Climate Change and cereal cropping systems of South America: The sensi9vity and adapta9on of cereals in the sub-con9nent

Size: px
Start display at page:

Download "Climate Change and cereal cropping systems of South America: The sensi9vity and adapta9on of cereals in the sub-con9nent"

Transcription

1 Climate Change and cereal cropping systems of South America: The sensi9vity and adapta9on of cereals in the sub-con9nent Daniel Calderini Professor Austral University, Chile

2 CLIMATE CHANGE AND CEREAL CROPPING SYSTEMS OF SOUTH AMERICA The sensitivity and adaptation of cereals in the sub-continent D. Calderini, D. Miralles, A. del Pozo and G. García Universidad Austral de Chile, Universidad de Buenos Aires, Universidad de Talca

3 Cereals Produc9on in South America Main Cereal Crops in South America Wheat Maize Rice Barley Produc9on (M t y -1 ) (% World) Highest Producers (t y -1 ) Country Wheat Maize Rice Barley Argen9na Brazil Colombia 2.2 Ecuador 1.6 Peru 2.9 Uruguay (% S.A.) hgp:// hgp://faostat.fao.org/

4 Climate Changes during Last Years

5 Temperature Recorded Changes ( ) Rainfall DDSHA, CEPAL

6 Asseng et al., (2013) Clima&c Change Contrasting changes in bordering countries CHILE ARGENTINA

7 Poten9al yield of wheat in the Pampas Magrin et al., (2009) IGJW

8 Future Scenarios of Climate Change

9 Scenarios of temperature and rainfall change Magrín et al., (2014) Climate Change 2014: Impacts, Adapta&on, and Vulnerability

10 Southern Cone of South America Temperature ( C) Increase C Rainfall (%) Increase % La9tude ( ) Longitude ( ) hgp://

11 Climate Change Sensi9vity and Adapta9ons of Cereal Crops

12 100 Field experiments A Controlled condi9ons B The need of evaluating crops under field conditions Grain yield (% of control) r² = 0,75 Tb = 13ºC C r² = 1 Tb = 8ºC D Grain number (% of control) r² = 0,60 Tb = 13ºC r² = 0,96 Tb = 12ºC E F X. C. Lizana PhD Thesis Grain weight (% of control) Fisher, 1985 Calderini et al, 1999b Calderini et al, 2001 Ugarte et al, 2006 Lizana et al 2010 r² = 0,057 Tb = 13ºC Heat Load (ºCd) r² = 0,68 Tb = 12ºC Heat Load (ºCd)

13 The challenge of predic9ng the impact of increased temperature at specific phenophases of crops Lizana & Calderini (2013) J. Agric. Sci.

14 The impact of temperature at key phenophases of wheat GY: -5% (this study) -6% (Prasad et al., 2008) -6% (Asseng et al., 1013) Bo-At duration (days) Pandora Huayún y = x r 2 = 0.83, P<0.01 BGF duration (days) y = x r 2 = 0.89, P<0.001 MGF duration (days) y = x r 2 = 0.89, P< Mean temperature (ºC) Mean temperature (ºC) Mean temperature (ºC) Period reduc9on: 0.6 d C d C d C -1 Lizana & Calderini (2013) J. Agric. Sci.

15 Field experiment Increased Night Temperature at key wheat phases Rela9ve grain yield (%) Wheat Barley < GN < CPD < KW < GFP Rela9ve grain yield (%) Wheat Barley Night temperature ( C) Night temperature ( C) García et al. (2014) Global Change Biol. García et al. (data not published)

16 Main effect of increased temperature on temperate cereals GN = CPD PAR FI RUE EP FE GN: grains per square meter CPD: cri9cal period dura9on RAD: incident radia9on from stem elonga9on to anthesis FI: frac9on of intercepted PAR RUE: radia9on use efficiency EP: ear par99oning coefficient FE: grains to spike DM ra9o at anthesis

17 Field experiment Effects of temperature, CO 2 and terminal drought on wheat grain yield Grain yield (g m -2 ) Temperature + CO2 (700 µl L -1 ) Temperature + CO2 + Terminal drought 700 Janz Control Control Temperature increase ( C) Dias de Oliveira et al. (2011) Funct. Plant Biol.

18 Field experiment Sensi9vity of Maize to High Temperature at different Rates of Nitrogen Yield (g plant -1 ) Contras9ng hybrid response - High N rate effect in P31N28 Unheated Pre-silking Post-silking GY -54.2% -80.9% 0 N0 N200 N0 N200 Lapopi P31N28 Ordoñez et al. (2015) Field Crops Res.

19 Field experiment Sensi9vity of Maize to High Temperature Yield and grain number Development Days from sowing to silking Effect of increased temperature on the development rate Negligible Shorter CPD (e.g. Cantarelo et al., 1999) Ordoñez et al. (2015) Field Crops Res.

20 Field experiment Canopy Temperature A key trait to evaluate the impact of temperature on crops Siebert et al. (2014) Environ. Res. LeN.

21 At present The challenge of maize and rice in Brazil (low risk areas) Maize Rice Suited with produc9on Suited Unsuited Unsuited with produc9on No considered Area change (%) Year B2 A2 B2 A Embrapa (2008)

22 Opportuni9es for rice in southern-east Brazil (Rio Grande do Sul) Grain yield increase up to 28% Southern Hemisphere Northern Hemisphere Jul Aug Sep Oct Nov Dec Jan Sowing date Jan Feb Mar Apr May Jun Jul Water et al. (2010) Pesq. Agropec. Bras..

23 Field experiment Adapta9on Strategies Water availability (irriga9on) decreases canopy temperature reducing the impact of heat stress Canopy Temperature under heat shock Air temperature ( C) Canopy temperature ( C) High capacity of canopy temperature regula9on Air temperature: ºC Canopy temperature: ºC contras9ng sowing dates: Early sowing: 6 th June (250 plants m -2 ) Late sowing 25 th July (350 plants m -2 ) 2013 at Buenos Aires (34 35 S, W) Op9mum management except heat shock treatments García et al. (data not published)

24 Adapta9on Strategies Summer rain storage for wheat cropping Scenario A1B (2030) T increase: 1.2 C Rainfall increase: 6% CO 2 : 426 ppm Soil water holding 2030 Soil water holding 1: 80 mm 2: 110 mm 3: 140 mm (yield unchanged) (yield decrease by 2-8%) Asseng et al. (2013) Clima&c Change

25 Adapta9on Strategies Earlier sowing date La9tude ( ) Frozen decrease Maize yield is expected between -6 and 1% when sowing date is advanced 15 d (SRES A2) and 30 d (SRES B2), respec9vely (Travasso et al., 2009) Longitude ( ) Vera, 2015

26 Adapta9on Strategies Earlier sowing, genotype change and N fer9liza9on in Chile Meza & SIlva (2009) Clima&c Change

27 Field experiment Adapta9on Strategies Plant breeding Carbon discrimination (Δ 13 C) in grains (368 spring wheats) Grain yield (Mg ha -1 ) Cauquenes 2011 Cauquenes 2012 Santa Rosa S 2011 Santa Rosa FI 2011 Santa Rosa FI 2012 y = 1.59x R² = 0.85 y = -0.14x R² = Δ 13 C ( 0 / 00 ) Water stress Del Pozo et al. (data not published)

28 Interna9onal Collabora9on SubmiGed Project to CYTED: Intensifica&on of Annual Crop Produc&on under Sustainable Agronomy Management Research teams from Argen9na, Chile, Honduras, Peru, Uruguay and Spain Need and opportunity to integrate climatologist, modelers, physiologist, breeders and agronomists Embrapa (Brasil), INTA (Argen9na), INIA (Chile, Uruguay); Universi9es (Austral, Bs. As., de la República, La Molina, Lleida, T. E. Quevedo, Talca.

29 Daniel Miralles (Universidad de Bs. As. CONICET) Alejandro del Pozo (Universidad de Talca) Guillermo García (Universidad de Bs. As. CONICET) Thank you!

30 Thank you to our sponsors: NOTE: Conference personnel may insert this slide at the end of your presenta&on, populates with our sponsor logos.

31

32 Temperature and Frost Changes in the Last Years Southern Cone of South America Temperature increase Frozen decrease La9tude ( ) Longitude ( ) Vera, 2015

33 Field experiment Intercepted radiation (%) Sowings mimic the effect of higher temperatures Wheat S 1 S 2 Barley Days after seedling emergence Crop Sowing IR Biomass Grain yield (MJ m -2 ) (Mg ha -1 ) (Mg ha -1 ) Wheat S ,6 9,5 S ,2 8,4 Barley S ,2 11,5 S ,1 9,8

34 Thank you! Pacific Northwest Farmers Coopera9ve Monsanto