Molecular Modeling 9. Protein structure prediction, part 2: Homology modeling, fold recognition & threading

Size: px
Start display at page:

Download "Molecular Modeling 9. Protein structure prediction, part 2: Homology modeling, fold recognition & threading"

Transcription

1 Molecular Modeling 9 Protein structure prediction, part 2: Homology modeling, fold recognition & threading

2 The project... Remember: You are smarter than the program. Inspecting the model: Are amino acids that are conserved in the binding site in the same place. That is reasonable. Are the key residues that you think will interact with your ligand placed to do so? To do the docking you need a: PDB file of the protein (the model) A file specifying the binding site, e.g. D3.32 (an ASP in the site). A smiles file for the ligand, e.g. Cc1nc[nH]c1CCN CHEMBL275443

3 Example: Dopamine D3 receptor

4 Lecture on monday... Think about questions that you would like to have answered on Tuesday: Which areas are most difficult? Do you want more specific reading instructions for some parts? On Tuesday I will give a summary of what you should know. Deadline for preliminary report!!! Hand one in...

5 The exercise yesterday... RMSD/Rank measures how well docking can (predict experimental geometry)/(identify ligand among decoys, enrichment)

6 Last lecture & This lecture Previous lecture: Molecular docking: Sampling & Scoring Lead optimization This lecture: Back to protein structure prediction Homology/comparative modeling (part II:more) Fold recognition & threading

7 The problem: Sequence to Structure

8 Why do we want to predict protein structure? Experimental effort to determine protein structure is very large and costly. Some are impossible to solve with current methods. The gap between the size of the protein sequence data and protein structure data is large and increasing. compare

9 Methods for protein structure predicton Two basic methods: 1. Homology modeling Uses evolutionary similarities, functional similarities 2. Fold recognition or threading Uses structural knowledge, fold similarity : for harder targets Today we will look at homology modeling again, how that can be improved, and to discuss point 2.

10 Steps in comparative/homology modeling Find suitable template(s) Build alignment between target and template(s) Build model(s) Replace side chains Resolve conflicts in the structure Model loops (regions without an alignment) Evaluate and select model(s)

11 Homology/Comparative modeling START TARGET SEQUENCE TEMPLATE STRUCTURE Identify related structures (templates)...acghtkildikgidywiahkalcteklftkcelsqnlydidgy... Align target sequence to template structures Build a model for the target sequence using information from template structures Evaluate the model ALIGNMENT TARGET...SCDKLLDDELDDDIACAKKILAIKGID... TEMPLATE...SCDKFLDDDITDDIMCAKKILDIKGID... TARGET MODEL NO model OK? YES QUALITY PROFILE QUALITY protein model X END RESIDUE POSITION

12 Three homology modeling approaches 1. Rigid body assembly SWISS-MODEL 2. Segment based Segmod 3. Distance restraints Modeller

13 1. Rigid body assembly Simplest approach: Transfer the backbone conformation of the template to the unknown protein. Example: SWISS-MODEL: Copy backbone Copy side chains - if they are the same Build loops Build side chains

14 2. Segment-based approach Start with a set of Calpha coordinates as an inital framework for the target protein. This framework is based on a homologous protein identified from a sequence alignment. Break down the target sequence into fragments. The initial framework is used to guide to find matching segments in a database based on known protein structures. The fragments are fitted into the growing target structure. Make many alternatives by adding segments in random order. Make an average of all models and do a short minimization. That s your final model.

15 2. Segment-based approach Inital framework Build backbone Add fragments in random order Make average of different models and minimize

16 protein model X RESIDUE POSITION 3.Distance restraints: Modeller Generate many constraints: Homology derived constraints Distances and angles between aligned positions should be similar Stereochemical constraints Bond lengths, bond angles, dihedral angles, non-bonded atom-atom contacts Model derived by optimizing constraints. Models can further be evaluated using Ramachandran plot and/or DOPE score (statistical pair-potential for protein structures) START Identify related structures (templates) Align target sequence to template structures Build a model for the target sequence using information from template structures Evaluate the model NO model OK? YES END TARGET SEQUENCE...ACGHTKILDIKGIDYWIAHKALCTEKLFTKCELSQNLYDIDGY... QUALITY ALIGNMENT TEMPLATE STRUCTURE TARGET...SCDKLLDDELDDDIACAKKILAIKGID... TEMPLATE...SCDKFLDDDITDDIMCAKKILDIKGID... QUALITY PROFILE TARGET MODEL

17 Model evaluation (when you don t know the answer) Check of stereochemistry bond lengths & angles, peptide bond planarity, side-chain ring planarity, chirality, torsion angles, clashes Check of spatial features hydrophobic core, solvent accessibility, distribution of charged groups, atomatom-distances, atomic volumes, mainchain hydrogen bonding What do you know about the protein?

18 Benchmarking of the three approaches All are not equal: A benchmark of different homology modeling programs BJÖRN WALLNER AND ARNE ELOFSSON Stockholm Bioinformatics Center, Albanova University Center, Stockholm University, Stockholm, Sweden (RECEIVED November 22, 2004; FINAL REVISION February 18, 2005; ACCEPTED February 18, 2005) Distance restraints MODELLER Classical mechanics SWISS-MODEL Segment based SegMod/ENCAD

19 Which method is best? RMSD

20 Which method is best? Backbone phi/psi Caused by minimization step

21 Which method is best? Side chains

22 Benchmark: improvements The model is rarely closer to the target than the template was...

23 Example of improvements Template - red Model - green Target - blue Shows the scale of improvements

24 Where can you find/get homology models? Manual - do it yourself! Great if you know what you re doing Automated modeling servers Good tool for easy generation of models. Swiss-Model: Pre-calculated models Never up to date and often bad. Modeller:

25 Further improvement of homology models? Many of you have been trying several templates for your GPCR targets. Perhaps the models are good in different parts - multiple templates? But wait, why not include all at the same time?

26 Multiple templates - using more than one template Not always one template is based Modeller can use multiple templates Average model Often the best is better Experts can make this work Is it possible to make it work automatically?

27 Multiple templates Advantage to use more than one template Modeller can use multiple templates However, the best single template is often better. But there is no simple way of finding the best model! Manually it is possible to do this

28 Some models get better The combined model alternates template to get the best result Local sequence identity affects result.

29 Some models get worse... template 1 template 2 Multiple template: Completely lost!

30 Multiple templates Models get better and worse with multiple templates Better Worse Templates

31 What can be homology modeled? What do we do in the twilight zone?

32 The fold universe Why are there so few protein folds? Chotia: 1000 folds for the molecular biologist Why do most sequences fit a small number of folds?

33 Typical folds 20% of folds account for 80% of proteins Mostly true for RNA too Compare with DNA: Only a single fold Homologous sequences Functional convergence onto folds Physical restrictions

34 Folding patterns Simple permutations of helices/sheets Stable local patterns (lots of h-bonds) Hydrophobic patterns Contiguous sheets

35 Fold recognition: databases Two databases: SCOP / CATH Hierarchical classification of structures Class - / Architecture Folds / Topology Superfamily / Homology Family SCOP manual, CATH semi-manual

36 CATH

37 CATH

38 CATH

39 CATH

40 CATH

41 SCOP

42 SCOP

43 SCOP

44 SCOP

45 SCOP

46 SCOP

47 Methods for protein structure prediction Two basic methods: 1. Homology modeling A clear evolutionary relationship between target and protein of known structure, which can be detected from sequence. 2. Fold recognition or threading If the structure of the target is related to a protein of known structure, but it can not be identified from sequence. The fold can often tell us something about function.

48 Fold recognition/threading FR/Threading is used if you want to predict a general structure for the protein. You are not necessarily interested in the atomic details. Question: Based on an amino acid sequence (of unknown structure) and a set of template (protein) structures, which template represents the target best? Suggestion: Thread the amino acid sequence through every protein structure and see which one is best. Used when standard sequence methods fail. Gives a rough model. Structure is more conserved than sequence.

49 Fold recognition/threading Fold 1 Query sequence Fold 2 compatibility scores Fold 3 Fold N

50 PDB new fold growth is stabilizing! If the fold has not been observed before, threading won t find it! So, it s good that there appears to be a limited number of folds, maybe around Fold recognition relies on that proteins with very different sequences can adopt the same fold.

51 Homology vs. fold detection % seq. ID Approach Fold Detection Homology Modelling Target Sequence Any Sequence?? >= 30-50% ID with template Model Quality Fold Level Atomic Level - The best method of determining 3D structure is to base the model you make on a known structure. - If your sequence is sufficiently similar (>30-50% identity) you could generate an all atom model by homology modeling. Close to 50% of all new sequences can be homology modeled. - In the twilight zone (<20-30%), use fold recognition methods!

52 Basic principles of fold recognition 1.Construction of template library 2. Sequence-structure alignment - threading (compare: sampling in docking) 3.Design of scoring function (compare: scoring in docking) 4.Template selection and model construction Only step one is easy...

53 1. Template library A representative set of protein structures extracted from the PDB database. It satisfies the following conditions: 1.The resolution of each representative structure should be good; 2.A good X-ray structure has higher priority than a NMR structure; 3.The sequence identity between any two representatives should be no more than 30%, in order to save computing time. Examples: CATH: SCOP:

54 2. Sequence-structure alignments Sampling all observed protein folds is of course much easier than sampling all possible conformations (infinite). However, sampling the different alignments efficiently is still extremely challenging - in particular since gaps will be allowed: The score of placing a residue in a position depends on how other residues are aligned. Approximations: Frozen approximation: Assumes all other residues are identical to the templates. High penalties for gaps in secondary structure.

55 3. Scoring function Local and global measures locally - i.e. secondary structure preferences, Gly/Pro in turns. Specific amino acids more probable in secondary structure elements. globally - hydrophobic core, residue contacts, charged residues exposed sequence-structure alignment must make sense in 3D. Few gaps in core secondary structures

56 3. Scoring: Knowledge-based potentials Use knowledge-based potential: Construct a database of all 20x20 or (20*19)/2 amino acid pairs. Use one interaction site per amino acid, not atomistic. Predict a given sequence using the pairwise potentials, Pab A solvation potential reflecting the degree of burial is also included. Frequency of X-Y distance b X-Y distance a

57 3. Scoring Select the template structure with the best score - a first rough model of the protein.

58 Fold recognition methods: Many other.. Structure-based 3D-1D profiles (Bowie, 1991) Threader (Jones, 1992) Prediction and sequence based Predicted Secondary structures (Fischer, 1996; Rost, 1996) Evolutionary information PSI-BLAST (Altschul, 1997) HMMs (Karplus, 1997) Profile-Profile based (Rychlewski, 2000; von Öhsen 2001) Combinations (Fischer, 2000, Kelley, 2000) Consensus methods

Comparative Modeling Part 1. Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center

Comparative Modeling Part 1. Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center Comparative Modeling Part 1 Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center Function is the most important feature of a protein Function is related to structure Structure is

More information

Protein Structure Prediction

Protein Structure Prediction Homology Modeling Protein Structure Prediction Ingo Ruczinski M T S K G G G Y F F Y D E L Y G V V V V L I V L S D E S Department of Biostatistics, Johns Hopkins University Fold Recognition b Initio Structure

More information

Protein 3D Structure Prediction

Protein 3D Structure Prediction Protein 3D Structure Prediction Michael Tress CNIO ?? MREYKLVVLGSGGVGKSALTVQFVQGIFVDE YDPTIEDSYRKQVEVDCQQCMLEILDTAGTE QFTAMRDLYMKNGQGFALVYSITAQSTFNDL QDLREQILRVKDTEDVPMILVGNKCDLEDER VVGKEQGQNLARQWCNCAFLESSAKSKINVN

More information

Bioinformatics & Protein Structural Analysis. Bioinformatics & Protein Structural Analysis. Learning Objective. Proteomics

Bioinformatics & Protein Structural Analysis. Bioinformatics & Protein Structural Analysis. Learning Objective. Proteomics The molecular structures of proteins are complex and can be defined at various levels. These structures can also be predicted from their amino-acid sequences. Protein structure prediction is one of the

More information

3D Structure Prediction with Fold Recognition/Threading. Michael Tress CNB-CSIC, Madrid

3D Structure Prediction with Fold Recognition/Threading. Michael Tress CNB-CSIC, Madrid 3D Structure Prediction with Fold Recognition/Threading Michael Tress CNB-CSIC, Madrid MREYKLVVLGSGGVGKSALTVQFVQGIFVDEYDPTIEDSY RKQVEVDCQQCMLEILDTAGTEQFTAMRDLYMKNGQGFAL VYSITAQSTFNDLQDLREQILRVKDTEDVPMILVGNKCDL

More information

Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction

Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction Conformational Analysis 2 Conformational Analysis Properties of molecules depend on their three-dimensional

More information

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Homology Modelling Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Why are Protein Structures so Interesting? They provide a detailed picture of interesting biological features,

More information

Structure Prediction. Modelado de proteínas por homología GPSRYIV. Master Dianas Terapéuticas en Señalización Celular: Investigación y Desarrollo

Structure Prediction. Modelado de proteínas por homología GPSRYIV. Master Dianas Terapéuticas en Señalización Celular: Investigación y Desarrollo Master Dianas Terapéuticas en Señalización Celular: Investigación y Desarrollo Modelado de proteínas por homología Federico Gago (federico.gago@uah.es) Departamento de Farmacología Structure Prediction

More information

Structural bioinformatics

Structural bioinformatics Structural bioinformatics Why structures? The representation of the molecules in 3D is more informative New properties of the molecules are revealed, which can not be detected by sequences Eran Eyal Plant

More information

Protein Structure Prediction. christian studer , EPFL

Protein Structure Prediction. christian studer , EPFL Protein Structure Prediction christian studer 17.11.2004, EPFL Content Definition of the problem Possible approaches DSSP / PSI-BLAST Generalization Results Definition of the problem Massive amounts of

More information

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004 CSE 397-497: Computational Issues in Molecular Biology Lecture 19 Spring 2004-1- Protein structure Primary structure of protein is determined by number and order of amino acids within polypeptide chain.

More information

Statistical Machine Learning Methods for Bioinformatics VI. Support Vector Machine Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics VI. Support Vector Machine Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics VI. Support Vector Machine Applications in Bioinformatics Jianlin Cheng, PhD Computer Science Department and Informatics Institute University of

More information

Molecular Modeling Lecture 8. Local structure Database search Multiple alignment Automated homology modeling

Molecular Modeling Lecture 8. Local structure Database search Multiple alignment Automated homology modeling Molecular Modeling 2018 -- Lecture 8 Local structure Database search Multiple alignment Automated homology modeling An exception to the no-insertions-in-helix rule Actual structures (myosin)! prolines

More information

Protein structure. Wednesday, October 4, 2006

Protein structure. Wednesday, October 4, 2006 Protein structure Wednesday, October 4, 2006 Introduction to Bioinformatics Johns Hopkins School of Public Health 260.602.01 J. Pevsner pevsner@jhmi.edu Copyright notice Many of the images in this powerpoint

More information

Ab Initio SERVER PROTOTYPE FOR PREDICTION OF PHOSPHORYLATION SITES IN PROTEINS*

Ab Initio SERVER PROTOTYPE FOR PREDICTION OF PHOSPHORYLATION SITES IN PROTEINS* COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 9(1-2) 93-100 (2003/2004) Ab Initio SERVER PROTOTYPE FOR PREDICTION OF PHOSPHORYLATION SITES IN PROTEINS* DARIUSZ PLEWCZYNSKI AND LESZEK RYCHLEWSKI BiolnfoBank

More information

An Overview of Protein Structure Prediction: From Homology to Ab Initio

An Overview of Protein Structure Prediction: From Homology to Ab Initio An Overview of Protein Structure Prediction: From Homology to Ab Initio Final Project For Bioc218, Computational Molecular Biology Zhiyong Zhang Abstract The current status of the protein prediction methods,

More information

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen

Homology Modelling. Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Homology Modelling Thomas Holberg Blicher NNF Center for Protein Research University of Copenhagen Why are Protein Structures so Interesting? They provide a detailed picture of interesting biological features,

More information

Prediction of Protein-Protein Binding Sites and Epitope Mapping. Copyright 2017 Chemical Computing Group ULC All Rights Reserved.

Prediction of Protein-Protein Binding Sites and Epitope Mapping. Copyright 2017 Chemical Computing Group ULC All Rights Reserved. Prediction of Protein-Protein Binding Sites and Epitope Mapping Epitope Mapping Antibodies interact with antigens at epitopes Epitope is collection residues on antigen Continuous (sequence) or non-continuous

More information

Workunit: P Title:MT

Workunit: P Title:MT Workunit: P000003 Title:MT Model Summary: Model information: Modelled residue range: 48 to 340 Quaternary structure information: Based on template: 3aptA (1.85 A) Template (3aptA): Unknown Sequence Identity

More information

Textbook Reading Guidelines

Textbook Reading Guidelines Understanding Bioinformatics by Marketa Zvelebil and Jeremy Baum Last updated: May 1, 2009 Textbook Reading Guidelines Preface: Read the whole preface, and especially: For the students with Life Science

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/19/07 CAP5510 1 HMM for Sequence Alignment 2/19/07 CAP5510 2

More information

BMB/Bi/Ch 170 Fall 2017 Problem Set 1: Proteins I

BMB/Bi/Ch 170 Fall 2017 Problem Set 1: Proteins I BMB/Bi/Ch 170 Fall 2017 Problem Set 1: Proteins I Please use ray-tracing feature for all the images you are submitting. Use either the Ray button on the right side of the command window in PyMOL or variations

More information

COMPARATIVE PROTEIN STRUCTURE MODELING

COMPARATIVE PROTEIN STRUCTURE MODELING ?Annu. Rev. Biophys. Biomol. Struct. 2000. 29:291 325 Copyright c 2000 by Annual Reviews. All rights reserved protein structure prediction, fold assignment, alignment, homology Comparative modeling predicts

More information

An insilico Approach: Homology Modelling and Characterization of HSP90 alpha Sangeeta Supehia

An insilico Approach: Homology Modelling and Characterization of HSP90 alpha Sangeeta Supehia 259 Journal of Pharmaceutical, Chemical and Biological Sciences ISSN: 2348-7658 Impact Factor (SJIF): 2.092 December 2014-February 2015; 2(4):259-264 Available online at http://www.jpcbs.info Online published

More information

CS273: Algorithms for Structure Handout # 5 and Motion in Biology Stanford University Tuesday, 13 April 2004

CS273: Algorithms for Structure Handout # 5 and Motion in Biology Stanford University Tuesday, 13 April 2004 CS273: Algorithms for Structure Handout # 5 and Motion in Biology Stanford University Tuesday, 13 April 2004 Lecture #5: 13 April 2004 Topics: Sequence motif identification Scribe: Samantha Chui 1 Introduction

More information

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza. Tutore Prof.ssa Anna Tramontano Coordinatore Prof. Marco Tripodi Dottorando Daniel Carbajo Pedrosa Dottorato di Ricerca in Scienze Pasteuriane XXIV CICLO Docente

More information

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl)

Protein Sequence Analysis. BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Protein Sequence Analysis BME 110: CompBio Tools Todd Lowe April 19, 2007 (Slide Presentation: Carol Rohl) Linear Sequence Analysis What can you learn from a (single) protein sequence? Calculate it s physical

More information

Bioinformatics Tools. Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine

Bioinformatics Tools. Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Bioinformatics Tools Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Bioinformatics Tools Stuart M. Brown, Ph.D Dept of Cell Biology NYU School of Medicine Overview This lecture will

More information

Structural Analysis of the EGR Family of Transcription Factors: Templates for Predicting Protein DNA Interactions

Structural Analysis of the EGR Family of Transcription Factors: Templates for Predicting Protein DNA Interactions Introduction Structural Analysis of the EGR Family of Transcription Factors: Templates for Predicting Protein DNA Interactions Jamie Duke, Rochester Institute of Technology Mentor: Carlos Camacho, University

More information

What s New in Discovery Studio 2.5.5

What s New in Discovery Studio 2.5.5 What s New in Discovery Studio 2.5.5 Discovery Studio takes modeling and simulations to the next level. It brings together the power of validated science on a customizable platform for drug discovery research.

More information

Bioinformatics Practical Course. 80 Practical Hours

Bioinformatics Practical Course. 80 Practical Hours Bioinformatics Practical Course 80 Practical Hours Course Description: This course presents major ideas and techniques for auxiliary bioinformatics and the advanced applications. Points included incorporate

More information

Lecture 1 - Introduction to Structural Bioinformatics

Lecture 1 - Introduction to Structural Bioinformatics Lecture 1 - Introduction to Structural Bioinformatics Motivation and Basics of Protein Structure Prof. Haim J. Wolfson 1 Most of the Protein Structure slides courtesy of Hadar Benyaminy. Prof. Haim J.

More information

Are specialized servers better at predicting protein structures than stand alone software?

Are specialized servers better at predicting protein structures than stand alone software? African Journal of Biotechnology Vol. 11(53), pp. 11625-11629, 3 July 2012 Available online at http://www.academicjournals.org/ajb DOI:10.5897//AJB12.849 ISSN 1684 5315 2012 Academic Journals Full Length

More information

Protein Structure Databases, cont. 11/09/05

Protein Structure Databases, cont. 11/09/05 11/9/05 Protein Structure Databases (continued) Prediction & Modeling Bioinformatics Seminars Nov 10 Thurs 3:40 Com S Seminar in 223 Atanasoff Computational Epidemiology Armin R. Mikler, Univ. North Texas

More information

Prediction of Protein Structure by Emphasizing Local Side- Chain/Backbone Interactions in Ensembles of Turn

Prediction of Protein Structure by Emphasizing Local Side- Chain/Backbone Interactions in Ensembles of Turn PROTEINS: Structure, Function, and Genetics 53:486 490 (2003) Prediction of Protein Structure by Emphasizing Local Side- Chain/Backbone Interactions in Ensembles of Turn Fragments Qiaojun Fang and David

More information

Homework Project Protein Structure Prediction Contact me if you have any questions/problems with the assignment:

Homework Project Protein Structure Prediction Contact me if you have any questions/problems with the assignment: Homework Project Protein Structure Prediction Contact me if you have any questions/problems with the assignment: Roland.Dunbrack@gmail.com For this homework, each of you will be assigned a particular human

More information

proteins Template-based protein structure prediction the last decade

proteins Template-based protein structure prediction the last decade proteins STRUCTURE O FUNCTION O BIOINFORMATICS Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade Jianyi Yang, 1,2 Wenxuan Zhang, 1,2 Baoji He, 1,2 Sara

More information

Sequence Analysis '17 -- lecture Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction

Sequence Analysis '17 -- lecture Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction Sequence Analysis '17 -- lecture 16 1. Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction Alpha helix Right-handed helix. H-bond is from the oxygen at i to the nitrogen

More information

Chapter 8. One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model. Sebastian Kmiecik and Andrzej Kolinski.

Chapter 8. One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model. Sebastian Kmiecik and Andrzej Kolinski. Chapter 8 One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model Abstract Despite the significant increase in computational power, molecular modeling of protein structure using

More information

4/10/2011. Rosetta software package. Rosetta.. Conformational sampling and scoring of models in Rosetta.

4/10/2011. Rosetta software package. Rosetta.. Conformational sampling and scoring of models in Rosetta. Rosetta.. Ph.D. Thomas M. Frimurer Novo Nordisk Foundation Center for Potein Reseach Center for Basic Metabilic Research Breif introduction to Rosetta Rosetta docking example Rosetta software package Breif

More information

Computational methods in bioinformatics: Lecture 1

Computational methods in bioinformatics: Lecture 1 Computational methods in bioinformatics: Lecture 1 Graham J.L. Kemp 2 November 2015 What is biology? Ecosystem Rain forest, desert, fresh water lake, digestive tract of an animal Community All species

More information

Molecular Structures

Molecular Structures Molecular Structures 1 Molecular structures 2 Why is it important? Answers to scientific questions such as: What does the structure of protein X look like? Can we predict the binding of molecule X to Y?

More information

Homology Modeling of the Chimeric Human Sweet Taste Receptors Using Multi Templates

Homology Modeling of the Chimeric Human Sweet Taste Receptors Using Multi Templates 2013 International Conference on Food and Agricultural Sciences IPCBEE vol.55 (2013) (2013) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2013. V55. 1 Homology Modeling of the Chimeric Human Sweet Taste

More information

Computational Methods for Protein Structure Prediction and Fold Recognition... 1 I. Cymerman, M. Feder, M. PawŁowski, M.A. Kurowski, J.M.

Computational Methods for Protein Structure Prediction and Fold Recognition... 1 I. Cymerman, M. Feder, M. PawŁowski, M.A. Kurowski, J.M. Contents Computational Methods for Protein Structure Prediction and Fold Recognition........................... 1 I. Cymerman, M. Feder, M. PawŁowski, M.A. Kurowski, J.M. Bujnicki 1 Primary Structure Analysis...................

More information

Docking. Why? Docking : finding the binding orientation of two molecules with known structures

Docking. Why? Docking : finding the binding orientation of two molecules with known structures Docking : finding the binding orientation of two molecules with known structures Docking According to the molecules involved: Protein-Ligand docking Protein-Protein docking Specific docking algorithms

More information

Molecular Structures

Molecular Structures Molecular Structures 1 Molecular structures 2 Why is it important? Answers to scientific questions such as: What does the structure of protein X look like? Can we predict the binding of molecule X to Y?

More information

Building an Antibody Homology Model

Building an Antibody Homology Model Application Guide Antibody Modeling: A quick reference guide to building Antibody homology models, and graphical identification and refinement of CDR loops in Discovery Studio. Francisco G. Hernandez-Guzman,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature16191 SUPPLEMENTARY DISCUSSION We analyzed the current database of solved protein structures to assess the uniqueness of our designed toroids in terms of global similarity and bundle

More information

Recursive protein modeling: a divide and conquer strategy for protein structure prediction and its case study in CASP9

Recursive protein modeling: a divide and conquer strategy for protein structure prediction and its case study in CASP9 Recursive protein modeling: a divide and conquer strategy for protein structure prediction and its case study in CASP9 Jianlin Cheng Department of Computer Science, Informatics Institute, C.Bond Life Science

More information

Computer Aided Drug Design. Protein structure prediction. Qin Xu

Computer Aided Drug Design. Protein structure prediction. Qin Xu Computer Aided Drug Design Protein structure prediction Qin Xu http://cbb.sjtu.edu.cn/~qinxu/cadd.htm Course Outline Introduction and Case Study Drug Targets Sequence analysis Protein structure prediction

More information

BIOLOGY 200 Molecular Biology Students registered for the 9:30AM lecture should NOT attend the 4:30PM lecture.

BIOLOGY 200 Molecular Biology Students registered for the 9:30AM lecture should NOT attend the 4:30PM lecture. BIOLOGY 200 Molecular Biology Students registered for the 9:30AM lecture should NOT attend the 4:30PM lecture. Midterm date change! The midterm will be held on October 19th (likely 6-8PM). Contact Kathy

More information

Protein Tertiary Model Assessment Using Granular Machine Learning Techniques

Protein Tertiary Model Assessment Using Granular Machine Learning Techniques Georgia State University ScholarWorks @ Georgia State University Computer Science Dissertations Department of Computer Science 3-21-2012 Protein Tertiary Model Assessment Using Granular Machine Learning

More information

RosettainCASP4:ProgressinAbInitioProteinStructure Prediction

RosettainCASP4:ProgressinAbInitioProteinStructure Prediction PROTEINS: Structure, Function, and Genetics Suppl 5:119 126 (2001) DOI 10.1002/prot.1170 RosettainCASP4:ProgressinAbInitioProteinStructure Prediction RichardBonneau, 1 JerryTsai, 1 IngoRuczinski, 1 DylanChivian,

More information

BIRKBECK COLLEGE (University of London)

BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) SCHOOL OF BIOLOGICAL SCIENCES M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON: Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK VII SEMESTER BM6005 BIO INFORMATICS Regulation 2013 Academic Year 2018-19 Prepared

More information

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid Supplementary Figures Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid sequence of Drosophila RCC1. Same colors are for Figure 1 with sequence of β-wedge that interacts with Ran in

More information

Genetic Algorithms For Protein Threading

Genetic Algorithms For Protein Threading From: ISMB-98 Proceedings. Copyright 1998, AAAI (www.aaai.org). All rights reserved. Genetic Algorithms For Protein Threading Jacqueline Yadgari #, Amihood Amir #, Ron Unger* # Department of Mathematics

More information

Protein Folding Problem I400: Introduction to Bioinformatics

Protein Folding Problem I400: Introduction to Bioinformatics Protein Folding Problem I400: Introduction to Bioinformatics November 29, 2004 Protein biomolecule, macromolecule more than 50% of the dry weight of cells is proteins polymer of amino acids connected into

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics http://1.51.212.243/bioinfo.html Dr. rer. nat. Jing Gong Cancer Research Center School of Medicine, Shandong University 2011.10.19 1 Chapter 4 Structure 2 Protein Structure

More information

Homology Modeling of Mouse orphan G-protein coupled receptors Q99MX9 and G2A

Homology Modeling of Mouse orphan G-protein coupled receptors Q99MX9 and G2A Quality in Primary Care (2016) 24 (2): 49-57 2016 Insight Medical Publishing Group Research Article Homology Modeling of Mouse orphan G-protein Research Article Open Access coupled receptors Q99MX9 and

More information

Protein structure. Predictive methods

Protein structure. Predictive methods Protein structure Predictive methods Sources for this lecture Park et al, Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. JMB 1998 David

More information

The RNA tools registry

The RNA tools registry university of copenhagen f a c u lt y o f h e a lt h a n d m e d i c a l s c i e n c e s The RNA tools registry A community effort to catalog RNA bioinformatics resources and their relationships Anne Wenzel

More information

Protein Bioinformatics PH Final Exam

Protein Bioinformatics PH Final Exam Name (please print) Protein Bioinformatics PH260.655 Final Exam => take-home questions => open-note => please use either * the Word-file to type your answers or * print out the PDF and hand-write your

More information

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 5 Protein Structure - III

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 5 Protein Structure - III Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 5 Protein Structure - III This is lecture number three on protein structure. (Refer Slide Time:

More information

The Double Helix. DNA and RNA, part 2. Part A. Hint 1. The difference between purines and pyrimidines. Hint 2. Distinguish purines from pyrimidines

The Double Helix. DNA and RNA, part 2. Part A. Hint 1. The difference between purines and pyrimidines. Hint 2. Distinguish purines from pyrimidines DNA and RNA, part 2 Due: 3:00pm on Wednesday, September 24, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy The Double Helix DNA, or deoxyribonucleic

More information

Protein structure prediction in 2002 Jack Schonbrun, William J Wedemeyer and David Baker*

Protein structure prediction in 2002 Jack Schonbrun, William J Wedemeyer and David Baker* sb120317.qxd 24/05/02 16:00 Page 348 348 Protein structure prediction in 2002 Jack Schonbrun, William J Wedemeyer and David Baker* Central issues concerning protein structure prediction have been highlighted

More information

Introduction. CS482/682 Computational Techniques in Biological Sequence Analysis

Introduction. CS482/682 Computational Techniques in Biological Sequence Analysis Introduction CS482/682 Computational Techniques in Biological Sequence Analysis Outline Course logistics A few example problems Course staff Instructor: Bin Ma (DC 3345, http://www.cs.uwaterloo.ca/~binma)

More information

Homology modeling and structural validation of tissue factor pathway inhibitor

Homology modeling and structural validation of tissue factor pathway inhibitor www.bioinformation.net Hypothesis Volume 9(16) Homology modeling and structural validation of tissue factor pathway inhibitor Piyush Agrawal, Zoozeal Thakur & Mahesh Kulharia* Centre for Bioinformatics,

More information

ECS 129: Structural Bioinformatics March 15, 2016

ECS 129: Structural Bioinformatics March 15, 2016 Notes: ES 129: Structural Bioinformatics March 15, 2016 1) The final exam is open book, open notes. 2) The final is divided into 2 parts, and graded over 100 points (with 8 points extra credit) 3) You

More information

Computational Methods for Protein Structure Prediction

Computational Methods for Protein Structure Prediction Computational Methods for Protein Structure Prediction Ying Xu 2017/12/6 1 Outline introduction to protein structures the problem of protein structure prediction why it is possible to predict protein structures

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction 1 Protein Structure Prediction Primary Structure Secondary Structure Prediction Tertiary Structure Prediction Prediction of Coiled Coil Domains Prediction of Transmembrane

More information

Tutorial. Visualize Variants on Protein Structure. Sample to Insight. November 21, 2017

Tutorial. Visualize Variants on Protein Structure. Sample to Insight. November 21, 2017 Visualize Variants on Protein Structure November 21, 2017 Sample to Insight QIAGEN Aarhus Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.qiagenbioinformatics.com AdvancedGenomicsSupport@qiagen.com

More information

Recapitulation of Protein Family Divergence using Flexible Backbone Protein Design

Recapitulation of Protein Family Divergence using Flexible Backbone Protein Design doi:10.1016/j.jmb.2004.11.062 J. Mol. Biol. (2005) 346, 631 644 Recapitulation of Protein Family Divergence using Flexible Backbone Protein Design Christopher T. Saunders 1 and David Baker 2 * 1 Department

More information

Model based design of inhibitors for c-jun

Model based design of inhibitors for c-jun Model based design of inhibitors for c-jun Pallavi Chauhan 1, *, Madhvi Shakya 2 1 Department of Bioinformatics, 2 Department of Mathematics, MANIT, Bhopal, MP, India; Pallavi Chauhan - Email: pallavi.chauhan2006@gmail.com;

More information

Designing and benchmarking the MULTICOM protein structure prediction system

Designing and benchmarking the MULTICOM protein structure prediction system Li et al. BMC Structural Biology 2013, 13:2 RESEARCH ARTICLE Open Access Designing and benchmarking the MULTICOM protein structure prediction system Jilong Li 1, Xin Deng 1, Jesse Eickholt 1 and Jianlin

More information

Permutation Clustering of the DNA Sequence Facilitates Understanding of the Nonlinearly Organized Genome

Permutation Clustering of the DNA Sequence Facilitates Understanding of the Nonlinearly Organized Genome RESEARCH PROPOSAL Permutation Clustering of the DNA Sequence Facilitates Understanding of the Nonlinearly Organized Genome Qiao JIN School of Medicine, Tsinghua University Advisor: Prof. Xuegong ZHANG

More information

Amino Acids. Amino Acid Structure

Amino Acids. Amino Acid Structure Amino Acids Pratt & Cornely Chapter 4 Alpha carbon Sidechain Proteins peptides Amino Acid Structure 1 L amino acids Glycine R/S vs D/L L isoleucine racemization Stereochemisty Common Amino Acids 2 Which

More information

A REVIEW OF ARTIFICIAL INTELLIGENCE TECHNIQUES APPLIED TO PROTEIN STRUCTURE PREDICTION

A REVIEW OF ARTIFICIAL INTELLIGENCE TECHNIQUES APPLIED TO PROTEIN STRUCTURE PREDICTION A REVIEW OF ARTIFICIAL INTELLIGENCE TECHNIQUES APPLIED TO PROTEIN STRUCTURE PREDICTION Jiang Ye B.Sc., University of Ottawa, 2003 A PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

Profile-Profile Alignment: A Powerful Tool for Protein Structure Prediction. N. von Öhsen, I. Sommer, R. Zimmer

Profile-Profile Alignment: A Powerful Tool for Protein Structure Prediction. N. von Öhsen, I. Sommer, R. Zimmer Profile-Profile Alignment: A Powerful Tool for Protein Structure Prediction N. von Öhsen, I. Sommer, R. Zimmer Pacific Symposium on Biocomputing 8:252-263(2003) PROFILE-PROFILE ALIGNMENT: A POWERFUL TOOL

More information

BIOINFORMATICS Introduction

BIOINFORMATICS Introduction BIOINFORMATICS Introduction Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a 1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu What is Bioinformatics? (Molecular) Bio -informatics One idea

More information

MATH 5610, Computational Biology

MATH 5610, Computational Biology MATH 5610, Computational Biology Lecture 2 Intro to Molecular Biology (cont) Stephen Billups University of Colorado at Denver MATH 5610, Computational Biology p.1/24 Announcements Error on syllabus Class

More information

Template Based Modeling and Structural Refinement of Protein-Protein Interactions:

Template Based Modeling and Structural Refinement of Protein-Protein Interactions: Template Based Modeling and Structural Refinement of Protein-Protein Interactions: by Brandon Govindarajoo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

More information

CABIOS. Objectively judging the quality of a protein structure from a Ramachandran plot. Rob W.W.Hooft, Chris Sander and Gerrit Vriend

CABIOS. Objectively judging the quality of a protein structure from a Ramachandran plot. Rob W.W.Hooft, Chris Sander and Gerrit Vriend CABIOS Vol. 13 no. 4 1997 Pages 425-430 Objectively judging the quality of a protein structure from a Ramachandran plot Rob W.W.Hooft, Chris Sander and Gerrit Vriend Abstract Motivation: Statistical methods

More information

CHEM 436 / 630. Molecular modelling of proteins. Winter 2018 Term. Instructor: Guillaume Lamoureux Concordia University, Montréal, Canada

CHEM 436 / 630. Molecular modelling of proteins. Winter 2018 Term. Instructor: Guillaume Lamoureux Concordia University, Montréal, Canada CHEM 436 / 630 Molecular modelling of proteins Winter 2018 Term Instructor: Guillaume Lamoureux Concordia University, Montréal, Canada Syllabus: http://faculty.concordia.ca/glamoure/pdfs/chem436_630_syllabus_2018.pdf

More information

Grundlagen der Bioinformatik Summer Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 11, 2011 1 1 Introduction Grundlagen der Bioinformatik Summer 2011 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a) 1.1

More information

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Structure formation and association of biomolecules Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Motivation Many biomolecules are chemically synthesized

More information

CMSE 520 BIOMOLECULAR STRUCTURE, FUNCTION AND DYNAMICS

CMSE 520 BIOMOLECULAR STRUCTURE, FUNCTION AND DYNAMICS CMSE 520 BIOMOLECULAR STRUCTURE, FUNCTION AND DYNAMICS (Computational Structural Biology) OUTLINE Review: Molecular biology Proteins: structure, conformation and function(5 lectures) Generalized coordinates,

More information

This practical aims to walk you through the process of text searching DNA and protein databases for sequence entries.

This practical aims to walk you through the process of text searching DNA and protein databases for sequence entries. PRACTICAL 1: BLAST and Sequence Alignment The EBI and NCBI websites, two of the most widely used life science web portals are introduced along with some of the principal databases: the NCBI Protein database,

More information

Structural Bioinformatics GENOME 541 Spring 2018

Structural Bioinformatics GENOME 541 Spring 2018 Molecular composition of a rapidly dividing Escherichia coli cell Structural Bioinformatics GENOME 541 Spring 2018 Lecture 4: Nucleic Acids Frank DiMaio (dimaio@uw.edu) The major biopolymers DNA structure

More information

Functional profiling of metagenomic short reads: How complex are complex microbial communities?

Functional profiling of metagenomic short reads: How complex are complex microbial communities? Functional profiling of metagenomic short reads: How complex are complex microbial communities? Rohita Sinha Senior Scientist (Bioinformatics), Viracor-Eurofins, Lee s summit, MO Understanding reality,

More information

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari Introduction to Cellular Biology and Bioinformatics Farzaneh Salari Outline Bioinformatics Cellular Biology A Bioinformatics Problem What is bioinformatics? Computer Science Statistics Bioinformatics Mathematics...

More information

proteins Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10 Yang Zhang 1,2 * INTRODUCTION

proteins Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10 Yang Zhang 1,2 * INTRODUCTION proteins STRUCTURE O FUNCTION O BIOINFORMATICS Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10 Yang Zhang 1,2 * 1 Department of Computational Medicine

More information

proteins Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10 Yang Zhang 1,2 * INTRODUCTION

proteins Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10 Yang Zhang 1,2 * INTRODUCTION proteins STRUCTURE O FUNCTION O BIOINFORMATICS Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10 Yang Zhang 1,2 * 1 Department of Computational Medicine

More information

Protein Structure. Protein Structure Tertiary & Quaternary

Protein Structure. Protein Structure Tertiary & Quaternary Lecture 4 Protein Structure Protein Structure Tertiary & Quaternary Dr. Sameh Sarray Hlaoui Primary structure: The linear sequence of amino acids held together by peptide bonds. Secondary structure: The

More information

Ligand docking. CS/CME/Biophys/BMI 279 Oct. 22 and 27, 2015 Ron Dror

Ligand docking. CS/CME/Biophys/BMI 279 Oct. 22 and 27, 2015 Ron Dror Ligand docking CS/CME/Biophys/BMI 279 Oct. 22 and 27, 2015 Ron Dror 1 Outline Goals of ligand docking Defining binding affinity (strength) Computing binding affinity: Simplifying the problem Ligand docking

More information

BIMM 143: Introduction to Bioinformatics (Winter 2018)

BIMM 143: Introduction to Bioinformatics (Winter 2018) BIMM 143: Introduction to Bioinformatics (Winter 2018) Course Instructor: Dr. Barry J. Grant ( bjgrant@ucsd.edu ) Course Website: https://bioboot.github.io/bimm143_w18/ DRAFT: 2017-12-02 (20:48:10 PST

More information

Pacific Symposium on Biocomputing 5: (2000)

Pacific Symposium on Biocomputing 5: (2000) HOW UNIVERSAL ARE FOLD RECOGNITION PARAMETERS. A COMPREHENSIVE STUDY OF ALIGNMENT AND SCORING FUNCTION PARAMETERS INFLUENCE ON RECOGNITION OF DISTANT FOLDS. KRZYSZTOF A. OLSZEWSKI Molecular Simulations

More information

Every thing you always wanted to know about ARP/wARP(and were probably afraid to ask...) Tim Wiegels Lamzin Group (ARP/wARP), EMBL Hamburg

Every thing you always wanted to know about ARP/wARP(and were probably afraid to ask...) Tim Wiegels Lamzin Group (ARP/wARP), EMBL Hamburg Every thing you always wanted to know about ARP/wARP(and were probably afraid to ask...) Tim Wiegels Lamzin Group (ARP/wARP), EMBL Hamburg About EMBL Established in 1974 to reflect the need for a European

More information

MOL204 Exam Fall 2015

MOL204 Exam Fall 2015 MOL204 Exam Fall 2015 Exercise 1 15 pts 1. 1A. Define primary and secondary bioinformatical databases and mention two examples of primary bioinformatical databases and one example of a secondary bioinformatical

More information

Protein structure and evolution in the light of flexibility

Protein structure and evolution in the light of flexibility Protein structure and evolution in the light of flexibility - Doctoral Thesis Statements - Annamária Franciska Ángyán Doctoral School of Chemistry Head of Doctoral School: Dr. György Inzelt, D.Sc. Synthetic

More information