CHAPTER 3 ANTIBODY STRUCTURE I

Size: px
Start display at page:

Download "CHAPTER 3 ANTIBODY STRUCTURE I"

Transcription

1 CHAPTER 3 ANTIBODY STRUCTURE I See APPENDIX: (3) OUCHTERLONY ANALYSIS; (6), EQUILIBRIUM DIALYSIS; (7) CROSS-REACTIVITY Electrophoretic separation of serum proteins identifies the GAMMA-GLOBULIN fraction as containing the majority of antibodies. Three terms which are often confusingly interchanged are defined and distinguished (GAMMA-GLOBULIN, IMMUNOGLOBULIN, ANTIBODY), as are two terms describing antibody/antigen binding, AFFINITY and AVIDITY. All antibodies are made up of one or more IgG-like subunits, each of which has exactly two antigen-combining sites. The affinity of these sites for their antigen (defined as the K eq of the binding reaction) is highly heterogeneous in any normal immune response. While the avidity of an antibody (its ability to form stable complexes with antigen) does depend on its intrinsic affinity, it also increases dramatically with an increasing number of combining sites per antibody. In order to determine the structure of antibodies, we first must have a way of isolating these molecules in relatively pure form. We ll begin by describing the general process of serum fractionation, then go on to analyze the nature of antigen-antibody binding. The many components of normal serum can be separated from one another by various means: Salt precipitation. Ammonium sulfate [(NH 4 ) 2 SO 4 ] as well as a variety of other salts can be used to precipitate serum components; different proteins will precipitate at different concentrations of salt, providing a convenient means of separating them. The fraction containing most of the antibody activity generally precipitates at relatively low salt, at about 30-40% of saturated ammonium sulfate. This is a very widely used experimental method for fractionation of serum components (and proteins in general). Ethanol precipitation. Ethanol can also be used to precipitate serum components, which come out of solution at different concentrations and under different conditions of ionic strength, ph and temperature. This is a more elaborate procedure to carry out than salt fractionation, but is the basis for Cohn Fractionation, which in modified form remains a standard procedure for preparing serum protein fractions for clinical use more than sixty years after its original description in the 1940 s. Electrophoresis. Different serum proteins migrate at varying rates in an electric field, a property which can be used to separate them. While this procedure can be adapted for use on a preparative scale, it is most commonly used for analysis. 17

2 A typical pattern generated by electrophoresis of a serum sample (e.g. on a filter paper strip) is shown in Figure 3-1. albumin globulins α1α2 β γ ELECTROPHORESIS OF NORMAL SERUM Figure 3-1 Several important points emerge from this pattern: 1) Most serum proteins carry a negative charge, and therefore tend to migrate from the point of origin (labeled "O") toward the anode, the positively charged electrode. 2) Four major peaks are seen in this example; these are named (from the anodal, or positive, side) the albumin peak (which is by far the largest), followed by four globulin peaks, α1- and α2-globulin, β-globulin and γ-globulin. 3) This pattern is deceptively simple; serum actually contains hundreds of known proteins. Thus, "β-globulin" is not a single protein, but a mixture of many components which all happen to migrate in a particular region on electrophoresis. 4) Most (but not all) antibodies migrate in the γ -globulin region. 5) The γ-globulin peak is markedly broader than the others, reflecting the high degree of heterogeneity of the antibodies it contains. This heterogeneity is so great that some antibody molecules in fact migrate in the positions characteristic of α-globulin or β- globulin. 6) The γ-globulin peak is generally centered near the origin, labeled "O"; this reflects the fact that antibodies as a group are relatively neutral, i.e. less highly charged than most other serum components. 18

3 Three easily confused terms are all commonly used to refer to antibody molecules, gamma-globulins, immunoglobulins and antibodies. To avoid this confusion let's explicitly define each of them: GAMMA-GLOBULIN -- Any molecule which migrates in the gamma-globulin peak on electrophoresis. Most, but not all, antibodies are in this category, although the term is often used to refer to antibodies in general. (Other serum components migrate in this region as well; therefore, strictly speaking, not all gamma-globulins are antibodies.) IMMUNOGLOBULIN -- A family of molecules (to which all antibodies belong) with similar structures and physical properties. We shall see that these involve homologous amino acid sequences, similar "domain" structures and similar quarternary structures (the ways in which different polypeptide chains are joined into a larger functional unit). ANTIBODY -- A molecule belonging to the Immunoglobulin family, with binding specificity for a particular antigen. While all antibodies are immunoglobulins, most but not all antibodies are gamma-globulins. Note that our definition of "antibody" requires knowledge of the binding specificity of the molecule. If one is dealing with an "antibody" molecule whose specificity is not known, or is irrelevant, it is more accurate to refer to it simply as an "immunoglobulin". (Common usage of these terms varies considerably, however.) ANALYSIS OF THE ANTIBODY COMBINING SITE: VALENCY, AFFINITY AND AVIDITY If we immunize a rabbit with DNP-BSA, we can obtain an antiserum which contains antibodies to both the hapten and the carrier protein. This antiserum will precipitate DNP- BSA in addition to DNP-KLH (Keyhole Limpet Hemocyanin, an unrelated protein carrier). If we attach DNP to SRBC (sheep red blood cells) or to latex particles, we can show that the antiserum is capable of showing agglutination (and possibly hemolysis in the case of SRBC). We can use these antibodies to the DNP hapten in order to learn about antibody structure and function. Specifically, we will ask two questions: 1) How many hapten molecules can a single antibody molecule bind (i.e how many combining sites does it have, or what is its valency )? 2) What is the strength of binding of the hapten to its combining site(s) on the antibody molecule (i.e. what is the affinity of the combining site)? We have previously made the prediction that in order for an antibody molecule to be capable of precipitation or agglutination it must have at least two combining sites, in order to permit cross-linking of the antigen into large, insoluble complexes. We can determine the actual number of combining sites of our anti-dnp antibodies, as well as their affinity, by several techniques; one of them, EQUILIBRIUM DIALYSIS, is discussed more fully in APPENDIX 6, and we will use the results of such an analysis as the basis for our discussion below. 19

4 RABBIT IgG ANTIBODIES HAVE TWO HAPTEN-COMBINING SITES The structure of rabbit IgG antibodies represents the basic structure of all antibodies and we can show by equilibrium dialysis that each anti-dnp antibody molecule can bind exactly two DNP molecules. Thus, our minimum prediction of at least two combining sites is fulfilled. Other kinds of antibodies can be shown to have more than two combining sites (IgM and some IgA), but we will see that such antibodies are always made up of multiple units of the basic "IgG-like" structure, each of which bears precisely two combining sites. CONVENTIONAL ANTIBODIES ARE HETEROGENEOUS WITH RESPECT TO AFFINITY The DNP hapten is bound to each combining site by non-covalent forces, and the strength of this binding is measured by the equilibrium constant of the binding reaction, known as the AFFINITY. The antiserum we describe above contains anti-dnp antibodies with many different affinities, typically ranging from 10 5 to (Antibodies certainly exist with affinities outside this range, but such values are difficult to determine accurately due to technical limitations.) This antibody heterogeneity is a hallmark of the immune response, and has many practical and theoretical implications (see discussions of Clonal Selection and Affinity Maturation [Chapter 7], and Isotype Switching [Chapter 9]). The broadness of the gammaglobulin peak on serum electrophoresis (which we have already described) is one consequence of this heterogeneity; in fact, a sharp, narrow gamma-globulin peak (representing a homogeneous protein) is a pathological sign of a myeloma or other monoclonal gammopathy. However, homogeneous antibodies known as HYBRIDOMAS, or MONOCLONAL ANTIBODIES can be generated experimentally, and are important in many research and clinical applications (see APPENDIX 13). ANTIBODY AVIDITY: ABILITY TO FORM STABLE COMPLEXES WITH ANTIGEN AFFINITY is a thermodynamically defined term representing the strength of interaction of a single combining site with its hapten. Naturally produced antibodies always have two or more sites, however, so that affinity does not tell the whole story with respect to antigen-binding. A bivalent anti-dnp antibody, for example, can simultaneously bind to two DNP haptens on a single BSA molecule, resulting in a much more stable complex than if it only bound to a single site. AVIDITY, on the other hand, is the term used to describe the ability of an antibody to form stable complexes with its antigen. Avidity, of course, depends partly on affinity; all other things being equal (which they rarely are), one IgG antibody with a higher affinity for DNP than another will also have a higher avidity. However, various other factors also play a role, such as the number and spacing of the epitopes on the antigen, the distance between the combining sites on the antibody, and properties such as the "flexibility" of the particular antibody molecule. Avidity does not have a formal thermodynamic definition, and is most commonly used only in a relative context (by demonstrating that one antiserum may exhibit a higher or 20

5 lower avidity than another). Nevertheless, in discussing the interaction of an intact antibody (which is at least bivalent) with a conventional antigen (which is almost always highly multivalent), one must almost always think in terms of "avidity" rather than "affinity". This is of particular importance when considering the biological effectiveness of antibodies which have more than two combining sites, such as serum IgM and some IgA. CHAPTER 3, STUDY QUESTIONS: 1. Define the terms ANTIBODY, IMMUNOGLOBULIN and GAMMA-GLOBULIN. 2. How is EQUILIBRIUM DIALYSIS carried out, and what can it measure? 3. Define and distinguish antibody AFFINITY and AVIDITY. 21

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies A Brief Review of Antibody Structure A Brief Review of Antibody Structure The basic antibody is a dimer of dimer (2 heavy chain-light chain pairs) composed of repeats of a single structural unit known

More information

MEDICAL IMMUNOLOGY 544. Dr. George A. Gutman

MEDICAL IMMUNOLOGY 544. Dr. George A. Gutman I M M U N O L O G Y CORE NOTES MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF

More information

Antibodies (Recommended reading: Abbas et al., 4th edition, Chapter 3; Chapter 4; Janeway et al., 5th edition, Chapter 3)

Antibodies (Recommended reading: Abbas et al., 4th edition, Chapter 3; Chapter 4; Janeway et al., 5th edition, Chapter 3) HST 175 Antibodies (Recommended reading: Abbas et al., 4th edition, Chapter 3; Chapter 4; Janeway et al., 5th edition, Chapter 3) Antibodies protect us from a vast variety of pathogens. Indeed the antibody

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Immunoglobulins. Structure

Immunoglobulins. Structure Immunoglobulins Structure Definitions Immunoglobulin is a generic term that refers to a diverse group of molecules found in the blood and tissue fluids They are soluble globulin molecules and they generally

More information

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions.

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No.

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

Immunoglobulins. Harper s biochemistry Chapter 49

Immunoglobulins. Harper s biochemistry Chapter 49 Immunoglobulins Harper s biochemistry Chapter 49 Immune system Detects and inactivates foreign molecules, viruses, bacteria and microorganisms Two components with 2 strategies B Lymphocytes (humoral immune

More information

CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION

CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION The specificity of humoral immune responses relies on the huge DIVERSITY of antigen combining sites present in antibodies, diversity which

More information

Immunoglobulins. Light chain ~22-23 KDa whereas the heavy chain ~55-60 KDa

Immunoglobulins. Light chain ~22-23 KDa whereas the heavy chain ~55-60 KDa Immunoglobulins Immunoglobulin (Ig) has a common name which is "Antibody (Ab)", but actually we should say Ig, why? Because the proteins, which are involved, are actually globular proteins "known as globulins"

More information

Protein homology. Antigens & Antibodies I. Administrative issues:

Protein homology. Antigens & Antibodies I. Administrative issues: Administrative issues: Recommended text: Goldsby/Kuby Immunology, 6th edition (Note that Innate Immunity is not adequately covered in the 5th edition.) Text book reading assignments are to supplement the

More information

k [AbH] Keq = = k' [Ab] [H]

k [AbH] Keq = = k' [Ab] [H] Dr. Paul C. Montgomery August 2, 2001 Page 1 (of 6) I. Antibody Interactions with Simple Haptens hapten - small organic molecule that becomes part of an antigenic determinant when coupled to a carrier

More information

METHODS IN CELL BIOLOGY EXAM II, MARCH 26, 2008

METHODS IN CELL BIOLOGY EXAM II, MARCH 26, 2008 NAME KEY METHODS IN CELL BIOLOGY EXAM II, MARCH 26, 2008 1. DEFINITIONS (30 points). Briefly (1-3 sentences, phrases, word, etc.) define the following terms or answer question. A. depot effect refers to

More information

Immunoglobulins. (1 of 2)

Immunoglobulins. (1 of 2) Immunoglobulins (1 of 2) Immunoglobulins (Igs) = antibodies Each B cell synthesizes Igs of single specificity for a specific epitope B cell receptors (BCRs) are the Igs on B cell surface Humoral immunity

More information

S uf6t<.. f\tj<t1&6t-'l

S uf6t<.. f\tj<t1&6t-'l Immunagens. An immune response is evoked by a foreign agent called antigen or immunogen. The distinction between these two terms is functional, an antigen is a compound that is capable of binding with

More information

Immunoglobulins: Structure and Function

Immunoglobulins: Structure and Function Immunoglobulins: Structure and Function Immunoglobulins:Structure and Function Definition: Glycoprotein molecules that are produced by plasma cells in response to an immunogen and which function as antibodies

More information

Humoral Immune Response. Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology

Humoral Immune Response. Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology Humoral Immune Response Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology Intended Learning Outcomes By the end of this lesson the student is expected to: 1-Decribe the sequence

More information

Chapter 4. Antigen Recognition by B-cell and T-cell Receptors

Chapter 4. Antigen Recognition by B-cell and T-cell Receptors Chapter 4 Antigen Recognition by B-cell and T-cell Receptors Antigen recognition by BCR and TCR B cells 2 separate functions of immunoglobulin (Ig) bind pathogen & induce immune responses recruit cells

More information

It had been determined by several means that the proteins with antibody activity (immunoglobulins) had a molecular weight of approximately 150 kda.

It had been determined by several means that the proteins with antibody activity (immunoglobulins) had a molecular weight of approximately 150 kda. Immunology Dr. John J. Haddad Chapter 4 Antibody Structure and Function In 1890, Emil von Behring and Shibasaburo Kitasato showed that serum (the straw-colored liquid remaining after blood clots and the

More information

IMMU 7630 Fall 2018 ANTIBODY STRUCTURE

IMMU 7630 Fall 2018 ANTIBODY STRUCTURE IMMU 7630 Fall 2018 ANTIBODY STRUCTURE ANTIBODY IS IMMUNOGLOBULIN. Almost 130 years ago it was observed that a new activity appeared in the blood plasma of animals or humans who had been immunized with

More information

SouthernBiotech Custom Services

SouthernBiotech Custom Services SouthernBiotech Custom Services Quality Antibodies for Quality Research Peptide Synthesis for Antibody Production SouthernBiotech provides complete services for production of immunogenic peptides for antibody

More information

Chapter 2. Antibodies

Chapter 2. Antibodies Chapter 2. Antibodies An iddy-biddy antibody Just nanometers long Saved the butt of a sumo man Hundreds of kilos strong Anonymous The main elements of the immune system are firstly antibodies, secondly

More information

IMMUNOCHEMICAL TECHNIQUES

IMMUNOCHEMICAL TECHNIQUES 24 IMMUNOCHEMICAL TECHNIQUES 24.1 INTRODUCTION All vertebrates have advanced immune system. The more complex the organism the more advanced the immune system. The immune system of mammals has evolved over

More information

So we can separate antigens into their components and allow them to react with their antibodies

So we can separate antigens into their components and allow them to react with their antibodies Ag-ab reactions As for single immunodiffusion, double immunodiffusion can be also combined with electrophoresis to speed up the reaction, and in this case the test is called immunoelectrophoresis. So electrophoresis

More information

BIL 256 Cell and Molecular Biology Lab Spring, Development of the Immune System

BIL 256 Cell and Molecular Biology Lab Spring, Development of the Immune System BIL 256 Cell and Molecular Biology Lab Spring, 2007 Development of the Immune System Background Information I. Serum Proteins Blood is a remarkable tissue containing cellular elements (erythrocytes, leukocytes

More information

Ammonium Sulfate Fractionation of Sera: Mouse, Hamster,

Ammonium Sulfate Fractionation of Sera: Mouse, Hamster, APuLED MICROBIOLoGY, Feb. 1974, p. 389-393 Copyright 0 1974 American Society for Microbiology Vol. 27, No. 2 Printed in U.SA. Ammonium Sulfate Fractionation of Sera: Mouse, Hamster, Guinea Pig, Monkey,

More information

Antibodies and Antigens in the Blood Bank 9/7/2015 NAHLA BAKHAMIS 1

Antibodies and Antigens in the Blood Bank 9/7/2015 NAHLA BAKHAMIS 1 Antibodies and Antigens in the Blood Bank NAHLA BAKHAMIS 9/7/2015 NAHLA BAKHAMIS 1 Outline Antibodies structure, classes and functions Most important Abs in the blood bank effective roles of Abs Zeta potential

More information

Chapter 4 ANTIBODY STRUCTURE AND FUNCTION

Chapter 4 ANTIBODY STRUCTURE AND FUNCTION Chapter 4 ANTIBODY STRUCTURE AND FUNCTION Different way to depict an Ig molecule Y In both the heavy and light chain variable regions there is variability at every position and there are hypervariable

More information

BCH 462. Single Radial Immunodiffusion and Immuno-electrophoresis

BCH 462. Single Radial Immunodiffusion and Immuno-electrophoresis BCH 462 Single Radial Immunodiffusion and Immuno-electrophoresis Immunoassays tests include: 1. Precipitation. 2. Agglutination. 3. Immunofluorescence. 4. Radioimmunoassay (RIA). 5. Enzyme-Linked Immuno

More information

Electrophoresis and transfer

Electrophoresis and transfer Electrophoresis and transfer Electrophoresis Cation = positively charged ion, it moves toward the cathode (-) Anion = negatively charged ion, it moves toward the anode (+) Amphoteric substance = can have

More information

IMMUNOLOGY Receptors of T cells are TCR T Cell Receptors which are present on the cell surface of T lymphocytes.

IMMUNOLOGY Receptors of T cells are TCR T Cell Receptors which are present on the cell surface of T lymphocytes. IMMUNOLOGY - 4 - What is an ANTIGEN? It is a molecule that can be recognized by a receptor and combine with it specifically and the receptor here is the one either produced by B cells or T cells: Receptors

More information

Isolation of Protein

Isolation of Protein Isolation of Protein Ultra-centrifugation http://irfanchemist.wordpress.com/2009/04/19/isolation-of-protein / Protein solutions of various masses or densities may separated based on the time it takes to

More information

Diagnostic Microbiology

Diagnostic Microbiology Diagnostic Microbiology 320 MIC Lecture: 4 Identification of Microbes 3/8/2014 1 Agglutination and Precipitation Reactions Agglutination testing: Antibody cross links whole-cell antigens, forming complexes

More information

Antigen-Antibody. reactions (2) By: Masheal Aljumaah OCT 2018

Antigen-Antibody. reactions (2) By: Masheal Aljumaah OCT 2018 Antigen-Antibody reactions (2) By: Masheal Aljumaah OCT 2018 Learning objectives: introduction to Antigen Antibody reactions. Antigen Antibody reactions part1: Precipitation, Flocculation and Immunodiffusion.

More information

ALBUMIN, BOVINE CAS NUMBER: SYNONYMS: Bovine Serum Albumin; Bovine Plasma Albumin; BSA STRUCTURE:

ALBUMIN, BOVINE CAS NUMBER: SYNONYMS: Bovine Serum Albumin; Bovine Plasma Albumin; BSA STRUCTURE: CAS NUMBER: 9048-46-8 SYNONYMS: Bovine Serum Albumin; Bovine Plasma Albumin; BSA STRUCTURE: The molecular weight of BSA has frequently been cited as 66,120 1 or 66,267 2, but it was revised in 1990 to

More information

Antibody Structure. Antibodies

Antibody Structure. Antibodies Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Antibody Structure supports Function

Antibody Structure supports Function Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

ProductInformation ALBUMIN, BOVINE CAS NUMBER: SYNONYMS: Bovine Serum Albumin; Bovine Plasma Albumin; BSA STRUCTURE:

ProductInformation ALBUMIN, BOVINE CAS NUMBER: SYNONYMS: Bovine Serum Albumin; Bovine Plasma Albumin; BSA STRUCTURE: ProductInformation CAS NUMBER: 9048-46-8 SYNONYMS: Bovine Serum Albumin; Bovine Plasma Albumin; BSA STRUCTURE: The molecular weight of BSA has frequently been cited as 66,120 1 or 66,267 2, but it was

More information

MOLECULAR RECOGNITION

MOLECULAR RECOGNITION MOLECULAR RECOGNITION Bioanalytical Methods Classification 1. Biassay: molecular recognition, signal generation and detection in solution or on inert solid phase 2. Biosensor: molecular recognition system

More information

Typical bands found on serum gel electrophoresis:

Typical bands found on serum gel electrophoresis: Gel Electrophoresis LD Recognise EPG patterns typical of other body fluids including urine and CSF Identify patterns of changes including - Paraproteins - Hypogamma - Acute phase - Circulating immune complexes

More information

Suppression of Polyclonal Immunoglobulin Production by M-proteins Shows Isotype Specificity

Suppression of Polyclonal Immunoglobulin Production by M-proteins Shows Isotype Specificity 274 Annals of Clinical & Laboratory Science, vol. 31, no. 3, 2001 Suppression of Polyclonal Immunoglobulin Production by M-proteins Shows Isotype Specificity Liang Wang and David C. Young Department of

More information

RADIOIMMUNOASSAY (RIA)

RADIOIMMUNOASSAY (RIA) RADIOIMMUNOASSAY (RIA) József Németh Department of Farmacology and Farmacoterapy University of Debrecen Fig. 1: Introduction and history of RIA Development: S. Berson R. Yallow (insulin, 1960) Principle:

More information

Analysis of antigenic response and purification of anti-bsa specific γ - globulin fraction from ovines

Analysis of antigenic response and purification of anti-bsa specific γ - globulin fraction from ovines Journal of Animal Research: v.3 n.1 p.59-64. June, 2013 Analysis of antigenic response and purification of anti-bsa specific γ - globulin fraction from ovines Adil Sidiq Department of Biochemistry, The

More information

Purification of immunoglobulins

Purification of immunoglobulins Purification of immunoglobulins Protein A vs. Thiophilic Resin Historically, Protein A has been the preferred method of immunoglobulin purification. However, there are certain types of antibodies, such

More information

Chapter 3. Clonal selection

Chapter 3. Clonal selection Chapter 3. Clonal selection I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection -Charles Darwin, On the Origin of Species, 1859 4 The

More information

Chapter 17: Immunization & Immune Testing. 1. Immunization 2. Diagnostic Immunology

Chapter 17: Immunization & Immune Testing. 1. Immunization 2. Diagnostic Immunology Chapter 17: Immunization & Immune Testing 1. Immunization 2. Diagnostic Immunology 1. Immunization Chapter Reading pp. 505-511 What is Immunization? A method of inducing artificial immunity by exposing

More information

1. Immunization. What is Immunization? 12/9/2016. Chapter 17: Immunization & Immune Testing. 1. Immunization 2. Diagnostic Immunology

1. Immunization. What is Immunization? 12/9/2016. Chapter 17: Immunization & Immune Testing. 1. Immunization 2. Diagnostic Immunology Chapter 17: Immunization & Immune Testing 1. Immunization 2. Diagnostic Immunology 1. Immunization Chapter Reading pp. 505-511 What is Immunization? A method of inducing artificial immunity by exposing

More information

Higher National Unit specification General information Unit title: Unit code: Superclass: Publication date: Source: Version: Unit purpose Outcomes

Higher National Unit specification General information Unit title: Unit code: Superclass: Publication date: Source: Version: Unit purpose Outcomes Higher National Unit specification General information Unit code: H92E 35 Superclass: RH Publication date: May 2015 Source: Scottish Qualifications Authority Version: 02 Unit purpose This Unit is designed

More information

LECTURE: 22 IMMUNOGLOBULIN DIVERSITIES LEARNING OBJECTIVES: The student should be able to:

LECTURE: 22 IMMUNOGLOBULIN DIVERSITIES LEARNING OBJECTIVES: The student should be able to: LECTURE: 22 Title IMMUNOGLOBULIN DIVERSITIES LEARNING OBJECTIVES: The student should be able to: Identify the chromosome that contains the gene segments that encode the surface immunoglobulin heavy chain

More information

Antibodies and Antigens In the blood bank

Antibodies and Antigens In the blood bank Antibodies and Antigens In the blood bank 1 Nice game!! http://nobelprize.org/ 2 Karl Landsteiner discovered blood groups in 1901. Awarded Nobel Prize for Physiology or Medicine in 1930 3 Why we study

More information

Topic (7): Antibodies and Antigens

Topic (7): Antibodies and Antigens Topic (7): Antibodies and Antigens INTRODUCTION Antibodies (Abs) are one of the three classes of molecules able to differentiate between antigens [Ags] (the other two are T-cell receptor [TCR] and major

More information

Humoral Immunity. Humoral Immunity and Complement. B cell Antigens. Location of B Cell Activation. B Cell Activation T-dependent antigens

Humoral Immunity. Humoral Immunity and Complement. B cell Antigens. Location of B Cell Activation. B Cell Activation T-dependent antigens Humoral Immunity and Humoral Immunity Robert Beatty MCB150 Transfer of non-cell components of blood-- antibodies, complement Humoral immunity = antibody mediated B cell Antigens B Cell Activation of T-dependent

More information

Antibodies. Immunoglobulin (Ig) is a synonym for antibody. Most antibodies are found in the gamma globulin fraction of serum.

Antibodies. Immunoglobulin (Ig) is a synonym for antibody. Most antibodies are found in the gamma globulin fraction of serum. Antibodies Introduction Antibodies are a class of serum proteins which are induced following contact with antigen. They bind specifically with antigen which induced their formation. Immunoglobulin (Ig)

More information

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation?

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation? 1 Name MCB 150 Midterm Eam #1 (100 points total) Please write your full name on each page of the eam!! The eam consists of 17 questions (6 pages). Each has a different point count as indicated. Please

More information

Immunological Techniques in Research and Clinical Medicine. Philip L. Cohen, M.D. Chief of Rheumatology, LKSOM 10 March 2016

Immunological Techniques in Research and Clinical Medicine. Philip L. Cohen, M.D. Chief of Rheumatology, LKSOM 10 March 2016 Immunological Techniques in Research and Clinical Medicine Philip L. Cohen, M.D. Chief of Rheumatology, LKSOM 10 March 2016 Antibodies Remarkable Tools for Research and Diagnosis You can make an antibody

More information

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry

Lecture 5: 8/31. CHAPTER 5 Techniques in Protein Biochemistry Lecture 5: 8/31 CHAPTER 5 Techniques in Protein Biochemistry Chapter 5 Outline The proteome is the entire set of proteins expressed and modified by a cell under a particular set of biochemical conditions.

More information

OpenStax-CNX module: m Antibodies * OpenStax. Abstract

OpenStax-CNX module: m Antibodies * OpenStax. Abstract OpenStax-CNX module: m44823 1 Antibodies * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to:

More information

Antibody - Antigen Reactions: ABO and D typing Antibody screening and identification

Antibody - Antigen Reactions: ABO and D typing Antibody screening and identification Antibody - Antigen Reactions: ABO and D typing Antibody screening and identification Basics of antigen/ antibody reactions Why is the ABO group so special? D antigen it s complicated! Antibody screen Antibody

More information

ANTIBODIES. Agents of Immunity

ANTIBODIES. Agents of Immunity ANTIBODIES Agents of Immunity - Antibodies are: The Organization What are they? Protective agents of the immune system Neutralize foreign agents called antigens Essential part of the Adaptive Immune System

More information

Supplementary Figure 1. Antibody-induced cargo release studied by native PAGE. A clear band corresponding to the cargo strand (lane 1) is visible.

Supplementary Figure 1. Antibody-induced cargo release studied by native PAGE. A clear band corresponding to the cargo strand (lane 1) is visible. Supplementary Figure 1. Antibody-induced cargo release studied by native PAGE. A clear band corresponding to the cargo strand (lane 1) is visible. Because SYBR Gold is less sensitive to single stranded

More information

PROTEIN L AGAROSE BEADS

PROTEIN L AGAROSE BEADS DESCRIPTION Protein L is an immunoglobulin-binding protein that was isolated from the bacteria Peptostreptococcus magnus and provides a convenient way to separate immunoglobulins from a variety of sources.

More information

Antibody Structure and Function

Antibody Structure and Function Antibody Structure and Function Keri C. Smith, Ph.D. January 22, 2008 (or) Anatomy and Physiology of Antibodies Overview Physical properties of antibodies Structural and molecular features Differences

More information

MATF Antigen Submission Details and Standard Project Deliverables

MATF Antigen Submission Details and Standard Project Deliverables MATF Antigen Submission Details and Standard Project Deliverables What we require when you submit your antigen: Proteins For a recombinant protein target, we require a minimum of 400µg soluble recombinant

More information

Antibody-Mediated Immunity

Antibody-Mediated Immunity Color code: Important in red Extra in blue Antibody-Mediated Immunity For team error adjustments, click here Objectives To describe B-cells as the mediators of humoral immunity, (antibody-mediated immunity)

More information

APPENDIX. Equivalence. Amount of added Ab. Figure A1-1

APPENDIX. Equivalence. Amount of added Ab. Figure A1-1 APPENDIX 1. PRECIPITIN CURVE Let s examine a typical precipitin curve, in which we take a fixed amount of antigen (say BSA), and add to it increasing amounts of antibody. We then measure the quantity of

More information

Practical Applications of Immunology (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Practical Applications of Immunology (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Practical Applications of Immunology (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology

More information

Rheumatoid Factor /IgG Adsorbent e-book. For use with Infectious Disease Immunoassays

Rheumatoid Factor /IgG Adsorbent e-book. For use with Infectious Disease Immunoassays Rheumatoid Factor /IgG Adsorbent e-book For use with Infectious Disease Immunoassays Contents Page Background 3 Why is it used? 8 How does it work? 9 What s in the reagent? 11 2 CHAPTER 1 Background IgG

More information

Solutions to 7.02 Quiz II 10/27/05

Solutions to 7.02 Quiz II 10/27/05 Solutions to 7.02 Quiz II 10/27/05 Class Average = 83 Standard Deviation = 9 Range Grade % 87-100 A 43 74-86 B 39 55-73 C 17 > 54 D 1 Question 1 (56 points) While studying deep sea bacteria, you discover

More information

Solutions for Your Research

Solutions for Your Research Solutions for Your Research Custom Antibody Services Polyclonal Monoclonal The service we offer is very complete starting from rabbits, mice and rats. The different formats provided by Primm depend on

More information

T-cell response. Taken from NIAID: s.aspx

T-cell response. Taken from NIAID:   s.aspx T-cell receptor T-cell response 1. Macrophage or dendritic cell digest antigen bacteria, virus 2. Fragments of Ag bind to major histo-compatiblity (MHC) proteins in macrophage. 3. MHC I-Ag fragment expressed

More information

Development Team. Department of Zoology, University of Delhi. Department of Zoology, University of Delhi. Hindu College, University of Delhi

Development Team. Department of Zoology, University of Delhi. Department of Zoology, University of Delhi. Hindu College, University of Delhi Paper No.: 10: Module : 24: Immunity in health and diseases: Principles and applications of Development Team Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer: Content

More information

Convenient and Effective Method for Removing Fibrinogen from Serum Specimens before Protein Electrophoresis

Convenient and Effective Method for Removing Fibrinogen from Serum Specimens before Protein Electrophoresis Clinical Chemistry 49:6 868 872 (2003) Proteomics and Protein Markers Convenient and Effective Method for Removing Fibrinogen from Serum Specimens before Protein Electrophoresis Ling L. Qiu, 1 Stanley

More information

Antibody-Drug Conjugate Bioanalytical Assay Development:

Antibody-Drug Conjugate Bioanalytical Assay Development: Antibody-Drug Conjugate Bioanalytical Assay Development: Immunogenicity Challenges November 16, 2016 Presented by Corinna Fiorotti, Ph.D. Presentation Overview ADC Overview ADC Assays ADC Immunogenicity

More information

RAT MONOCLONAL ANTIBODIES ANTI-MOUSE IMMUNOGLOBULINS

RAT MONOCLONAL ANTIBODIES ANTI-MOUSE IMMUNOGLOBULINS RAT MONOCLONAL ANTIBODIES ANTI-MOUSE IMMUNOGLOBULINS Supplied by: dianova GmbH Warburgstrasse 45 20354 Hamburg Phone: +49 (0)40 45 06 70 Email: info@dianova.de www.dianova.com MOUSE IMMUNOGLOBULINS 1 (Sub)classes

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Antibody Structure, and the Generation of B-cell Diversity. Chapter 4 5/1/17

Antibody Structure, and the Generation of B-cell Diversity. Chapter 4 5/1/17 Antibody Structure, and the Generation of B-cell Diversity B cells recognize their antigen without needing an antigen presenting cell Chapter 4 Structure of Immunoglobulins Structure and function Immunoglobulin

More information

Immunoglobulins. Even variable chain differ in variability of amino acid sequences:

Immunoglobulins. Even variable chain differ in variability of amino acid sequences: Revision: Immunoglobulin structure 2 light chain 25KDa and 2 heavy chain 50KDa (total=150kda) Heavy chain one quarter variable three quarter constant Even variable chain differ in variability of amino

More information

Application of Biacore Technology

Application of Biacore Technology Principles and typical results Application of Biacore Technology Common types of Biacore analyses Specificity analysis Is my molecule of interest specific for its target? Multiple binding analysis In which

More information

See more signal with less noise

See more signal with less noise See more signal with less noise SeraCare KPL Antibodies & Conjugates See more signal with less noise In nature many animals use camouflage to escape detection. An animal s survival often depends upon its

More information

TITRATION OF ANTISERA TO SOLUBLE PROTEINS ON THE BASIS OF AN AGGLUTINATION REACTION:

TITRATION OF ANTISERA TO SOLUBLE PROTEINS ON THE BASIS OF AN AGGLUTINATION REACTION: 390 TITRATION OF ANTISERA TO SOLUBLE PROTEINS ON THE BASIS OF AN AGGLUTINATION REACTION: CONJUGATION OF EGG ALBUMIN AND CHICKEN SERUM GLOBULIN TO THE INCOMPLETE RH ANTIBODY AND THE SUBSEQUENT USE OF RH-POSITIVE

More information

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function Chapter 4. Immunoglobulin Structure and Function. Functional Regions. Types of chains. Constant & Variable regions 4. Glycoprotein * * * Heavy chain= 446 aa Light chain= 4aa Each heavy and light chain

More information

Electron Beam Sterilization of the Agarose Gel Used for Electrophoresis

Electron Beam Sterilization of the Agarose Gel Used for Electrophoresis Electron Beam Sterilization of the Agarose Gel Used for Electrophoresis D. Ighigeanu 1, D. Martin 1, E. Manaila 1, D.E. Stan 2, I. V. Baciu 3, G. Craciun 1, C. Oproiu 1, N. Iacob 1 1 National Institute

More information

Western-GUARANTEED Antibody Service FAQ

Western-GUARANTEED Antibody Service FAQ Western-GUARANTEED Antibody Service FAQ Content Q 1: When do I need a Western GUARANTEED Peptide Antibody Package?...2 Q 2: Can GenScript provide a Western blot guaranteed antibody?...2 Q 3: Does GenScript

More information

2. Relay characteristics of proteins and protein electrophoresis / fractionation.

2. Relay characteristics of proteins and protein electrophoresis / fractionation. UNIT: Proteins 15prot_elec.wpd Task Electrophoresis Objectives Upon completion of this exercise, the student will be able to: 1. Review electrophoresis information as presented in class. 2. Relay characteristics

More information

LECTURE: 26 SIMPLE SEROLOGICAL LABORATORY TECHNIQUES LEARNING OBJECTIVES:

LECTURE: 26 SIMPLE SEROLOGICAL LABORATORY TECHNIQUES LEARNING OBJECTIVES: LECTURE: 26 Title SIMPLE SEROLOGICAL LABORATORY TECHNIQUES LEARNING OBJECTIVES: The student should be able to: Define the term "simple serological techniques". Describe the benefit of the use of serological

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 17 Adaptive Immunity: Specific Defenses of the Host The Adaptive Immune System Adaptive immunity:

More information

Immunogenicity of Therapeutic Proteins. Steven J Swanson, Ph.D. Executive Director, Clinical Immunology

Immunogenicity of Therapeutic Proteins. Steven J Swanson, Ph.D. Executive Director, Clinical Immunology Immunogenicity of Therapeutic Proteins Steven J Swanson, Ph.D. Executive Director, Clinical Immunology swanson@amgen.com Causes of Immunogenicity Sequence differences between therapeutic protein and endogenous

More information

A guide to selecting control, diluent and blocking reagents

A guide to selecting control, diluent and blocking reagents Specializing in Secondary Antibodies and Conjugates A guide to selecting control, diluent and blocking reagents Optimize your experimental protocols with Jackson ImmunoResearch Secondary antibodies and

More information

Protein analysis. Dr. Mamoun Ahram Summer semester, Resources This lecture Campbell and Farrell s Biochemistry, Chapters 5

Protein analysis. Dr. Mamoun Ahram Summer semester, Resources This lecture Campbell and Farrell s Biochemistry, Chapters 5 Protein analysis Dr. Mamoun Ahram Summer semester, 2015-2016 Resources This lecture Campbell and Farrell s Biochemistry, Chapters 5 Bases of protein separation Proteins can be purified on the basis Solubility

More information

A guide to selecting control, diluent and blocking reagents

A guide to selecting control, diluent and blocking reagents Specializing in Secondary Antibodies and Conjugates A guide to selecting control, diluent and blocking reagents Optimize your experimental protocols with Jackson ImmunoResearch Secondary antibodies and

More information

Serum heavy-light chain analysis (Hevylite): clinical applications for multiple myeloma

Serum heavy-light chain analysis (Hevylite): clinical applications for multiple myeloma Serum heavy-light chain analysis (Hevylite): clinical applications for multiple myeloma Kelly Endean PhD Scientific Affairs Manager, The Binding Site Focus of this talk An introduction to heavy-light chain

More information

Antibodies (Immunoglobulins)

Antibodies (Immunoglobulins) Antibodies (Immunoglobulins) The immune system plays a major role in the body s defense mechanisms against pathogens and other foreign bodies. It protects organisms from infection with a layered defense

More information

Immunological Applications. Chapter 8: Background

Immunological Applications. Chapter 8: Background Immunological Applications Chapter 8: Background The Immune System Types of Immunity Innate The natural immunity present at birth Acquired A specific response to foreign substances. Some cells remember

More information

Mechanisms of extravascular destruction of red cells coated with IgG1 or IgG3 (± C3b).

Mechanisms of extravascular destruction of red cells coated with IgG1 or IgG3 (± C3b). Introduction - Antibodies involved in transfusion reactions are of two types, namely the complete and the incomplete. - whereas the complete antibodies agglutinate red cells in saline medium, the incomplete

More information

Electrophoresis. Assays... INTERLAB ASSAYS. Instrument. Software Easy data management thanks to innovative Elfolab software. General Characteristic

Electrophoresis. Assays... INTERLAB ASSAYS. Instrument. Software Easy data management thanks to innovative Elfolab software. General Characteristic Software Easy data management thanks to innovative Elfolab software. Instrument Complete walk-away automation. Initial 52 results available within 50 minutes. Impressive 208 Serum Proteins samples per

More information

Nephelometry and turbidimetry are liquid based immunoassays based on the measurement of scattered or absorbed light.

Nephelometry and turbidimetry are liquid based immunoassays based on the measurement of scattered or absorbed light. 1 Nephelometry and turbidimetry are liquid based immunoassays based on the measurement of scattered or absorbed light. Light scattering is the physical phenomenon resulting from the interaction of light

More information

Introduction to Antibody Structure/Function. Med Chem 528

Introduction to Antibody Structure/Function. Med Chem 528 Introduction to Antibody Structure/Function Med Chem 528 Origins of antibodies Product of the adaptive immune system B cells (antibody based immunity) T cells (cell based immunity) Pre-exposure protects

More information

SPHERO TM Coated Particles

SPHERO TM Coated Particles SPHERO TM Coated Particles Manufactured by either passive adsorption or covalent coupling depending upon the intended application Stable for several years under proper storage condition Available in a

More information

LAMPIRE Hybridoma Project Initiation Form

LAMPIRE Hybridoma Project Initiation Form 1. General Information Company / Institution: Investigator Name: Contact Name: Phone: Fax: 2. Billing / Shipping Information Accounts Payable contact: Company: Dept./Bldg./Room#: Address: Project Name

More information

BLOOD TYPING REAGENTS. Product Profile

BLOOD TYPING REAGENTS. Product Profile BLOOD TYPING REAGENTS Product Profile 2 BLOOD TYPING REAGENTS Its all about Human Blood Human blood is classified based on presence or absence of inherited antigens on the surface of red blood cells (RBCs).

More information