and Hesse-Rübartsch models plotted for selected rhodium concentrations. 5

6 4. Discussion of results It is obvious that the = 3 model gives better results than the = model as absolute values B of the derivatives expressed as c and S c are much smaller for = 3 than for = (see Figure ). The average hyperfine field increases linearly versus increasing rhodium concentration with the slope. 156 T/at.%. The isomer shift behaves similarly with the slope x 1 mm/(s at.%). Hence, one can conclude that addition of rhodium lowers the -3 1 electron density ρ on the iron nucleus at the rate ρ / c = 1. 5 x 1 electron a.u. (at.%) [15]. The average electron spin density on the iron nucleus is increased by addition of rhodium. Therefore, the average spin density transferred from the neighborhood of the iron atom is decreasing with increasing rhodium concentration. The electron and electron spin density changes remain proportional one to another within the concentration range of rhodium investigated here, i.e., up to about 1 at.% of rhodium. Vincze and Campbell [1] investigated two samples with the rhodium concentrations 3 at.% and 5 at.%, respectively. They found that the rhodium atom increases the iron hyperfine field by T as the nearest neighbor of the iron atom. On the other hand, they found that the rhodium atom increases this field by. 79 T as the second neighbor. The latter value is in good agreement with our results. The behavior of the isomer shift and hyperfine field versus rhodium concentration is similar to the behavior found by Shirane et al. [6]. References 1. I. Vincze and I.A. Campbell, J. Phys. F: Metal Phys. 3, 647 (1973).. J. Cieślak and S.M. Dubiel, J. Alloys Compd. 35, 17 (3). 3. J. Korecki and U. Gradmann, Phys. Rev. Lett. 55, 491 (1985). 4. A. Błachowski, K. Ruebenbauer, and J. Żukrowski, Phys. Scripta 7, 368 (4). 5. T.B. Massalski, Binary Alloy Phase Diagrams, nd edn. (ASM International, Materials Park, Ohio, USA, 199), Vol. 1, p G. Shirane, C.W. Chen, and P.A. Flinn, Phys. Rev. 131, 183 (1963). 7. B. Window, G. Longworth, and C.E. Johnson, J. Phys. C: Solid State Phys. 3, 156 (197). 8. G. Filoti, V. Kuncsea, E. Navarro, A. Hernando, and M. Rosenberg, J. Alloys Compd. 78, 6 (1998). 9. A.R. Yavari, E. Navarro, H. Mori, H. Yasuda, A. Hernando, and W.J. Botta, Philosophical Magazine 8, 1779 (). 1. R. Górnicki, A. Błachowski, and K. Ruebenbauer, Nukleonika 5, S7 (7). 11. R. Górnicki RENON [ ] 1. A. Błachowski, K. Ruebenbauer, and J. Żukrowski, phys. stat. sol. (b) 4, 31 (5). 13. J. Hesse and A. Rübartsch, J. Phys. E: Sci. Instrum. 7, 56 (1974). 14. G. Le Caër and J.M. Dubois, J. Phys. E: Sci. Instrum. 1, 183 (1979). 15. U.D. Wdowik and K. Ruebenbauer, Phys. Rev. B 76, (7). 6

Charge and spin density on iron nuclei in the BCC Fe Ga alloys studied by Mössbauer spectroscopy

Charge and spin density on iron nuclei in the BCC Fe Ga alloys studied by Mössbauer spectroscopy Journal of Alloys and Compounds 455 (28) 47 51 Charge and spin density on iron nuclei in the BCC Fe Ga alloys studied by Mössbauer spectroscopy A. Błachowski a, K. Ruebenbauer a,,j.żukrowski b, J. Przewoźnik

More information

Journal of Physics and Chemistry of Solids

Journal of Physics and Chemistry of Solids Journal of Physics and Chemistry of Solids 72 (2011) 1537 1542 Contents lists available at SciVerse ScienceDirect Journal of Physics and Chemistry of Solids journal homepage: www.elsevier.com/locate/jpcs

More information

Hyperfine interactions on iron in R. spectroscopy

Hyperfine interactions on iron in R. spectroscopy Hyperfine interactions on iron in R 2 xfe14+ ( R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer 1 *, J. Przewoźnik 2, J. Żukrowski 2, D. Sitko

More information

Journal of Physics and Chemistry of Solids

Journal of Physics and Chemistry of Solids Journal of hysics and Chemistry of Solids 73 (212) 317 323 Contents lists available at SciVerse ScienceDirect Journal of hysics and Chemistry of Solids journal homepage: www.elsevier.com/locate/jpcs Transition

More information

STRUCTURE AND MAGNETIC PROPERTIES OF THE Zr 30

STRUCTURE AND MAGNETIC PROPERTIES OF THE Zr 30 Structure Rev.Adv.Mater.Sci. and magnetic 18(2008) properties 379-383 of the Zr 30 379 STRUCTURE AND MAGNETIC PROPERTIES OF THE Zr 30 ALLOY FORMED BY MECHANICAL ALLOYING A. Grabias 1, D. Oleszak 2 and

More information

Magnetism of BaFe 2 Se 3 studied by Mössbauer spectroscopy

Magnetism of BaFe 2 Se 3 studied by Mössbauer spectroscopy Magnetism of BaFe 2 Se 3 studied by Mössbauer spectroscopy K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1*, M. Piskorz 2, J. Żukrowski 2,3, A. Krztoń-Maziopa 4, E. Pomjakushina 5, and

More information

Effect of 2 MeV Fe 3+ irradiation on Fe atom site population in a -phase Fe-Cr compound Stanisław M. Dubiel 1* and Jan Żukrowski 1,2

Effect of 2 MeV Fe 3+ irradiation on Fe atom site population in a -phase Fe-Cr compound Stanisław M. Dubiel 1* and Jan Żukrowski 1,2 Effect of 2 MeV Fe 3+ irradiation on Fe atom site population in a -phase Fe-Cr compound Stanisław M. Dubiel 1* and Jan Żukrowski 1,2 1 AGH University of Science and Technology, Faculty of Physics and Applied

More information

Magnetic properties of ball-milled FeAl nanograins

Magnetic properties of ball-milled FeAl nanograins phys. stat. sol. (a) 21, No. 15, 3333 3337 (24) / DOI 1.12/pssa.245498 Magnetic properties of ball-milled FeAl nanograins L. F. Kiss *, 1, D. Kaptás 1, J. Balogh 1, L. Bujdosó 1, J. Gubicza 2, T. Kemény

More information

Effect of Nitriding on Phase Transformations in the Fe-Mn Alloys

Effect of Nitriding on Phase Transformations in the Fe-Mn Alloys Turk J Phys 25 (21), 537 542. c TÜBİTAK Effect of Nitriding on Phase Transformations in the Fe-Mn Alloys K. G. BINNATOV, I. I. ALİ-ZADE Azerbaijan Civil Engineering University, Department of Physics, 3773

More information

Local atomic arrangement in mechanosynthesized Co x Fe 12x2y Ni y alloys studied by Mössbauer spectroscopy

Local atomic arrangement in mechanosynthesized Co x Fe 12x2y Ni y alloys studied by Mössbauer spectroscopy Appl. Phys. A (2014) 117:1491 1498 DOI 10.1007/s00339-014-8582-1 Local atomic arrangement in mechanosynthesized Co x Fe 12x2y Ni y alloys studied by Mössbauer spectroscopy Tomasz Pikula Received: 18 December

More information

Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying

Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying Hyperfine Interactions 148/149: 295 305, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 295 Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying G.

More information

Study of electric quadrupole interactions at 111 Cd on Zn sites in RZn (R = Ce, Gd, Tb, Dy) compounds using the PAC spectroscopy

Study of electric quadrupole interactions at 111 Cd on Zn sites in RZn (R = Ce, Gd, Tb, Dy) compounds using the PAC spectroscopy Hyperfine Interact DOI 10.1007/s10751-012-0758-5 Study of electric quadrupole interactions at 111 Cd on Zn sites in RZn (R = Ce, Gd, Tb, Dy) compounds using the PAC spectroscopy Brianna Bosch-Santos Artur

More information

Microstructure and magnetic properties of nanocrystalline Fe-based alloys

Microstructure and magnetic properties of nanocrystalline Fe-based alloys Materials Science-Poland, Vol. 26, No. 1, 2008 Microstructure and magnetic properties of nanocrystalline Fe-based alloys M. HASIAK 1*, M. MIGLIERINI 2, J. KALETA 1, J. ZBROSZCZYK 3, H. FUKUNAGA 4 1 Institute

More information

Hyperfine field distributions in disordered Mn 2 CoSn and Mn 2 NiSn Heusler alloys

Hyperfine field distributions in disordered Mn 2 CoSn and Mn 2 NiSn Heusler alloys Bull. Mater. Sci., Vol. 25, No. 4, August 2002, pp. 309 313. Indian Academy of Sciences. Hyperfine field distributions in disordered Mn 2 CoSn and Mn 2 NiSn Heusler alloys N LAKSHMI*, ANIL PANDEY and K

More information

MOSSBAUER AND EXAFS STUDIES OF AMORPHOUS IRON PRODUCED BY THERMAL DECOMPOSITION OF CARBONYL IRON IN LIQUID PHASE

MOSSBAUER AND EXAFS STUDIES OF AMORPHOUS IRON PRODUCED BY THERMAL DECOMPOSITION OF CARBONYL IRON IN LIQUID PHASE Hyperfine Interactions 56 (1990) 1711-1716 1711 MOSSBAUER AND EXAFS STUDIES OF AMORPHOUS IRON PRODUCED BY THERMAL DECOMPOSITION OF CARBONYL IRON IN LIQUID PHASE Kiyoshi NOMURA, Junichi TANAKA, Yusuke UJIHIRA,

More information

Structural and magnetic investigations of Sc(Fe 1 x Ni x ) 2 compounds by means of Mössbauer effect and neutron diffraction

Structural and magnetic investigations of Sc(Fe 1 x Ni x ) 2 compounds by means of Mössbauer effect and neutron diffraction NUKLEONIKA 2007;52(Supplement 1):S71 S75 PROCEEDINGS Structural and magnetic investigations of Sc(Fe 1 x Ni x ) 2 compounds by means of Mössbauer effect and neutron diffraction Marek Wiertel, Zbigniew

More information

Surface and Interface Characterization of Ferritic Stainless Steel by 57 Fe Conversion Electron Mössbauer Spectroscopy (CEMS)

Surface and Interface Characterization of Ferritic Stainless Steel by 57 Fe Conversion Electron Mössbauer Spectroscopy (CEMS) Surface and Interface Characterization of Ferritic Stainless Steel by 57 Fe Conversion Electron Mössbauer Spectroscopy (CEMS) Kiyoshi Nomura, Takayuki Terai, and Tsuguo Sawada School of Engineering, The

More information

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition Hyperfine Interact (2006) 168:1065 1071 DOI 10.1007/s10751-006-9406-2 CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition K. Nomura & K. Inaba & S. Iio & T. Hitosugi

More information

Characterization. of solid catalysts. 5. Mössbauer Spectroscopy. Prof dr J W (Hans) Niemantsverdriet.

Characterization. of solid catalysts. 5. Mössbauer Spectroscopy. Prof dr J W (Hans) Niemantsverdriet. www.catalysiscourse.com Characterization of solid catalysts 5. Mössbauer Spectroscopy Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis J.W. Niemantsverdriet, TU/e, Eindhoven, The Netherlands

More information

Kiyoshi Nomura, Alexandre Rykov, Zoltán Németh & Yoshitaka Yoda

Kiyoshi Nomura, Alexandre Rykov, Zoltán Németh & Yoshitaka Yoda Vibration DOS of 57Fe and Zn doped rutile Sn(Sb) oxides Kiyoshi Nomura, Alexandre Rykov, Zoltán Németh & Yoshitaka Yoda Hyperfine Interactions ISSN 0304-3843 Volume 205 Combined 1-3 Hyperfine Interact

More information

X-ray and Neutron Analysis of Heusler Alloys

X-ray and Neutron Analysis of Heusler Alloys Heusler Alloys for Spintronic July 30 th. 2015 (Minneapolis) X-ray and Neutron Analysis of Heusler Alloys Kanta Ono High Energy Accelerator Research Organization (KEK) Collaborators R.Y. Umetsu 1 K. Saito

More information

Studying surfaces and thin films using Mössbauer spectroscopy

Studying surfaces and thin films using Mössbauer spectroscopy Hyperfine Interact (2006) 170:131 143 DOI 10.1007/s10751-006-9463-6 Studying surfaces and thin films using Mössbauer spectroscopy Laura K. Perry D. H. Ryan R. Gagnon Published online: 5 December 2006 Springer

More information

Mössbauer and XRD investigations of layered double hydroxides (LDHs) with varying Mg/Fe ratios

Mössbauer and XRD investigations of layered double hydroxides (LDHs) with varying Mg/Fe ratios Hyperfine Interact DOI 1.17/s1751-12-661- Mössbauer and XRD investigations of layered double hydroxides (LDHs) with varying Mg/Fe ratios Mónika Sipiczki Ernő Kuzmann Zoltán Homonnay József Megyeri Krisztina

More information

Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method

Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 6 Proceedings of the Polish Mössbauer Community Meeting 2008 Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method

More information

Citation for published version (APA): Borsa, D. M. (2004). Nitride-based insulating and magnetic thin films and multilayers s.n.

Citation for published version (APA): Borsa, D. M. (2004). Nitride-based insulating and magnetic thin films and multilayers s.n. University of Groningen Nitride-based insulating and magnetic thin films and multilayers Borsa, Dana Maria IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Accepted Manuscript. Structural and electronic properties of the μ-phase Fe-Mo compounds. J. Cieslak, J. Przewoznik, S.M. Dubiel

Accepted Manuscript. Structural and electronic properties of the μ-phase Fe-Mo compounds. J. Cieslak, J. Przewoznik, S.M. Dubiel Accepted Manuscript Structural and electronic properties of the μ-phase Fe-Mo compounds J. Cieslak, J. Przewoznik, S.M. Dubiel PII: S0925-8388(14)01308-5 DOI: http://dx.doi.org/10.1016/j.jallcom.2014.05.201

More information

Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying

Mössbauer and X-ray study of the Fe 65 Ni 35 invar alloy obtained by mechanical alloying Hyperfine Interact DOI 1.17/s171-13-834- Mössbauer and X-ray study of the Fe 6 Ni 3 invar alloy obtained by mechanical alloying R. R. Rodriguez J. L. Valenzuela J. A. Tabares G. A. Pérez Alcázar Springer

More information

Extended solubility in non-equilibrium Pb/Fe system

Extended solubility in non-equilibrium Pb/Fe system Materials Science and Engineering A 390 (2005) 13 18 Extended solubility in non-equilibrium Pb/Fe system E. Nunes a, E.C. Passamani a,, C. Larica a, J.C.C. Freitas a, A.Y. Takeuchi a,b, E. Baggio-Saitovitch

More information

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields Hyperfine Interactions 156/157: 151 155, 2004. 2004 Kluwer Academic Publishers. Printed in the Netherlands. 151 Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External

More information

(FeNaP) 2 O 9 Glasses Doped with Different TM Ions

(FeNaP) 2 O 9 Glasses Doped with Different TM Ions International Journal of High Energy Physics 2017; 4(6): 75-87 http://www.sciencepublishinggroup.com/j/ijhep doi: 10.11648/j.ijhep.20170406.12 ISSN: 2376-7405 (Print); ISSN: 2376-7448 (Online) (FeNaP)

More information

Preparation of NdFe 10.5 V 1.5 N x powders with potential as high-performance permanent magnets

Preparation of NdFe 10.5 V 1.5 N x powders with potential as high-performance permanent magnets J. Phys. D: Appl. Phys. 31 (1998) 282 286. Printed in the UK PII: S0022-3727(98)84246-0 Preparation of NdFe 10.5 V 1.5 N x powders with potential as high-performance permanent magnets Jinbo Yang, Bo Cui,

More information

THERMAL DECOMPOSITION OF ILLITE

THERMAL DECOMPOSITION OF ILLITE THERMAL DECOMPOSITION OF ILLITE J. H. de Araújo, N. F. da Silva, W. Acchar and U. U. Gomes Departamento de Física Teórica e Experimental-UFRN, PO Box. 1641,. 59072-970, Natal- RN Brazil - humberto@dfte.ufrn.br

More information

Magnetism and phase stability of fcc Fe Co alloys precipitated in a Cu matrix

Magnetism and phase stability of fcc Fe Co alloys precipitated in a Cu matrix INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 13 (2001) 6359 6369 PII: S0953-8984(01)25089-9 Magnetism and phase stability of fcc Fe Co alloys precipitated

More information

Structural disorder in Li x (C 5 H 5 N) y Fe 2-z Se 2 and Cs x Fe 2-z Se 2 superconductors studied by Mössbauer spectroscopy

Structural disorder in Li x (C 5 H 5 N) y Fe 2-z Se 2 and Cs x Fe 2-z Se 2 superconductors studied by Mössbauer spectroscopy Structural disorder in Li x (C 5 H 5 N) y Fe 2-z Se 2 and Cs x Fe 2-z Se 2 superconductors studied by Mössbauer spectroscopy K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski

More information

Magnetic interactions in NdFeB bulk permanent magnets with additions

Magnetic interactions in NdFeB bulk permanent magnets with additions JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 5, October 2006, p. 1765-1769 Magnetic interactions in NdFeB bulk permanent magnets with additions H. CHIRIAC, N. LUPU *, C. CHIRIAC a, M.

More information

the Phase Diagrams Today s Topics

the Phase Diagrams Today s Topics MME 291: Lecture 03 Introduction to the Phase Diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Concept of alloying Classification of alloys Introduction to the phase diagram

More information

Site preferences of indium impurity atoms in intermetallics having Al 3 Ti or Al 3 Zr crystal structures

Site preferences of indium impurity atoms in intermetallics having Al 3 Ti or Al 3 Zr crystal structures Hyperfine Interact DOI 0.007/s075-008-965-y Site preferences of indium impurity atoms in intermetallics having Al 3 Ti or Al 3 Zr crystal structures John P. Bevington Farida Selim Gary S. Collins Springer

More information

Annealing of Amorphous Sm 5 Fe 17 Melt-Spun Ribbon

Annealing of Amorphous Sm 5 Fe 17 Melt-Spun Ribbon Materials Transactions, Vol. 49, No. 6 (2008) pp. 1446 to 1450 #2008 The Japan Institute of Metals Annealing of Amorphous Sm 5 Fe 17 Melt-Spun Ribbon Tetsuji Saito Department of Mechanical Science and

More information

Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses

Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses Indian Journal of Engineering & Materials Sciences Vol. 21, February 2014, pp. 111-115 Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses

More information

Definition and description of different diffusion terms

Definition and description of different diffusion terms Definition and description of different diffusion terms efore proceeding further, it is necessary to introduce different terms frequently used in diffusion studies. Many terms will be introduced, which

More information

TALAT Lecture Phase Diagrams. 14 pages, 13 Figures. Basic Level

TALAT Lecture Phase Diagrams. 14 pages, 13 Figures. Basic Level TALAT Lecture 1203 Phase Diagrams 14 pages, 13 Figures Basic Level prepared by M H Jacobs * Interdisciplinary Research Centre in Materials The University of Birmingham, UK (Based on approach adopted by

More information

Arch. Metall. Mater. 62 (2017), 1,

Arch. Metall. Mater. 62 (2017), 1, Arch. Metall. Mater. 62 (2017), 1, 385-390 DOI: 10.1515/amm-2017-0060 A. SZCZĘSNY* #, D. KOPYCIŃSKI*, E. GUZIK* SHAPING OPTIMAL ZINC COATING ON THE SURFACE OF HIGH-QUALITY DUCTILE IRON CASTING. PART I

More information

PHASE EQUILIBRIUM P + F = C + 2

PHASE EQUILIBRIUM P + F = C + 2 PHASE EQUILIBRIUM Component: is either pure metal and/or compound of which an alloy is composed. They refer to the independent chemical species that comprise the system. Solid Solution: It consists of

More information

Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route

Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route Journal of Ultrafine Grained and Nanostructured Materials Vol.47, No.2, Dec 2014, pp.57-61 Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route Mahsa Barzegar

More information

A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy

A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy Science in China Series G: Physics, Mechanics & Astronomy 2007 SCIENCE IN CHINA PRESS Springer A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy YANG Hong, LÜ YongJun, CHEN

More information

Full-Potential KKR calculations for Lattice Distortion around Impurities in Al-based dilute alloys, based on the Generalized-Gradient Approximation

Full-Potential KKR calculations for Lattice Distortion around Impurities in Al-based dilute alloys, based on the Generalized-Gradient Approximation Trans. Mat. Res. Soc. Japan 40[2] 159-164 (2015) Full-Potential KKR calculations for Lattice Distortion around Impurities in Al-based dilute alloys, based on the Generalized-Gradient Approximation C. Liu

More information

Study of Physical Properties of Ba(Ti 1 2x Fe x Nb x )O 3 Ceramics

Study of Physical Properties of Ba(Ti 1 2x Fe x Nb x )O 3 Ceramics Ferroelectrics, 464:42 48, 2014 Copyright Taylor & Francis Group, LLC ISSN: 0015-0193 print / 1563-5112 online DOI: 10.1080/00150193.2014.892811 Study of Physical Properties of Ba(Ti 1 2x Fe x Nb x )O

More information

Magnetic and thermal Mössbauer effect scans: a new approach

Magnetic and thermal Mössbauer effect scans: a new approach Hyperfine Interact (2006) 167:839 844 DOI 10.1007/s10751-006-9369-3 Magnetic and thermal Mössbauer effect scans: a new approach G. A. Pasquevich & P. Mendoza Zélis & F. H. Sánchez & M. B. Fernández van

More information

University of Groningen

University of Groningen University of Groningen Revealing the interparticle magnetic interactions of iron oxide nanoparticles-carbon nanotubes hybrid materials Douvalis, A.P.; Georgakilas, V.; Tsoufis, T.; Gournis, D.; Kooi,

More information

Lattice instabilities during martensitic transformation in Cu-Zn-Al alloys by nuclear magnetic resonance

Lattice instabilities during martensitic transformation in Cu-Zn-Al alloys by nuclear magnetic resonance 83 Lattice instabilities during martensitic transformation in Cu-Zn-Al alloys by nuclear magnetic resonance S. Rubini(1),C Dimitropoulos (1)and R. Gotthardt (2) (1) Institut de Physique Expérimentale and

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010 Growth of Crystalline Polyaminoborane through Catalytic Dehydrogenation of Ammonia Borane on FeB Nanoalloy Teng He,

More information

Mössbauer study on Zn 1 x Fe x O semiconductors prepared by high energy ball milling

Mössbauer study on Zn 1 x Fe x O semiconductors prepared by high energy ball milling Hyperfine Interact (21) 195:227 233 DOI 1.17/s1751-9-13-6 Mössbauer study on Zn 1 x Fe x O semiconductors prepared by high energy ball milling L. C. Damonte M. Meyer L. Baum L. A. Mendoza-Zélis Published

More information

Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels

Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels Hyperfine Interact (2014) 226:781 789 DOI 10.1007/s10751-013-0940-4 Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels Magdalena Barbara Jablonska Published

More information

Electronic and electrochemical properties of Mg 2 Ni alloy doped by Pd atoms *

Electronic and electrochemical properties of Mg 2 Ni alloy doped by Pd atoms * Materials Science-Poland, Vol. 25, No. 4, 2007 Electronic and electrochemical properties of Mg 2 Ni alloy doped by Pd atoms * A. SZAJEK 1**, I. OKOŃSKA 2, M. JURCZYK 2 1 Institute of Molecular Physics,

More information

The microenvironment of iron in (Ba,Ca)(Fe,Co)03_~ catalyst system: A Miissbauer study

The microenvironment of iron in (Ba,Ca)(Fe,Co)03_~ catalyst system: A Miissbauer study Journal of Radioanalytical and Nuclear Chemistry, Vol. 239, No. 2 (1999) 291-296 The microenvironment of iron in (Ba,Ca)(Fe,Co)03_~ catalyst system: A Miissbauer study Z. Homonnay, 1 K. Nomura, 2. G. Juhfisz,

More information

Magnetic resonance study of M 3 Fe 4 V 6 O 24 (M = Mg, Zn, Mn, Cu, Co) compounds

Magnetic resonance study of M 3 Fe 4 V 6 O 24 (M = Mg, Zn, Mn, Cu, Co) compounds Materials Science-Poland, Vol. 23, No. 4, 2005 Magnetic resonance study of M 3 Fe 4 V 6 O 24 (M = Mg, Zn, Mn, Cu, Co) compounds N. GUSKOS 1, 2, J. TYPEK 2*, G. ZOLNIERKIEWICZ 2, A. BLONSKA-TABERO 3, M.

More information

Magnetic and Mössbauer studies of Fe and Co co-doped SnO 2

Magnetic and Mössbauer studies of Fe and Co co-doped SnO 2 Hyperfine Interact DOI 10.1007/s10751-011-0504-4 Magnetic and Mössbauer studies of Fe and Co co-doped SnO 2 Shin Kono Kiyoshi Nomura Yasuhiro Yamada Jun Okabayashi Springer Science+Business Media B.V.

More information

Study of Magnetic Materials by Mössbauer Thermal Scans. Application to Nanocrystalline Systems

Study of Magnetic Materials by Mössbauer Thermal Scans. Application to Nanocrystalline Systems Journal of Metastable and Nanocrystalline Materials Vol. 22 (2004) pp. 39-44 online at http://www.scientific.net Citation 2004 Trans & Tech Publications, Switzerland Copyright (to be inserted by the publisher

More information

Materials Engineering. Phase transformation Phase diagrams

Materials Engineering. Phase transformation Phase diagrams Materials Engineering Phase transformation Phase diagrams Phase Transformation Why is it important for us? o Temperature, chemical composition and pressure can change the properties of materials o Understanding

More information

Study of visually different areas in the Chinga iron meteorite fragment using Mössbauer spectroscopy with a high velocity resolution

Study of visually different areas in the Chinga iron meteorite fragment using Mössbauer spectroscopy with a high velocity resolution Hyperfine Interact DOI 1.17/s171-12-677- Study of visually different areas in the Chinga iron meteorite fragment using Mössbauer spectroscopy with a high velocity resolution M. I. Oshtrakh M. V. Goryunov

More information

Phase monitoring during Nd(Fe,M) 12 (M = Mo and Ti) compounds nitrogenation by chemical reaction with sodium azide (NaN 3 )

Phase monitoring during Nd(Fe,M) 12 (M = Mo and Ti) compounds nitrogenation by chemical reaction with sodium azide (NaN 3 ) Phase monitoring during Nd(Fe,M) 12 (M = Mo and Ti) compounds nitrogenation by chemical reaction with sodium azide (NaN 3 ) Eneida da G. Guilherme 1, Hercílio R. Rechenberg 2 and José A. H. Coaquira 2

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

Mössbauer Measurements on Spinel-structure Iron Oxide Nanoparticles

Mössbauer Measurements on Spinel-structure Iron Oxide Nanoparticles Mössbauer Measurements on Spinel-structure Iron Oxide Nanoparticles C.E. Johnson a, L. Costa a, S. Gray b, J.A. Johnson b, A.J. Krejci c, S.A. Hasan d, I. Gonzalo-Juan c and J.H. Dickerson c a Center for

More information

Phase Transformations and Phase Diagrams W-151. Appendix 5A The GFE and Available Work

Phase Transformations and Phase Diagrams W-151. Appendix 5A The GFE and Available Work Phase Transformations and Phase Diagrams W-151 Appendix 5 Appendix 5A The GFE and Available Work In this appendix we show that the GFE is the energy available to do work at constant temperature, pressure,

More information

VACANCY MOBILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION

VACANCY MOBILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION 1 VACANCY MOILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION IN AI, JIAWEN FAN and GARY S. COLLINS* Department of Physics, Washington State University, Pullman, WA 99164, *collins@wsu.edu ASTRACT The fractional

More information

Investigation of alumino-silicic reagent interaction with iron in water by Mössbauer spectroscopy

Investigation of alumino-silicic reagent interaction with iron in water by Mössbauer spectroscopy Journal of Physics: Conference Series PAPER OPEN ACCESS Investigation of alumino-silicic reagent interaction with iron in water by Mössbauer spectroscopy Related content - Catalytic Properties of Zeolites

More information

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure Materials Transactions, Vol. 48, No. 11 (2007) pp. 2986 to 2992 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period

More information

Journal of Nuclear and Radiochemical Sciences, Vol. 11, No.1, pp. 1-5, 2010

Journal of Nuclear and Radiochemical Sciences, Vol. 11, No.1, pp. 1-5, 2010 Journal of Nuclear and Radiochemical Sciences, Vol. 11, No.1, pp. 1-5, 2010 Characterization of 57 Fe Implanted and Annealed SnO 2 (3 % Sb) Films by Depth Selective Conversion Electron Mössbauer Spectroscopy

More information

THE INFLUENCE OF HEAT TREATMENT REGIME ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF MELT-SPUN Nd-Fe-B WITH Nd LOW CONTENT

THE INFLUENCE OF HEAT TREATMENT REGIME ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF MELT-SPUN Nd-Fe-B WITH Nd LOW CONTENT THE INFLUENCE OF HEAT TREATMENT REGIME ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF MELT-SPUN Nd-Fe-B WITH Nd LOW CONTENT N. TALIJAN 1, J. STAJIĆ-TROŠIĆ 1, A. GRUJIĆ 1, V. ĆOSOVIĆ 1, D. NEDELJKOVIĆ

More information

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness.

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness. PRAMANA c Indian Academy of Sciences Vol. 65, No. 4 journal of October 2005 physics pp. 745 751 Effect of rare-earth elements on nanophase evolution, crystallization behaviour and mechanical properties

More information

Mössbauer study of the magnetocaloric compound AlFe 2 B 2

Mössbauer study of the magnetocaloric compound AlFe 2 B 2 Hyperfine Interact (2016) 237:47 DOI 10.1007/s10751-016-1223-7 Mössbauer study of the magnetocaloric compound AlFe 2 B 2 Johan Cedervall 1 Lennart Häggström 1 Tore Ericsson 1 Martin Sahlberg 1 Springer

More information

Journal of Alloys and Compounds

Journal of Alloys and Compounds Journal of Alloys and Compounds 509 (2011) 5453 5459 Contents lists available at ScienceDirect Journal of Alloys and Compounds journal homepage: www.elsevier.com/locate/jallcom Hydrogen absorption and

More information

Water cleaning ability and local structure of iron-containing soda-lime silicate glass

Water cleaning ability and local structure of iron-containing soda-lime silicate glass Hyperfine Interact DOI 10.1007/s10751-012-0655-y Water cleaning ability and local structure of iron-containing soda-lime silicate glass Shiro Kubuki Jun Iwanuma Kazuhiko Akiyama Zoltán Homonnay Ernő Kuzmann

More information

Mössbauer and magnetic studies for the coexistence of ε-fe 3-x Ni x N and γ'-fe 4-y Ni y N phases in Fe-Ni-N nanoparticles

Mössbauer and magnetic studies for the coexistence of ε-fe 3-x Ni x N and γ'-fe 4-y Ni y N phases in Fe-Ni-N nanoparticles Indian Journal of Pure & Applied Physics Vol. 45, October 2007, pp. 834-838 Mössbauer and magnetic studies for the coexistence of ε-fe 3-x Ni x N and γ'-fe 4-y Ni y N phases in Fe-Ni-N nanoparticles N

More information

Magnetic properties of Fe1-xMnx/Fe nanocomposites

Magnetic properties of Fe1-xMnx/Fe nanocomposites Downloaded from orbit.dtu.dk on: Nov 09, 2018 Magnetic properties of Fe1-xMnx/Fe nanocomposites Anhøj, Thomas Aarøe; Jacobsen, Claus Schelde; Mørup, Steen Published in: Journal of Applied Physics Link

More information

TEMPERATURE DEPENDENCE OF INTENSITIES on Pt-rich Pt-Mn ALLOYS BY NEUTRON DIFFRACTION

TEMPERATURE DEPENDENCE OF INTENSITIES on Pt-rich Pt-Mn ALLOYS BY NEUTRON DIFFRACTION Jurnal Sistem Teknik Industri Volume 7, No. 1 Januari 005 TEMPERATURE DEPENDENCE OF INTENSITIES on Pt-rich Pt-Mn ALLOYS BY NEUTRON DIFFRACTION Department of Physics, Faculty of Mathematics and Natural

More information

Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20

Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20 Mat. Res. Soc. Symp. Proc. Vol. 754 2003 Materials Research Society CC6.12.1 Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20 D. M. C. Nicholson 1,YangWang 2, and

More information

PHASE SEPARATION BY INTERNAL OXIDATION AND REDUCTION IN A Cu-5at%Ni-ALLOY

PHASE SEPARATION BY INTERNAL OXIDATION AND REDUCTION IN A Cu-5at%Ni-ALLOY Pergamon PII S1359-6462(98)00128-6 Scripta Materialia, Vol. 39, No. 1, pp. 73 77, 1998 Elsevier Science Ltd Copyright 1998 Acta Metallurgica Inc. Printed in the USA. All rights reserved. 1359-6462/98 $19.00.00

More information

Local Appearance of Sn Liquid Phase at Surface of Aluminum Alloy Powder during Heating

Local Appearance of Sn Liquid Phase at Surface of Aluminum Alloy Powder during Heating Transactions of JWRI, Vol. 36 (7), No. 2 Local Appearance of Liquid Phase at Surface of uminum loy Powder during Heating KNDH Katsuyoshi*, LUAGNVARANAUNT Tachai**, THRERUJIRAPAPNG Thotsaphon** and KIMURA

More information

Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy

Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy Hyperfine Interact (2017) 238:97 https://doi.org/10.1007/s10751-017-1474-y Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy E. Kuzmann 1 L. Sziráki 1 S. Stichleutner 2 Z. Homonnay

More information

MME292 Metallic Materials Sessional

MME292 Metallic Materials Sessional Department of Materials and Metallurgical Engineering angladesh University of Engineering and Technology, Dhaka MME292 Metallic Materials Sessional July 2016 Term Experiment 2 Construction and Interpretation

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

Au Mössbauer Spectroscopy in the study of gold catalysts

Au Mössbauer Spectroscopy in the study of gold catalysts 197 Au Mössbauer Spectroscopy in the study of gold catalysts Lorenzo Stievano Laboratoire de Réactivité de Surface UMR 7609 - CNRS Université Pierre et Marie Curie Paris 6 75005 Paris, France Catalysis

More information

Iron-containing Adsorbents in Great Nile Sediments

Iron-containing Adsorbents in Great Nile Sediments Egypt. J. Solids, Vol. (27), No. (1), (2004) 245 Iron-containing Adsorbents in Great Nile Sediments T. M. Meaz 1, M. A. Amer 1, and C. Bender Koch 2 1 Physics Department, Faculty of Science, Tanta University,

More information

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom Chapter 4 MECHANICAL PROPERTIES OF MATERIAL By: Ardiyansyah Syahrom Chapter 2 STRAIN Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1 Expanding

More information

Mössbauer analysis of iron ore and rapidly reduced iron ore treated by micro-discharge using carbon felt

Mössbauer analysis of iron ore and rapidly reduced iron ore treated by micro-discharge using carbon felt J Radioanal Nucl Chem (2015) 303:1259 1263 DOI 10.1007/s10967-014-3468-4 Mössbauer analysis of iron ore and rapidly reduced iron ore treated by micro-discharge using carbon felt Kiyoshi Nomura Paulo de

More information

Introduction to phase diagrams

Introduction to phase diagrams ASM Phase Diagram Database Diagram No. 901229 Department of Physics and Astronomy Introduction to phase diagrams William Meier Physics 590B Fall 2018 Outline Part 1 Introduction and basics Part 2 Fundamental

More information

Hydrogenation and Dehydrogenation Behavior of LaNi 5 x Co x (x = 0, 0.25, 2) Alloys Studied by Pressure Differential Scanning Calorimetry

Hydrogenation and Dehydrogenation Behavior of LaNi 5 x Co x (x = 0, 0.25, 2) Alloys Studied by Pressure Differential Scanning Calorimetry Materials Transactions, Vol. 43, No. 5 (2002) pp. 1095 to 1099 Special Issue on Hydrogen Absorbing Materials c 2002 The Japan Institute of Metals Hydrogenation and Dehydrogenation Behavior of LaNi 5 x

More information

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase Materials Transactions, Vol. 43, No. 9 (2002) pp. 2337 to 2341 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained

More information

Chapter 2 Metallic Glasses

Chapter 2 Metallic Glasses Chapter 2 Metallic Glasses Metallic glasses, which exhibit many fascinating properties, have been developed during the past half century. The atomic structure has been basically understood by using a dense

More information

CHEM J-2 June 2014

CHEM J-2 June 2014 CHEM1102 2014-J-2 June 2014 The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. 2 What is

More information

Conversion electron M6ssbauer spectroscopic study of YIG substituted with Bi, Ti, Ga and La

Conversion electron M6ssbauer spectroscopic study of YIG substituted with Bi, Ti, Ga and La Hyperfine Interactions 84(1994)421-426 421 Conversion electron M6ssbauer spectroscopic study of YIG substituted with Bi, Ti, Ga and La K. Nomura a, T. Hanai a, R. Sadamoto a, Y. Ujihira b, T. Ryuo c and

More information

Alloys and Solid Solutions

Alloys and Solid Solutions Alloys and Solid Solutions Chemistry 123 Spring 2008 Dr. Woodward Solutions Solid Solution 14 Carat Gold Liquid Solution Vodka Gaseous Solution Air Solution = A homogeneous mixture 1 Alloys An alloy is

More information

Humankind has used iron products since at least 1200 B.C. Even though

Humankind has used iron products since at least 1200 B.C. Even though Metallography of Steels Interpretation of Structure and the Effects of Processing Hubertus Colpaert Updated and Translated by André Luiz V. da Costa e Silva Copyright 2018 ASM International All rights

More information

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations Components and Phases Components: The elements or compounds that are mixed initially (Al and Cu). Phases: A phase is a homogenous,

More information

X-ray diffraction and Mössbauer Spectroscopic Study of

X-ray diffraction and Mössbauer Spectroscopic Study of Egypt. J. Sol., Vol. (26), No. (2), (2003) 197 X-ray diffraction and Mössbauer Spectroscopic Study of BaCo 0.5x Zn 0.5x Ti x Fe 12-2x O 19 (M-type hexagonal ferrite) T. M. Meaz 1* and C. Bender Koch 2

More information

Paramagnetic Europium Salen Complex and Sickle-Cell Anemia

Paramagnetic Europium Salen Complex and Sickle-Cell Anemia Paramagnetic Europium Salen Complex and Sickle-Cell Anemia Clive I. Wynter *, D. H. Ryan, Leopold May, F. W. Oliver, Eugene Brown *, Eugene J. Hoffman, and David Bernstein * Nassau Community College, Garden

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v y

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v y A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 56 2011 Issue 4 DOI: 10.2478/v10172-011-0112-y D. BOCHENEK, G. DERCZ, D. OLESZAK APPLICATION OF MECHANICAL ACTIVATION IN SYNTHESIZING

More information