Readings. Lecture IV. Mechanisms of Neural. Neural Development. September 10, Bio 3411 Lecture IV. Mechanisms of Neural Development

Size: px
Start display at page:

Download "Readings. Lecture IV. Mechanisms of Neural. Neural Development. September 10, Bio 3411 Lecture IV. Mechanisms of Neural Development"

Transcription

1 Readings Lecture IV. Mechanisms of Neural NEUROSCIENCE: References : 5 th ed, pp (sorta) 4 th ed, pp (sorta) Fainsod, A., Steinbeisser, H., & De Robertis, E. M. (1994). EMBO J, 13(21), Hemmati-Brivanlou, A., & Melton, D. (1997). Annu Rev Neurosci, 20, Melton, D. A. (1987). Nature, 328(6125), Bio 3411 Monday Sasai, Y., & De Robertis, E. M. (1997). Dev Biol, 182(1), Smith, W. C., & Harland, R. M. (1992). Cell, 70(5), Weeks, D. L., & Melton, D. A. (1987). Proc Natl Acad Sci U S A, 84(9), Wilson, P. A., & Hemmati-Brivanlou, A. (1995). Nature, 376(6538), Xanthos, J. B., Kofron, M., Wylie, C., & Heasman, J. (2001)., 128(2), Zimmerman, L. B., de Jesus-Escobar, J. M., & Harland, R. M. (1996). Cell, 86(4), (pdfs on course websites: [[ 1 2 Embryogenesis 1. Maternal cytoplasmic determinants. 2. Fertilization creates dorsal-ventral axis. 3. Cell division. 4. Blastula created. 6. Ectoderm, mesoderm, endoderm created. by molecular signals along the Animal/Vegetal axis. 5. Gastrulation. 6. Spemann organizer creates anterior-posterior axis. 7. Notocord induces the Neural Plate. 8. Neurulation forms the Neural Tube. 9. Neural crest cells form the PNS. 10. Segmentation & Cephalization (anterior enlargement) 1) Cell Signaling 2) Discovery of the Organizer 3) How Could this Work? 4) The Answer 5) Blockers 6) Current View 7) Summary 3 4 Neuroinduction Cell Signaling 5 6 1

2 Intracellular Signaling through a Kinase Cascade; Signal Amplification (Suppression) and Multiple Control Points Endoderm and Mesoderm involute with gastrulation: Induction of the Neural Plate from, by the underlying, closely apposed Mesoderm. 7 8 Hilde Mangold and Hans Spemann Discovery of the Organizer Key experiments performed in at the University of Freiburg, Germany. Hilde Mangold was a 24 year old graduate student when she performed these experiments. She died tragically in an accidental alcohol heater explosion. Hans Spemann was awarded the Nobel Prize in Mangold Spemann Experiments (1924) How Could this Work?

3 Explant Experiments with Animal Caps from Amphibian Blastula: Puzzling Results Isolating Inducing Factors that Promote Neuronal Differentiation; Sigma Catalog Experiments Result in Further Confusion (Many positives, including apparently non-biological factors!)? + Candidate Neuroinducing Factors! Model 1: Models for Neural Induction + Epidermal TGF-β Proteins Signal Through Heterodimeric Receptors and Smad Transcription Factors Model 2: Model 3: + Epidermal A Dominant-Negative Receptor Subunit Blocks Activation of the Signaling Pathway The Answer (Hemmati-Brivanlou and Melton, 1992)

4 Blocking TGF-β Signaling by a Dominant-Negative Receptor Causes Isolated to Become Neuronal BMP-4 (TGF-β) Signaling Results in Neural Epidermal Induction (+Dominant-Negative Type II Receptor crna) Animal Cap Animal Cap TFG-β Signaling Blocked by expression of Dom-Neg Type II Receptor Subunit + TGF-β Signaling + TGF-β Signaling TGF-β: Transforming Growth Factor - β BMP-4: Bone Morphogenic Protein Model 1: Models for Neural Induction + Epidermal BMP-4 (Secreted by al Cells) Inhibits Neuronal Fate and Promotes Epidermal Fate. Tissue Dissociation dilutes BMP-4 activity Model 2: (Wilson and Hemmati-Brivanlou, 1995) Model 3: +BMP-4 Neural [BMP-4] (Endogenous BMP-4 Diluted) + BMP-4 Epidermal Recombinant BMP-4 Promotes Epidermal Fate and Inhibits Neuronal Fate BMP-4 mrna is Expressed in Ectoderm (Wilson and Hemmati-Brivanlou, 1995)

5 Blockers Are there native anatgonists of BMP-4? Secreted from underlying mesoderm? Yes chordin / noggin / follistatin. And they are enriched in the Spemann-Mangold Organizer! Differential Substractive Screen yields Chordin, a BMP-4 antagonist (1994) Functional Expression Cloning yields noggin, a BMP-4 anatagonist (1992) Chordin/Noggin/Follistatin directly bind to and inactivate BMP

6 Structure of Noggin-BMP complex Molecular Mechanism of Neuralization TGF-β proteins signal through heterodimeric receptors and Smad transcription factors Current View Neural induction mechanisms are conserved: Ligand Receptor Antagonist Transcription Factor Vertebrates BMP-4 Type I Type II Type III noggin chordin follistatin Smad1 Smad2 Smad3 Smad4 Smad5 Drosophila decapentaplegic (dpp) punt thick veins (tkv), saxophone (sax) Short-gastrulation (sog) Mothers against decapentaplegic (MAD) Medea BMP-4 is only one member of the large evolutionarily conserved TGF-β gene family, which mediates many different tissue inductive events. Relationships between members of the TGF-β super family. (After Hogan, 1996)

7 Neurogenesis: Inductive Mechanisms 1. al cells choose either a neuronal or epidermal fate. Summary 2. Interactions between mesoderm and neuroectoderm induce neuroectoderm to adopt the neural fate. 3. Induction is signaled by Bone Morphogenic Protein-4 (BMP-4), a protein made and secreted by neuroectodermal cells. 4. BMP-4 inhibits neuralization and promotes the epidermal fate in neighboring cells. 5. Mesodermal cells secrete proteins (Chordin, Noggin, Follistatin) which directly bind and antagonizes BMP-4 activity Neurogenesis: Inductive Mechanisms 6. al cells become neurons by suppression of BMP-4 activity by secreted antagonists from underlying mesodermal cells. 7. The default state of neuroectodermal cells is neuronal. 8. This mechanism is conserved between vertebrates and invertebrates. 9. BMP-4 is a member of the Transforming Growth Factor (TGF-β) family of signaling molecules. END 10. Similar signaling events in the nervous system mediate changes in later development stages and in adult plasticity

Neural Development. How does a single cell make a brain??? How are different brain regions specified??? Neural Development

Neural Development. How does a single cell make a brain??? How are different brain regions specified??? Neural Development Neural Development How does a single cell make a brain??? How are different brain regions specified??? 1 Neural Development How do cells become neurons? Environmental factors Positional cues Genetic factors

More information

Neural Induction. Chapter One

Neural Induction. Chapter One Neural Induction Chapter One Fertilization Development of the Nervous System Cleavage (Blastula, Gastrula) Neuronal Induction- Neuroblast Formation Cell Migration Mesodermal Induction Lateral Inhibition

More information

Neural Induction. Steven McLoon Department of Neuroscience University of Minnesota

Neural Induction. Steven McLoon Department of Neuroscience University of Minnesota Neural Induction Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Coffee Hour (with Dr. Nakagawa) Friday, Sept 22 8:30-9:30am Surdyks Café in Northrop Auditorium Stop by for

More information

Xenopus gastrulation. Dorsal-Ventral Patterning - The Spemann Organizer. Two mesoderm inducing signals

Xenopus gastrulation. Dorsal-Ventral Patterning - The Spemann Organizer. Two mesoderm inducing signals Dorsal- atterning - The Spemann Organizer Two mesoderm inducing signals late-blastula early-gastrula nimal Blood Mesothelium Not Vegetal NC Endoderm Hans Spemann (1869-1941) Hilde Mangold (1898-1924) Dr

More information

Mesoderm Formation. Fate map of early gastrula. Only two types of mesoderm are induced. Mesoderm induction by the vegetal hemisphere

Mesoderm Formation. Fate map of early gastrula. Only two types of mesoderm are induced. Mesoderm induction by the vegetal hemisphere Fate map of early gastrula Mesoderm Formation Animal hemisphere forms ectoderm (lacks ) Sperm Entry Point dbl dbl brachyury Vegetal hemisphere forms endoderm (requires ) dbl goosecoid Marginal zone forms

More information

Fertilization. Animal hemisphere. Sperm entry point

Fertilization. Animal hemisphere. Sperm entry point Fertilization Animal hemisphere Sperm entry point Establishes the dorsal/ventral axis Ventral side sperm entry Dorsal side gray crescent Organized by sperm centriole Cleavage Unequal radial holoblastic

More information

Lecture III. Nervous System Embryology

Lecture III. Nervous System Embryology Bio 3411 Wednesday Reading NEUROSCIENCE: 5 th ed, pp. 477-506 NEUROSCIENCE: 4 th ed, pp. 545-575 2 1 Summary from Lecture II Biology Understanding the brain is THE major question in biology and science.

More information

We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo.

We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo. We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo. Hans Spemann, 1943 Reading from Chapter 3 - types of cell

More information

Reading. Lecture III. Nervous System Embryology. Biology. Brain Diseases. September 5, Bio 3411 Lecture III. Nervous System Embryology

Reading. Lecture III. Nervous System Embryology. Biology. Brain Diseases. September 5, Bio 3411 Lecture III. Nervous System Embryology Reading NEUROSCIENCE: 5 th ed, pp. 477-506 NEUROSCIENCE: 4 th ed, pp. 545-575 Bio 3411 Wednesday 2 Summary from Lecture II Biology Understanding the brain is THE major question in biology and science.

More information

Why Study Developmental Neurobiology? Terrific scientific challenge.

Why Study Developmental Neurobiology? Terrific scientific challenge. Developmental Neurobiology Textbook Readings: ( Neuroscience, 3rd Edition, Purves, et al.) Chapter 1 Studying Nervous Systems 7 Intracellular Signal Transduction 21 Early Brain Development 22 Construction

More information

We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo.

We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo. We are walking and standing with parts of our bodies which could have been used for thinking had they developed in another part of the embryo. Hans Spemann, 1943 Reading from Chapter 3 - types of cell

More information

Lecture 3 MOLECULAR REGULATION OF DEVELOPMENT

Lecture 3 MOLECULAR REGULATION OF DEVELOPMENT Lecture 3 E. M. De Robertis, M.D., Ph.D. August 16, 2016 MOLECULAR REGULATION OF DEVELOPMENT GROWTH FACTOR SIGNALING, HOX GENES, AND THE BODY PLAN Two questions: 1) How is dorsal-ventral (D-V) cell differentiation

More information

Patterning of the Brain

Patterning of the Brain Patterning of the Brain Clemens.Kiecker@kcl.ac.uk IoPPN 27 Oct 2015 Hundreds of billions of cells, hundreds of cell types Egg = single cell, some 20,000 genes Egg = single cell, some 20,000 genes How is

More information

Neural induction. Noggin Chordin Follistatin (Xnr3)

Neural induction. Noggin Chordin Follistatin (Xnr3) a bird s eye view Since the discovery of the phenomenon of neural induction by Spemann and Mangold in 94, considerable effort has been invested in identifying the signals produced by the organizer that

More information

Early Development and Axis Formation in Amphibians

Early Development and Axis Formation in Amphibians Biology 4361 Early Development and Axis Formation in Amphibians October 25, 2006 Overview Cortical rotation Cleavage Gastrulation Determination the Organizer mesoderm induction Setting up the axes: dorsal/ventral

More information

Activity 47.1 What common events occur in the early development of animals? 1. What key events occur at each stage of development?

Activity 47.1 What common events occur in the early development of animals? 1. What key events occur at each stage of development? Notes to Instructors Chapter 47 Animal Development What is the focus of this activity? Chapter 21 provided a review of how genes act to control development. Chapter 47 reviews some of the major morphological

More information

+ + Development and Evolution Dorsoventral axis. Developmental Readout. Foundations. Stem cells. Organ formation.

+ + Development and Evolution Dorsoventral axis. Developmental Readout. Foundations. Stem cells. Organ formation. Development and Evolution 7.72 9.11.06 Dorsoventral axis Human issues Organ formation Stem cells Developmental Readout Axes Growth control Axon guidance 3D structure Analysis Model + + organisms Foundations

More information

MOLECULAR BIOLOGY OF SPEMANN S ORGANIZER AND NEURAL INDUCTION - Lecture 5

MOLECULAR BIOLOGY OF SPEMANN S ORGANIZER AND NEURAL INDUCTION - Lecture 5 Eddy De Robertis Page 1 MOLECULAR BIOLOGY OF SPEMANN S ORGANIZER AND NEURAL INDUCTION - Lecture 5 Having discussed the early events in mesoderm induction, we now turn to signaling events that take place

More information

Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1

Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1 Development 124, 3177-3184 (1997) Printed in Great Britain The Company of Biologists Limited 1997 DEV1180 3177 Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer

More information

Developmental Zoology (ZOO ) Gatrulation

Developmental Zoology (ZOO ) Gatrulation Developmental Zoology (ZOO 228.1.0) Gatrulation 1 Developmental Stages Ø Early Development Fertilization Cleavage Gastrulation Neurulation Ø Later Development Organogenesis Larval molts Metamorphosis Aging

More information

LIFE Formation III. Morphogenesis: building 3D structures START FUTURE. How-to 2 PROBLEMS FORMATION SYSTEMS SYSTEMS.

LIFE Formation III. Morphogenesis: building 3D structures START FUTURE. How-to 2 PROBLEMS FORMATION SYSTEMS SYSTEMS. 7.013 4.6.07 Formation III Morphogenesis: building 3D structures VIRUSES CANCER HUMAN DISEASE START SYSTEMS BIOLOGY PROBLEMS FUTURE LIFE IMMUNE NERVOUS SYSTEMS How-to 1 FOUNDATIONS How-to 2 REC. DNA BIOCHEM

More information

Regulating Bone Growth and Development with Bone Morphogenetic Proteins

Regulating Bone Growth and Development with Bone Morphogenetic Proteins Regulating Bone Growth and Development with Bone Morphogenetic Proteins PHOEBE S. LEBOY Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030,

More information

Deciphering Complexity in Biology: Induction of Embryonic Cell Differentiation by Morphogen Gradients

Deciphering Complexity in Biology: Induction of Embryonic Cell Differentiation by Morphogen Gradients Complexity and Analogy in Science Pontifical Academy of Sciences, Acta 22, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/acta22/acta22-derobertis.pdf Deciphering Complexity in Biology: Induction

More information

Xenopus GDF6, a new antagonist of noggin and a partner of BMPs

Xenopus GDF6, a new antagonist of noggin and a partner of BMPs Development 126, 3347-3357 (1999) Printed in Great Britain The Company of Biologists Limited 1999 DEV3918 3347 Xenopus GDF6, a new antagonist of noggin and a partner of BMPs Chenbei Chang and Ali Hemmati-Brivanlou*

More information

RNAs were transcribed from described expression conhibit a similar capacity to synergize with neural-inducing

RNAs were transcribed from described expression conhibit a similar capacity to synergize with neural-inducing DEVELOPMENTAL BIOLOGY 172, 337 342 (1995) RAPID COMMUNICATION Specification of the Anteroposterior Neural Axis through Synergistic Interaction of the Wnt Signaling Cascade with noggin and follistatin L.

More information

Neural crest induction in Xenopus: evidence for a two-signal model

Neural crest induction in Xenopus: evidence for a two-signal model Development 125, 2403-2414 (1998) Printed in Great Britain The Company of Biologists Limited 1998 DEV4980 2403 Neural crest induction in Xenopus: evidence for a two-signal model Carole LaBonne* and Marianne

More information

Culture and differentiation of embryonic stem cells. Hong-Lin Su Department of Life Sciences, National Chung-Hsing University

Culture and differentiation of embryonic stem cells. Hong-Lin Su Department of Life Sciences, National Chung-Hsing University Culture and differentiation of embryonic stem cells Hong-Lin Su Department of Life Sciences, National Chung-Hsing University Topics-ES cell maintenance Establishment Culture condition, including the serum,

More information

The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways

The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways Developmental Biology 305 (2007) 103 119 www.elsevier.com/locate/ydbio The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways Bo

More information

Later Development. Caenorhabditis elegans. Later Processes 10/06/12. Cytoplasmic Determinants Fate Mapping & Cell Fate Limb Development

Later Development. Caenorhabditis elegans. Later Processes 10/06/12. Cytoplasmic Determinants Fate Mapping & Cell Fate Limb Development Later Development Cytoplasmic Determinants Fate Mapping & Cell Fate Limb Development Caenorhabditis elegans Nematoda 10,000 worms/petri dish in cultivation short life cycle (~ 3 days egg to egg) wild-type

More information

Reproductive Biology and Endocrinology BioMed Central Review Smad signalling in the ovary Noora Kaivo-oja, Luke A Jeffery, Olli Ritvos and David G Mot

Reproductive Biology and Endocrinology BioMed Central Review Smad signalling in the ovary Noora Kaivo-oja, Luke A Jeffery, Olli Ritvos and David G Mot Reproductive Biology and Endocrinology BioMed Central Review Smad signalling in the ovary Noora Kaivo-oja, Luke A Jeffery, Olli Ritvos and David G Mottershead* Open Access Address: Programme for Developmental

More information

Induction and patterning of the telencephalon in Xenopus laevis

Induction and patterning of the telencephalon in Xenopus laevis Development 129, 5421-5436 (2002) 2002 The Company of Biologists Ltd doi:10.1242/dev.00095 5421 Induction and patterning of the telencephalon in Xenopus laevis Giuseppe Lupo 1,2, William A. Harris 2, Giuseppina

More information

KEY Reproductive cloning Therapeutic cloning

KEY Reproductive cloning Therapeutic cloning 1. (20 pts) Define Reproductive and Therapeutic cloning. Make sure your descriptions clearly distinguish the critical differences between them. Describe an example of each. Reproductive cloning refers

More information

Code No. : 8421 Sub. Code : HZOM 13

Code No. : 8421 Sub. Code : HZOM 13 (6 pages) Reg. No. :... Sub. Code : HZOM 13 M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2014. First Semester Zoology DEVELOPMENTAL BIOLOGY (For those who joined in July 2012 onwards) Time : Three hours Maximum

More information

Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have

Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have Development 125, 579-587 (1998) Printed in Great Britain The Company of Biologists Limited 1998 DEV6311 579 Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in

More information

Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4

Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 Cell, Vol. 86, 589 598, August 23, 1996, Copyright 1996 by Cell Press Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 Stefano Piccolo, Yoshiki Sasai,*

More information

Hemidesmosome. Focal adhesion

Hemidesmosome. Focal adhesion BIOLOGY 52 - - CELL AND DEVELOPMENTAL BIOLOGY - - FALL 2002 Third Examination - - November, 2002 -------------------------------------------------- Put your name at the top of each page. Please read each

More information

7.22 Example Problems for Exam 1 The exam will be of this format. It will consist of 2-3 sets scenarios.

7.22 Example Problems for Exam 1 The exam will be of this format. It will consist of 2-3 sets scenarios. Massachusetts Institute of Technology Department of Biology 7.22, Fall 2005 - Developmental Biology Instructors: Professor Hazel Sive, Professor Martha Constantine-Paton 1 of 10 7.22 Fall 2005 sample exam

More information

Lecture 20: Drosophila embryogenesis

Lecture 20: Drosophila embryogenesis Lecture 20: Drosophila embryogenesis Mitotic recombination/clonal analyses Embrygenesis Four classes of genes: Maternal genes Gap genes Pair-rule genes Segment polarity genes Homeotic genes Read 140-141;

More information

Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos

Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos Development 125, 2677-2685 (1998) Printed in Great Britain The Company of Biologists Limited 1998 DEV3749 2677 Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos Elaine M. Joseph

More information

The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm

The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm Development 122, 3055-3065 (1996) Printed in Great Britain The Company of Biologists Limited 1996 DEV1088 3055 The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser

More information

RAPID COMMUNICATION A Novel TGF-b-like Gene, fugacin, Specifically Expressed in the Spemann Organizer of Xenopus

RAPID COMMUNICATION A Novel TGF-b-like Gene, fugacin, Specifically Expressed in the Spemann Organizer of Xenopus DEVELOPMENTAL BIOLOGY 172, 699 703 (1995) RAPID COMMUNICATION A Novel TGF-b-like Gene, fugacin, Specifically Expressed in the Spemann Organizer of Xenopus V. Ecochard,* C. Cayrol,*,1 F. Foulquier,* A.

More information

The Competence of Marginal Zone Cells to Become Spemann s Organizer Is Controlled by Xcad2

The Competence of Marginal Zone Cells to Become Spemann s Organizer Is Controlled by Xcad2 Developmental Biology 248, 40 51 (2002) doi:10.1006/dbio.2002.0705 The Competence of Marginal Zone Cells to Become Spemann s Organizer Is Controlled by Xcad2 Vered Levy, Karen Marom, Sharon Zins, Natalia

More information

Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity

Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity Development 127, 2143-2154 (2000) Printed in Great Britain The Company of Biologists Limited 2000 DEV9708 2143 Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity Kweon Yu

More information

ANAT2341 Embryology Introduction: Steve Palmer

ANAT2341 Embryology Introduction: Steve Palmer ANAT2341 Embryology Introduction: Steve Palmer Course overview Course lecturers specializations and roles Steve Palmer 9385 2957 Course overview Summary, aims and expected outcomes Course overview Graduate

More information

Scaling of Dorsal-Ventral Patterning by Embryo Size-Dependent Degradation of Spemann s Organizer Signals

Scaling of Dorsal-Ventral Patterning by Embryo Size-Dependent Degradation of Spemann s Organizer Signals Scaling of Dorsal-Ventral Patterning by Embryo Size-Dependent Degradation of Spemann s Organizer Signals Hidehiko Inomata, 1,3, * Tatsuo Shibata, 2 Tomoko Haraguchi, 1 and Yoshiki Sasai 1, * 1 Organogenesis

More information

Blastula: An early staged embryo that is made up of sphere shaped cells that surround an inner fluid-filled cavity known as the blastocoel.

Blastula: An early staged embryo that is made up of sphere shaped cells that surround an inner fluid-filled cavity known as the blastocoel. 1) Define the following terms: cleavage, blastomere, blastula, blastulation, microlecithal, mesolecithal, megalecithal, centrolecithal, isolecithal, telolecithal, holoblastic cleavage, meroblastic cleavage,

More information

7.22 Final Exam points

7.22 Final Exam points Massachusetts Institute of Technology Department of Biology 7.22, Fall 2005 - Developmental Biology Instructors: Professor Hazel Sive, Professor Martha Constantine-Paton 1 of 11 7.22 2004 FINAL FOR STUDY

More information

BMP-2 and BMP-4 signalling in the developing spinal cord of human and rat embryos

BMP-2 and BMP-4 signalling in the developing spinal cord of human and rat embryos O R I G I N A L A R T I C L E Folia Morphol. Vol. 74, No. 3, pp. 359 364 DOI: 10.5603/FM.2015.0054 Copyright 2015 Via Medica ISSN 0015 5659 www.fm.viamedica.pl BMP-2 and BMP-4 signalling in the developing

More information

Statement of Research E. M. De Robertis. From the renewal of an HHMI Investigatorship (October 2009) Molecular Mechanisms of Embryonic Self-regulation

Statement of Research E. M. De Robertis. From the renewal of an HHMI Investigatorship (October 2009) Molecular Mechanisms of Embryonic Self-regulation Statement of Research E. M. De Robertis From the renewal of an HHMI Investigatorship (October 2009) Molecular Mechanisms of Embryonic Self-regulation During the period under review, we discovered a biochemical

More information

Neural induction in Xenopus requires inhibition of Wnt-β-catenin signaling

Neural induction in Xenopus requires inhibition of Wnt-β-catenin signaling Developmental Biology 298 (2006) 71 86 www.elsevier.com/locate/ydbio Neural induction in Xenopus requires inhibition of Wnt-β-catenin signaling Elizabeth Heeg-Truesdell a, Carole LaBonne a,b, a Department

More information

Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/βcatenin signaling pathway, but not by Vg1, Activin or Noggin

Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/βcatenin signaling pathway, but not by Vg1, Activin or Noggin Development 124, 453-46 (1997) Printed in Great Britain The Company of Biologists Limited 1997 DEV9489 453 Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/βcatenin signaling pathway,

More information

Continuity And Change: Paradigm Shifts In Neural Induction

Continuity And Change: Paradigm Shifts In Neural Induction Swarthmore College Works Biology Faculty Works Biology 2001 Continuity And Change: Paradigm Shifts In Neural Induction Scott F. Gilbert Swarthmore College, sgilber1@swarthmore.edu Let us know how access

More information

Neural Induction in the Absence of Mesoderm: -Catenin-Dependent Expression of Secreted BMP Antagonists at the Blastula Stage in Xenopus

Neural Induction in the Absence of Mesoderm: -Catenin-Dependent Expression of Secreted BMP Antagonists at the Blastula Stage in Xenopus Developmental Biology 234, 161 173 (2001) doi:10.1006/dbio.2001.0258, available online at http://www.idealibrary.com on Neural Induction in the Absence of Mesoderm: -Catenin-Dependent Expression of Secreted

More information

FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula

FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula RESEARCH ARTICLE 779 Development 134, 779-788 (27) doi:1.1242/dev.2768 FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula Adnan Mir 1,2, Matt Kofron 1, Aaron M. Zorn

More information

Lecture 20: Drosophila melanogaster

Lecture 20: Drosophila melanogaster Lecture 20: Drosophila melanogaster Model organisms Polytene chromosome Life cycle P elements and transformation Embryogenesis Read textbook: 732-744; Fig. 20.4; 20.10; 20.15-26 www.mhhe.com/hartwell3

More information

Supplementary Figure 1.

Supplementary Figure 1. Supplementary Figure 1. Quantification of western blot analysis of fibroblasts (related to Figure 1) (A-F) Quantification of western blot analysis for control and IR-Mut fibroblasts. Data are expressed

More information

Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos

Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos MECHANISMS OF DEVELOPMENT 125 (2008) 58 66 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/modo Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center

More information

Exam 1 ID#: October 1, 2006

Exam 1 ID#: October 1, 2006 Biology 4361 Name: Exam 1 ID#: October 1, 2006 Multiple choice (one point each) 1. The formation of new structures in chick embryogenesis is an example of a. teratology. b. epigenesis. c. hybridization.

More information

What s the most complex problem in biology?

What s the most complex problem in biology? Chapter 47. Development What s the most complex problem in biology? 1 The most complex problem How to get from here to there Development: cellular level Cell division Differentiation cells become specialized

More information

Chapter 47. Development

Chapter 47. Development Chapter 47. Development What s the most complex problem in biology? The most complex problem How to get from here to there Development: cellular level Cell division Differentiation cells become specialized

More information

Cytochalasin B inhibits morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus

Cytochalasin B inhibits morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus Develop. Growth Differ. (1999) 41, 41 49 Cytochalasin B inhibits morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus Keiko Tamai, 1 Chika Yokota, 2 Takashi Ariizumi

More information

Supporting Information

Supporting Information Supporting Information Lu et al. 10.1073/pnas.1106801108 Fig. S1. Analysis of spatial localization of mrnas coding for 23 zebrafish Wnt genes by whole mount in situ hybridization to identify those present

More information

Solution Key Problem Set

Solution Key Problem Set Solution Key- 7.013 Problem Set 5-2013 Question 1 During a summer hike you suddenly spot a huge grizzly bear. This emergency situation triggers a fight or flight response through a signaling pathway as

More information

anchor cell gonad Normal hypoderm = skin Normal hypoderm = skin Make vulva

anchor cell gonad Normal hypoderm = skin Normal hypoderm = skin Make vulva BIOLOGY 52 - - CELL AND DEVELOPMENTAL BIOLOGY - - FALL 2002 Fourth Examination - - December 2002 Answer each question, noting carefully the instructions for each. Repeat- Please read the instructions for

More information

EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS

EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS Regulation of Neural Specification from Human Embryonic Stem Cells by BMP and FGF TIMOTHY M. LAVAUTE, a,b YOUNG DONG YOO, b MATTHEW T. PANKRATZ, a,b

More information

Single cells can sense their position in a morphogen gradient

Single cells can sense their position in a morphogen gradient Development 6, 509-57 (999) Printed in Great Britain The Company of Biologists Limited 999 DEV6 509 Single cells can sense their position in a morphogen gradient J. B. Gurdon*, H. Standley, S. Dyson, K.

More information

xcited2 Induces Neural Genes in Animal Cap Explants of Xenopus Embryos

xcited2 Induces Neural Genes in Animal Cap Explants of Xenopus Embryos Exp Neurobiol. 2011 Sep;20(3):123-129. pissn 1226-2560 eissn 2093-8144 Original Article xcited2 Induces Neural Genes in Animal Cap Explants of Xenopus Embryos Jaeho Yoon 1,#, Jung-Ho Kim 1,#, Ok-Joo Lee

More information

Conservation and evolutionary divergence in the activity of receptor-regulated smads. Sorrentino et al.

Conservation and evolutionary divergence in the activity of receptor-regulated smads. Sorrentino et al. Conservation and evolutionary divergence in the activity of receptor-regulated smads Sorrentino et al. Sorrentino et al. EvoDevo 2012, 3:22 Sorrentino et al. EvoDevo 2012, 3:22 RESEARCH Open Access Conservation

More information

Notch Signaling Pathway Notch CSL Reporter HEK293 Cell line Catalog #: 60652

Notch Signaling Pathway Notch CSL Reporter HEK293 Cell line Catalog #: 60652 Notch Signaling Pathway Notch CSL Reporter HEK293 Cell line Catalog #: 60652 Background The Notch signaling pathway controls cell fate decisions in vertebrate and invertebrate tissues. Notch signaling

More information

GSI Bovine TGF-β3 ELISA Kit-2 Plates DataSheet

GSI Bovine TGF-β3 ELISA Kit-2 Plates DataSheet Transforming growth factor, beta 3 (TGF-β3) belongs to a large family of cytokines called the Transforming growth factor beta super family (1, 2), which includes the TGF-β family, bone morphogenetic proteins

More information

Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm

Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm Development 127, 791-800 (2000) Printed in Great Britain The Company of Biologists Limited 2000 DEV6425 791 Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm Masashi

More information

Time of Exposure to BMP Signals Plays a Key Role in the Specification of the Olfactory and Lens Placodes Ex Vivo

Time of Exposure to BMP Signals Plays a Key Role in the Specification of the Olfactory and Lens Placodes Ex Vivo Short Article Time of Exposure to BMP Signals Plays a Key Role in the Specification of the Olfactory and Lens Placodes Ex Vivo My Sjödal, 1 Thomas Edlund, 1 and Lena Gunhaga 1, * 1 Umeå Center for Molecular

More information

Dorsal-Ventral Patterning and Gene Regulation in the Early Embryo of Drosophila melanogaster

Dorsal-Ventral Patterning and Gene Regulation in the Early Embryo of Drosophila melanogaster Dorsal-Ventral Patterning and Gene Regulation in the Early Embryo of Drosophila melanogaster Thesis by Mayra Garcia In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California

More information

COURSES IN BIOLOGICAL SCIENCE. Undergraduate Courses Postgraduate Courses

COURSES IN BIOLOGICAL SCIENCE. Undergraduate Courses Postgraduate Courses COURSES IN BIOLOGICAL SCIENCE Undergraduate Courses Postgraduate Courses Undergraduate Courses: BISC 001 Appreciation of Biological Sciences [3-0-0:3] Diversity of life forms; origin of life; chemical

More information

REGULATION OF GENE EXPRESSION

REGULATION OF GENE EXPRESSION REGULATION OF GENE EXPRESSION Each cell of a living organism contains thousands of genes. But all genes do not function at a time. Genes function according to requirements of the cell. Genes control the

More information

goosecoid and the organizer

goosecoid and the organizer Development 1992 Supplement, 167-171 (1992) Printed in Great Britain The Company of Biologists Limited 1992 167 goosecoid and the organizer EDDY M. DE ROBERTIS, MARTIN BLUM, CHRISTOF NIEHRS and HERBERT

More information

Isolation of Early Neurogenesis Genes with Xenopus cdna Microarray

Isolation of Early Neurogenesis Genes with Xenopus cdna Microarray Lab. Anim. Res. 2010: 26(1), 109-115 Isolation of Early Neurogenesis Genes with Xenopus cdna Microarray Saet-Byeol Yu 1, Ok-Joo Lee 1, Young-Ju Park 1, Sung-Young Lee 1, Seung-Hwan Lee 1, Jaeho Yoon 1,

More information

GENE EXPRESSSION. Promoter sequence where RNA polymerase binds. Operator sequence that acts as a switch (yellow) OPERON

GENE EXPRESSSION. Promoter sequence where RNA polymerase binds. Operator sequence that acts as a switch (yellow) OPERON GENE EXPRESSSION 1 GENE REGULATION IN PROKARYOTES Bacteria can turn genes on or off depending on their environment Prokaryotes have operons clusters of related genes and regulatory sequences Promoter sequence

More information

Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mrnas

Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mrnas Development 118, 499-507 (1993) Printed in Great Britain The Company of Biologists Limited 1993 499 Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mrnas Herbert Steinbeisser

More information

Animal Development Regulation of gene expression

Animal Development Regulation of gene expression Animal Development Regulation of gene expression Prof. Ilan Davis, Department of Biochemistry. Wellcome Trust Research Senior Fellow Senior Research Fellow, Jesus College ilan.davis@bioch.ox.ac.uk http://www.ilandavis.com

More information

Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage

Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage Development 121, 2349-2360 (1995) Printed in Great Britain The Company of Biologists Limited 1995 2349 Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic

More information

Pregnenolone Stabilizes Microtubules and Promotes Zebrafish Embryonic Cell Movement

Pregnenolone Stabilizes Microtubules and Promotes Zebrafish Embryonic Cell Movement Pregnenolone Stabilizes Microtubules and Promotes Zebrafish Embryonic Cell Movement Hwei-Jan Hsu 1,2, Ming-Ren Liang 3, Chao-Tsen Chen 3, and Bon-Chu Chung 1 * Abstract Embryonic cell movement is essential

More information

The Role of Pitx Proteins in Early Xenopus Development

The Role of Pitx Proteins in Early Xenopus Development City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects Graduate Center 9-2017 The Role of Pitx Proteins in Early Xenopus Development Ye Jin The Graduate Center,

More information

The secreted EGF-Discoidin factor xdel1 is essential for dorsal development of the Xenopus embryo

The secreted EGF-Discoidin factor xdel1 is essential for dorsal development of the Xenopus embryo Developmental Biology 306 (2007) 160 169 www.elsevier.com/locate/ydbio The secreted EGF-Discoidin factor xdel1 is essential for dorsal development of the Xenopus embryo Akiko Arakawa a,c,1, Mami Matsuo-Takasaki

More information

Screening and characterization of novel genes involved in the embryogenesis of Xenopus laevis

Screening and characterization of novel genes involved in the embryogenesis of Xenopus laevis Screening and characterization of novel genes involved in the embryogenesis of Xenopus laevis Inaugural-Dissertation zur Erlangung des Doktorgrades Dr.rer.nat. des Fachbereiches Bio- und Geowissenschaften,

More information

The Effect of Chloroacetophenone on the Inducing Capacity of Hensen's Node

The Effect of Chloroacetophenone on the Inducing Capacity of Hensen's Node The Effect of Chloroacetophenone on the Inducing Capacity of Hensen's Node by M. S. LAKSHMI 1 From the Department of Zoology, University ofpoona RODUCTION IN a previous paper (Lakshmi, 1962) the effects

More information

Differentiation. Ahmed Ihab Abdelaziz MD, PhD Associate Prof. Of Molecular Medicine NewGiza University (NGU)

Differentiation. Ahmed Ihab Abdelaziz MD, PhD Associate Prof. Of Molecular Medicine NewGiza University (NGU) Differentiation Ahmed Ihab Abdelaziz MD, PhD Associate Prof. Of Molecular Medicine NewGiza University (NGU) 1 Developmental Genetics Objectives: Explain how a differentiated cell achieves and maintains

More information

Charles Shuler, Ph.D. University of Southern California Los Angeles, California Approved for Public Release; Distribution Unlimited

Charles Shuler, Ph.D. University of Southern California Los Angeles, California Approved for Public Release; Distribution Unlimited AD Award Number: DAMD17-01-1-0100 TITLE: Smad-Mediated Signaling During Prostate Growth and Development PRINCIPAL INVESTIGATOR: Charles Shuler, Ph.D. CONTRACTING ORGANIZATION: University of Southern California

More information

XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling

XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling Developmental Biology 275 (2004) 258 267 www.elsevier.com/locate/ydbio XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling Kazuhiro R. Nitta a,

More information

REGULATION OF GENE EXPRESSION

REGULATION OF GENE EXPRESSION REGULATION OF GENE EXPRESSION Each cell of a living organism contains thousands of genes. But all genes do not function at a time. Genes function according to requirements of the cell. Genes control the

More information

Review Article On becoming neural: what the embryo can tell us about differentiating neural stem cells

Review Article On becoming neural: what the embryo can tell us about differentiating neural stem cells Am J Stem Cells 2013;2(2):74-94 www.ajsc.us /ISSN:2160-4150/AJSC1303003 Review Article : what the embryo can tell us about differentiating neural stem cells Sally A Moody 1,3, Steven L Klein 1, Beverley

More information

HD1 - Introduction to Human Development

HD1 - Introduction to Human Development Human Development Ed Laufer, PhD Course Director elaufer@columbia.edu Ping Feng Course Administrator pf2013@columbia.edu Michael Shen, PhD Patricia Ducy, PhD Michael Gershon, MD Cathy Mendelsohn, PhD Richard

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/310/5753/1487/dc1 Supporting Online Material for Stem Cell Self-Renewal Controlled by Chromatin Remodeling Factors Rongwen Xi and Ting Xie* *To whom correspondence should

More information

REVIEWS CUTTING, PASTING AND PAINTING: EXPERIMENTAL EMBRYOLOGY AND NEURAL DEVELOPMENT. Gary C. Schoenwolf

REVIEWS CUTTING, PASTING AND PAINTING: EXPERIMENTAL EMBRYOLOGY AND NEURAL DEVELOPMENT. Gary C. Schoenwolf CUTTING, PASTING AND PAINTING: XPRIMNTAL MBRYOLOGY AND NURAL DVLOPMNT Gary C. Schoenwolf The goal of experimental embryology seems rather simple: to manipulate embryos in systematic ways to elucidate mechanisms

More information

Engineered In vitro models of post-implantation human development to elucidate mechanisms of self-organized fate specification during embryogenesis

Engineered In vitro models of post-implantation human development to elucidate mechanisms of self-organized fate specification during embryogenesis Engineered In vitro models of post-implantation human development to elucidate mechanisms of self-organized fate specification during embryogenesis by Mukul Tewary A thesis submitted in conformity with

More information

Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis

Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis Development 121, 2337-2347 (1995) Printed in Great Britain The Company of Biologists Limited 1995 2337 Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis

More information

RNAi minilecture and Using Genetics to Explore Complex Biological Processes

RNAi minilecture and Using Genetics to Explore Complex Biological Processes RNAi minilecture and Using Genetics to Explore Complex Biological Processes 2 American Worm People Win Nobel for RNA Work New York Times Oct. 2, 2006 The 2006 Nobel Prize in Physiology or Medicine was

More information

STEM CELLS EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS

STEM CELLS EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS STEM CELLS EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS Molecular and Functional Characterization of Gastrula Organizer Cells Derived from Human Embryonic Stem Cells Nadav Sharon 1, Ishay Mor 1,

More information

Expression Pattern of Xtshz1 and Xtshz3 During Xenopus Early Eye Formation

Expression Pattern of Xtshz1 and Xtshz3 During Xenopus Early Eye Formation SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2012 Expression Pattern of Xtshz1 and Xtshz3 During Xenopus Early Eye Formation Katherine L. McKissick Follow this

More information

Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction

Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction Development 113, 1495-1505 (1991) Printed in Great Britain The Company of Biologists Limited 1991 1495 Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer

More information