metal-organic compounds

Size: px
Start display at page:

Download "metal-organic compounds"

Transcription

1 metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN Bis(l-3-carboxy-2-oxidobenzoato)- j 3 O 1,O 2 :O 3 ;j 3 O 3 :O 1,O 2 -bis[aqua(2,2 0 - bipyridine-j 2 N,N 0 )copper(ii)] Jing Gao, a Bao-Yong Zhu b and De-Liang Cui c * a Department of Chemistry and Chemical Engineering, Shandong University, Jinan , People s Republic of China, b Department of Chemistry, Dezhou University, Dezhou , People s Republic of China, and c Institute of Crystalline Materials, Shandong University, Jinan , People s Republic of China Correspondence cuidl@sdu.edu.cn Received 10 November 2008; accepted 27 November 2008 Key indicators: single-crystal X-ray study; T = 293 K; mean (C C) = Å; R factor = 0.035; wr factor = 0.084; data-to-parameter ratio = Experimental Crystal data [Cu 2 (C 8 H 4 O 5 ) 2 (C 10 H 8 N 2 ) 2 (H 2 O) 2 ] M r = Triclinic, P1 a = (5) Å b = (5) Å c = (5) Å = (5) = (5) Data collection Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.772, T max = Refinement R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 247 parameters = (5) V = (7) Å 3 Z =1 Mo K radiation = 1.36 mm 1 T = 293 (2) K mm 4985 measured reflections 3686 independent reflections 2989 reflections with I > 2(I) R int = restraints H-atom parameters constrained max = 0.32 e Å 3 min = 0.25 e Å 3 In the centrosymmetric dinuclear complex, [Cu 2 (C 8 H 4 O 5 ) 2 - (C 10 H 8 N 2 ) 2 (H 2 O) 2 ], the Cu II ion is coordinated by two N atoms from a bipyridine ligand, three O atoms from two 3- carboxy-2-oxidobenzoate dianions and the O atom of the water molecule in a distorted octahedral geometry. The Cu - O(H) coordination [2.931 (3) Å] is very weak. In the crystal structure, the dinuclear units are linked into a two-dimensional network parallel to (010) by O HO hydrogen bonds. Related literature For related structures, see: Augustin et al. (2005); Tao et al. (2002); Zheng et al. (2004). Table 1 Selected bond lengths (Å). Cu1 O (18) Cu1 O (17) Cu1 N (2) Symmetry code: (i) x þ 2; y þ 1; z þ 2. Table 2 Hydrogen-bond geometry (Å, ). Cu1 N (2) Cu1 O (2) Cu1 O5 i (2) D HA D H HA DA D HA O5 H5O (2) 156 O1 H1BO6 ii (3) 173 O1 H1AO4 iii (3) 167 Symmetry codes: (ii) x þ 1; y þ 1; z þ 2; (iii) x þ 2; y þ 1; z þ 1. Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999). We thank Professor Dao-Feng Sun and Dr Xi-Feng Lu for the data collection and helpful discussions. This work was supported by the National Natural Science Foundation of China (grant Nos and ). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2713). m4 Gao et al. doi: /s Acta Cryst. (2009). E65, m4 m5

2 metal-organic compounds References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, Augustin, M. M., Carmen, P., Jean, S. P., Marc, S., Achim, M. & Marius, A. (2005). Cryst. Growth Des. 5, Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1999). J. Appl. Cryst. 32, Sheldrick, G. M. (2008). Acta Cryst. A64, Tao, J., Zhang, Y., Tong, M. L., Chen, X. M., Yuen, T., Lin, C. L., Huang, X. Y. & Li, J. (2002). Chem. Commun. pp Zheng, Y. Z., Tong, M. L. & Chen, X. M. (2004). New J. Chem. 28, Acta Cryst. (2009). E65, m4 m5 Gao et al. [Cu 2 (C 8 H 4 O 5 ) 2 (C 10 H 8 N 2 ) 2 (H 2 O) 2 ] m5

3

4 Acta Cryst. (2009). E65, m4-m5 [ doi: /s ] Bis( -3-carboxy-2-oxidobenzoato)- 3 O 1,O 2 :O 3 ; 3 O 3 :O 1,O 2 -bis[aqua(2,2'-bipyridine- 2 N,N')copper(II)] J. Gao, B.-Y. Zhu and D.-L. Cui Comment 2,2-Bipyridine and benzenedicarboxylate (BDC) anion are good organic ligands for copper which can construct supramolecular structure via hydrogen bonds and π-π aromatic interactions. We present here the crystal structure of [Cu 2 (bpy) 2 (ipo) 2 (H 2 O) 2 ], where bpy is 2,2,-bipyridine and ipoh is 2-hydroxyisophthalate. The title compound is a centrosymmetric dinuclear complex (Fig. 1). Each Cu II ion is coordinated by two N atoms (N1 and N2) from a bipyridine ligand in a bidentate chelating fashion and three O atoms (O2, O3 and O5 i ) of two ipo dianions and the O atom (O1) of the solvent water molecule, in a distorted octahedral geometry. The Cu1 -O5 i coordination [2.931 (3) Å] is very weak. The Cu II atom is located (1) Å above the basal plane formed by atoms N1, N2, O2 and O3. The mean Cu N(bpy) distance of (2) Å and the bite angle N1 Cu1 N2 of (8) are close to the corresponding values observed in related copper-bipyridine compounds (Augustin et al., 2005). In the crystal structure, the centrosymmetric dinuclear units are linked into a two-dimensional network parallel to the (010) (Fig. 2) by O H O hydrogen bonds. In [Cu 2 (bpy) 2 (ipo) 2 (H 2 O) 2 ], the isophthalic acid (ipa) was in situ oxidative hydroxylated before coordinating with Cu II ion (Tao et al., 2002). Similar in situ oxidation has also been reported for 1,2,3-benzenetricarboxylic acid (Zheng et al., 2004). Experimental Copper(II) chloride dihydrate (0.043 g, mol), 2,2,-bipyridine (0.039 g, mol), isophthalic acid (0.083 g, mol), potassium hydroxide (0.055 g, mol) and deionized water (18 ml) were mixed together. The mixture was sealed in a Teflon-lined stainless steel vessel (25 ml) and then heated at 453 K for 36 h under autogenous pressure and then cooled to room temperature. Light-green crystals were obtained by slow evaporation of the mother-liquor in the air for a few days. Refinement O-bound H atoms were located in a difference map and then restrained to ride on their parent atoms, with a O-H distance of 0.84 (1) Å. C-bound H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å and U iso (H) = 1.2U eq (C). sup-1

5 Figures Fig. 1. The structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x + 2, -y + 1, -z + 2. Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. Bis(µ-3-carboxy-2-oxidobenzoato)- κ 3 O 1,O 2 :O 3 ;κ 3 O 3 :O 1,O 2 - bis[aqua(2,2'-bipyridine-κ 2 N,N')copper(II)] Crystal data [Cu 2 (C 8 H 4 O 5 ) 2 (C 10 H 8 N 2 ) 2 (H 2 O) 2 ] Z = 1 M r = F 000 = 426 Triclinic, P1 Hall symbol: -P 1 a = (5) Å D x = Mg m 3 Mo Kα radiation λ = Å b = (5) Å θ = º c = (5) Å α = (5)º β = (5)º γ = (5)º V = (7) Å 3 Cell parameters from 3943 reflections µ = 1.36 mm 1 T = 293 (2) K Block, green mm Data collection Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Monochromator: graphite R int = T = 293(2) K θ max = 28.2º φ and ω scans θ min = 2.1º Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.772, T max = independent reflections 2989 reflections with I > 2σ(I) h = k = measured reflections l = sup-2

6 Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained wr(f 2 ) = w = 1/[σ 2 (F o 2 ) + (0.0284P) P] where P = (F o 2 + 2F c 2 )/3 S = 1.17 (Δ/σ) max = reflections Δρ max = 0.32 e Å parameters Δρ min = 0.25 e Å 3 3 restraints Extinction correction: none Primary atom site location: structure-invariant direct methods Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ(f 2 ) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq Cu (4) (3) (3) (11) O (2) (2) (19) (5) H1A (9)* H1B (11)* O (2) (17) (16) (4) O (2) (18) (18) (4) H (11)* O (2) (18) (18) (5) O (2) (2) (19) (5) O (3) (2) (18) (5) C (3) (2) (2) (5) C (3) (3) (3) (6) H * N (3) (2) (2) (5) C (3) (2) (2) (5) C (3) (3) (3) (5) C (3) (2) (2) (5) sup-3

7 C (3) (2) (3) (5) N (3) (2) (2) (5) C (3) (2) (3) (5) C (3) (3) (3) (6) H * C (4) (3) (3) (7) H * C (3) (3) (3) (6) H * C (3) (3) (3) (6) C (4) (3) (3) (7) H * C (4) (3) (3) (7) H * C (4) (3) (3) (8) H * C (4) (3) (3) (7) H * C (4) (3) (3) (7) H * C (4) (3) (3) (6) H * C (4) (3) (3) (8) H * Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 Cu (18) (18) (16) (13) (12) (12) O (10) (13) (11) (10) (9) (10) O (10) (10) (8) (8) (7) (7) O (10) (11) (9) (9) (8) (8) O (11) (11) (9) (9) (8) (8) O (10) (12) (10) (9) (8) (9) O (13) (11) (9) (10) (9) (8) C (13) (13) (12) (10) (10) (10) C (16) (15) (14) (12) (12) (12) N (11) (11) (11) (9) (9) (9) C (12) (13) (12) (10) (10) (10) C (13) (14) (13) (11) (11) (11) C (12) (12) (12) (10) (10) (10) C (14) (12) (13) (10) (11) (11) N (11) (11) (10) (9) (9) (9) C (13) (13) (14) (10) (11) (11) C (15) (15) (14) (12) (12) (12) C (16) (18) (16) (13) (13) (14) C (14) (15) (15) (12) (12) (12) C (14) (14) (12) (11) (11) (11) sup-4

8 C (16) (16) (16) (13) (14) (13) C (16) (16) (18) (13) (14) (14) C (15) (18) (2) (13) (14) (16) C (17) (14) (17) (12) (14) (13) C (19) (16) (14) (14) (13) (12) C (16) (14) (14) (12) (12) (12) C (2) (15) (16) (14) (15) (13) Geometric parameters (Å, ) Cu1 O (18) C5 C (3) Cu1 O (17) C14 N (3) Cu1 N (2) C14 C (3) Cu1 N (2) C14 C (3) Cu1 O (2) N1 C (3) Cu1 O5 i (2) C13 C (3) O1 H1A 0.83 C9 C (4) O1 H1B 0.83 C9 H O2 C (3) C10 C (4) O5 C (3) C10 H O5 H C4 C (4) O3 C (3) C4 H O6 C (3) C3 H O4 C (3) C12 C (4) C1 C (3) C12 H C1 C (3) C11 H C1 C (3) C15 C (4) C2 C (4) C15 H C2 H C17 C (4) N2 C (3) C17 C (4) N2 C (3) C17 H C5 C (3) C18 H C5 C (3) C16 H O3 Cu1 O (8) C15 C14 C (2) O3 Cu1 N (8) C18 N1 C (2) O2 Cu1 N (8) C18 N1 Cu (17) O3 Cu1 N (8) C14 N1 Cu (15) O2 Cu1 N (8) N2 C13 C (2) N2 Cu1 N (8) N2 C13 C (2) O3 Cu1 O (8) C12 C13 C (2) O2 Cu1 O (8) N2 C9 C (3) N2 Cu1 O (8) N2 C9 H N1 Cu1 O (8) C10 C9 H O3 Cu1 O5 i (8) C11 C10 C (3) O2 Cu1 O5 i (8) C11 C10 H N2 Cu1 O5 i (8) C9 C10 H N1 Cu1 O5 i (8) C3 C4 C (2) O1 Cu1 O5 i (6) C3 C4 H sup-5

9 Cu1 O1 H1A C5 C4 H Cu1 O1 H1B O4 C7 O (2) H1A O1 H1B O4 C7 C (2) C6 O2 Cu (15) O3 C7 C (2) C8 O5 H C4 C3 C (2) C7 O3 Cu (16) C4 C3 H C2 C1 C (2) C2 C3 H C2 C1 C (2) C11 C12 C (3) C6 C1 C (2) C11 C12 H C3 C2 C (2) C13 C12 H C3 C2 H C10 C11 C (3) C1 C2 H C10 C11 H C13 N2 C (2) C12 C11 H C13 N2 Cu (16) C16 C15 C (3) C9 N2 Cu (17) C16 C15 H C4 C5 C (2) C14 C15 H C4 C5 C (2) C16 C17 C (3) C6 C5 C (2) C16 C17 H O6 C8 O (2) C18 C17 H O6 C8 C (2) N1 C18 C (3) O5 C8 C (2) N1 C18 H O2 C6 C (2) C17 C18 H O2 C6 C (2) C17 C16 C (3) C1 C6 C (2) C17 C16 H N1 C14 C (2) C15 C16 H N1 C14 C (2) O3 Cu1 O2 C (19) O2 Cu1 N1 C (17) N2 Cu1 O2 C (3) N2 Cu1 N1 C (17) N1 Cu1 O2 C (19) O1 Cu1 N1 C (18) O1 Cu1 O2 C (19) C9 N2 C13 C (4) O2 Cu1 O3 C (2) Cu1 N2 C13 C (2) N2 Cu1 O3 C (2) C9 N2 C13 C (2) N1 Cu1 O3 C (4) Cu1 N2 C13 C (3) O1 Cu1 O3 C (2) N1 C14 C13 N2 3.7 (3) C6 C1 C2 C3 0.2 (4) C15 C14 C13 N (2) C7 C1 C2 C (2) N1 C14 C13 C (2) O3 Cu1 N2 C (18) C15 C14 C13 C (4) O2 Cu1 N2 C (3) C13 N2 C9 C (4) N1 Cu1 N2 C (17) Cu1 N2 C9 C (2) O1 Cu1 N2 C (18) N2 C9 C10 C (4) O3 Cu1 N2 C9 5.6 (2) C6 C5 C4 C3 1.4 (4) O2 Cu1 N2 C (3) C8 C5 C4 C (2) N1 Cu1 N2 C (2) Cu1 O3 C7 O (2) O1 Cu1 N2 C (2) Cu1 O3 C7 C1 4.4 (4) C4 C5 C8 O6 6.7 (4) C2 C1 C7 O (4) C6 C5 C8 O (2) C6 C1 C7 O (2) C4 C5 C8 O (2) C2 C1 C7 O (3) C6 C5 C8 O5 7.6 (3) C6 C1 C7 O (4) Cu1 O2 C6 C (3) C5 C4 C3 C2 0.9 (4) sup-6

10 Cu1 O2 C6 C (16) C1 C2 C3 C4 1.8 (4) C2 C1 C6 O (2) N2 C13 C12 C (4) C7 C1 C6 O2 1.8 (4) C14 C13 C12 C (3) C2 C1 C6 C5 2.2 (4) C9 C10 C11 C (5) C7 C1 C6 C (2) C13 C12 C11 C (4) C4 C5 C6 O (2) N1 C14 C15 C (4) C8 C5 C6 O2 3.1 (3) C13 C14 C15 C (2) C4 C5 C6 C1 3.0 (4) C14 N1 C18 C (4) C8 C5 C6 C (2) Cu1 N1 C18 C (2) C15 C14 N1 C (4) C16 C17 C18 N1 1.5 (5) C13 C14 N1 C (2) C18 C17 C16 C (5) C15 C14 N1 Cu (19) C14 C15 C16 C (4) C13 C14 N1 Cu1 2.0 (3) O5 i Cu1 O2 C (19) O3 Cu1 N1 C (4) O5 i Cu1 O3 C (3) O2 Cu1 N1 C (2) O5 i Cu1 N2 C (18) N2 Cu1 N1 C (2) O5 i Cu1 N2 C (2) O1 Cu1 N1 C (2) O5 i Cu1 N1 C (2) O3 Cu1 N1 C (5) O5 i Cu1 N1 C (18) Symmetry codes: (i) x+2, y+1, z+2. Hydrogen-bond geometry (Å, ) D H A D H H A D A D H A O5 H5 O (2) 156 O1 H1B O6 ii (3) 173 O1 H1A O4 iii (3) 167 Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1. sup-7

11 Fig. 1 sup-8

12 Fig. 2 sup-9