BIODEGRADATION KINETICS OF BIOPOLYMERS AND BIOCOMPOSITES

Size: px
Start display at page:

Download "BIODEGRADATION KINETICS OF BIOPOLYMERS AND BIOCOMPOSITES"

Transcription

1 BIODEGRADATION KINETICS OF BIOPOLYMERS AND BIOCOMPOSITES N.Pons, J.C.Benezet, L.Ferry, A.Bergeret Ecole des Mines d Alès 6, Avenue de Clavières, 3319 ALES, France Nicolas.Pons@ema.fr SUMMARY This study focuses on the biodegradation of biocomposites made by a natural biodegradable polymer (PLA, PolyLactic Acid) and innovative glass fibers. Evolution of PLA biodegradation kinetic was observed and degradation phenomena have been determined. Differences in biodegradation kinetic were attributed to the fiber nature. Keywords: Biocomposites, Biological Oxygen Demand, Poly(lactic acid). INTRODUCTION The materials end of life is an aim with an interest in development. Two intensively studied ways are identified: the recycling and the biodegradation. For the second option, biocomposites based on a biopolymer matrix are currently developed. However blending a matrix with filler can change drastically the biodegradation kinetic. For our study, a water alterable glass fiber has been used. This alterability could modify the PLA biodegradation mechanisms. Polymer materials are now starting to face different problems. First, the oil price isn t stable and varies significantly. It s problematic from a business point of view. Second, the oil availability predictions say there is enough oil for until 25. Finally, polymers need long times biodegradation (between four and five hundred years). Today, the bio-based polymers begin to appear in the everyday life as supermarket bags, for short duration uses or medicinal application... This polymer family represents a great interest because it s based on a renewable carbon source and the biodegradation kinetic is fast. To improve the mechanical properties of biopolymers, a new generation of biocomposites is currently developed. These materials are generally based on a biopolymer matrix reinforced by natural fibers. These have the same benefits as biopolymers: they are renewable and biodegradable. Moreover, they are cheap and have a low density. Unfortunately, their mechanical properties are generally lower and vary depending on the production location and the harvest condition. Our project aims to develop a biocomposite poly(lactic acid) (PLA) matrix whose fibers are mineral instead of vegetal. These alterable glass fibers (agf) have been used with the aim to obtain reinforcements available to be degradable by water and mineralized by microorganisms. This alterability combined to a good reproducibility of glass properties compared to vegetable fibers makes this fiber an interesting reinforcement system with

2 an important potential of development [1, 2]. Alterable phosphates glasses were already used as reinforcement for medical application. In this study, ageing of biocomposites PLA/aGF was analyzed and ageing phenomena were determined. Indeed, as the glass fibers are alterable, ageing of biocomposite depend on the fibers degradation kinetic. A hygrothermal ageing test was performed to accelerate the biocomposites degradation. Mechanical tests, weight measurement, thermal analysis and SEM observations were carried out to characterize ageing phenomena. Materials MATERIALS AND METHODS Poly(lactic acid) (PLA) in the form of small-size granules was commercially available from Nature Works LLC (Blair, USA) under the trade name PLA 7D. Three different glass fibers (1 µm diameter) were provided by OCV Reinforcement (Chambéry, France). E-glass is a typically non alterable commercial glass fiber with a coating containing a film former agent able to create good interactions with polyester resins. X (X1, X2, X3) glass are alterable glass fibers developed by OCV. These fibers were coated with the different sizing formulations. Different sizes, coupling agents and sticking agents was selected. Biocomposites were prepared by extrusion/injection molding with 3% in weight of fibers. Methods Biocomposite elaboration Biocomposites (7% PLA/3% fiber in weight) were prepared by extrusion/injection molding. For each composite, 1 specimens according to ISO type 1A standard were produced. According to NatureWorks PLA 7D data sheet, pellets were dried for 12h at 5 C under vacuum before they were extruded and injection molded. A co-rotative twin-screw extruder (Clextral BC21) was used to perform compounding. A uniform temperature (17 C) and a constant screw rotation speed of 25tr/min were used. The polymer matrix was fed at 2.8kg/h with a K-Tron feeder and the fiber was fed manually at 1.2kg/h. After extrusion, the material is cooled in a water bath and cut to form pellets. A machine by the company Sandretto (type 95 tons) was used for injection molding. The temperatures in the screw and in the injector were set to 17 C; the temperature in the mold was 4 C. The main parameters are given in Table 1 (cf publi EAC).

3 Biodegradation characterization Two tests were used and compared. The biodegradability of the biocomposite was performed by BOD 28 (Biological Oxygen Demand). According to the standard ISO 14851, the biodegradation test lasts 28 days at 23 C (climate room). Micro-organisms oxygen consumption is identified each day. Inoculum is based on horse manure and pine bark (5%-5% in weight) activated at 37 C for 1 hour. Solution is prepared according to the normal solution proposed by the standard. Tests were performed in an OxiTop IS system (WTW, Germany), with 3 bottles used for the reference and 3 bottles for each composite. The reference corresponds to the oxygen consumption of the microorganisms without carbon source. A second biodegradation test has been specially developed to evaluate the biodegradability kinetic of the biocomposites in an enzymatic medium. It consists in the detection of the first monomers (lactic acid) involved during the biodegradation of the polymer (PLA). A combination of various accurate enzymes used as inoculums at 37 C. The monomer formation is detected by a luminescence technique and is measured each hour during 6h. RESULTS AND DISCUSSIONS Influence of glass nature BOD results showed that the PLA biodegradation kinetic is improved for X-glass reinforced PLA because of the increase of the specific surface in contact with the inoculums solution. This increase is due to the solubilisation of the fiber allowing the microorganisms to attack the matrix. The biodegradation kinetic remains equivalent for unreinforced PLA and E-glass reinforced composite. In all cases at 28 days, the biodegradation of biocomposites is greater than for the matrix alone. The presence of an interface between fibre and matrix may be responsible for this behaviour. 25 PLA-X PLA-E PLA 15 mg/ml Days Figure 1: Biological Oxygen Demand of PLA and Biocomposites The nature of the glass (X or E) related to the different ions in the formulation to obtain glasses more or less soluble. The preferential dissolution of glass can be followed by the

4 appearance of silicate ions in the initial solution, because in all cases, glasses are silica glass. 4 [silicate] (ppm) E X3 X3' hours Figure 2: Kinetics of soluble fibre glass (ph 7.4, 37 C) The nature of the glass fibres composition contains in composites is a great importance. Indeed, Figure 2 shows clearly that the glass composition is responsible of the dissolutio kinetics depending on the nature of ions (trainers, modifiers or intermediate). Glass commercial non-soluble (E) has the lowest dissolution kinetics. All other glass fibres developed to be soluble have a greater solubility. [Silicate] mg/l ,87 8, [lactate] mg/l Figure 3: Solubility of glass fibres X3 in the presence of lactate (12 hours, 45 C) These glasses are designed to reinforce polymer matrix to enhance mechanical properties and develop biocomposites. In this perspective, the dissolution of glasses in the presence of entities lactate was followed. Indeed, the dissolution of the glass has been previously measured in a controlled environment (ph 7.4 and 37 C) but the degradation of the polymer matrix can affect the kinetics of degradation of lenses released basic entities (Figure 3). Figure 3 clearly shows that the concentration of lactate entities affects the degradation of the glass (silicate solubilised rate). As a first step, to 87 mg / l, the presence of lactate is unfavorable to the reaction of dissolution of soluble glasses. Then for large concentrations of lactate, more than 1g / l, the dissolution

5 becomes more important. This phenomenon can be explained by precipitation of a portion of lactate to the highest concentrations. Influence of fibre surface treatment For a glass of the same nature, the influence of surface treatment is presented in Figure 4. Except for the surface treatment numbered 4, other treatments have a similar effect on the degradation of composites. Treatments numbered 4, 5 or 952 all lead to biodegradation than for treatment numbered 4. In this case, the chemical composition of the surface treatment is responsible for these differences in the nature of compounds involved and the quality of the fibre-matrix adherence. 25 PLA-C3-4 PLA-C3-5 PLA-C3-6 PLA-C Figure 4: Biodegradation of composites containing the same fibre with different surface treatments The type of glass and type of surface treatment is involved in the rate of degradation of composites. The E-type glasses are much less soluble than glass-type X. This comes from the glass composition between these two different glasses, which remains secret (IP). On the dissolution pure glasses, the influence of the nature of the glass composition is more important than the influence of surface treatment (Figure 5).

6 25 [silicate] mg/kg/h E-2 E-3 C3-1 C3- C3-2 4 Sam ple C3-5 C3-6 C3-952 Figure 5: Dissolving glass depending on the nature of glass and surface treatment (24 hours, 37 C CONCLUSION The study of (bio) degradation (bio) composites has revealed a number of points. In the case of biocomposites developed: the matrix (PLA) and glass (X) are degraded by the conventional protocols for monitoring the biodégradtion (BOD). The interface matrix / fiber seems to be largely responsible for the significant dégradtion biocomposites. The quality of this interface can act as a regulator of degradation of composites. Degradation of glass developed in this study is strongly influenced by the presence of residues of degradation of the matrix (lactate). In conclusion, a competition will take place in the composite during its degradation, the degradation between the glass and the matrix. The degradation products of glass that can slow down the kinetics of degradation of the matrix and vice versa. ACKNOWLEDGEMENTS The authors want to acknowledge ADEME (French Agency of Environment and Waste Management) and ANR (National French Agency of Research) for their financial supports. The authors are also gratefully embedded with YELEN Co. (Marseille, France) for having developed the enzymatic test and procedure, and OCV Reinforcement International Co. (Chambery, France) for the glass fiber development. References 1. V.A. Alvarez, R.A. Ruseckaite, A. Vásquez, Degradation of sisal fibre Mater- Bi-Y biocomposites buried in soil, Polymer Degradation and Stability 91 (6), R. Iovino, R. Zullo, M.A. Rao, L. Cassar, L. Gianfreda, Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions, Polymer Degradation and Stability 93 (8),

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber KEYWORDS: Thermoplastic starch, Mechanical & physical properties, Reinforcements The increasing

More information

SUCCIPACK Development of active, intelligent and sustainable food PACKaging using Polybutylenesuccinate

SUCCIPACK Development of active, intelligent and sustainable food PACKaging using Polybutylenesuccinate Page 1 / 13 SUCCIPACK Development of active, intelligent and sustainable food PACKaging using Polybutylenesuccinate Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

More information

Biodegradable PLA-Kenaf Fibre Biocomposite for Cleaner Environment

Biodegradable PLA-Kenaf Fibre Biocomposite for Cleaner Environment Biodegradable PLA-Kenaf Fibre Biocomposite for Cleaner Environment * H. Anuar, A. Zuraida and F. Fuad Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic

More information

Renewable Bio-composites for Automotive Applications

Renewable Bio-composites for Automotive Applications Renewable Bio-composites for Automotive Applications Angela Harris (presenter) Ellen Lee Materials and Nanotechnology Department Manufacturing, Vehicle Design and Safety Laboratory 1 Outline Background

More information

STUDY OF CRYSTALLIZATION OF POLYLACTIC ACID COMPOSITES AND NANOCOMPOSITES WITH NATURAL FIBRES BY DSC METHOD

STUDY OF CRYSTALLIZATION OF POLYLACTIC ACID COMPOSITES AND NANOCOMPOSITES WITH NATURAL FIBRES BY DSC METHOD STUDY OF CRYSTALLIZATION OF POLYLACTIC ACID COMPOSITES AND NANOCOMPOSITES WITH NATURAL FIBRES BY DSC METHOD Luboš BĚHÁLEK, Miroslava MARŠÁLKOVÁ, Petr LENFELD, Jiří HABR, Jiří BOBEK, Martin SEIDL Technical

More information

Omya Smartfill opens new opportunities for the use of Polylactic Acid

Omya Smartfill opens new opportunities for the use of Polylactic Acid Omya Smartfill opens new opportunities for the use of Polylactic Acid Tel +41 62 789 29 29 Fax +41 62 789 20 77 www.omya.com Dr. Matthias Welker, Dr. Michael Knerr, Karsten Schulz, Switzerland Abstract

More information

POLY(LACTIC ACID) BASED SINGLE COMPOSITES

POLY(LACTIC ACID) BASED SINGLE COMPOSITES POLY(LACTIC ACID) BASED SINGLE COMPOSITES S. Ouajai 1*, T. Ungtrakul 1, A. Reung-u-rai 1 and R.A. Shanks 2 1 Department of Industrial Chemistry, Faculty of Applied Science, KMUTNB 1518 Piboonsongkarm road,

More information

Prof. Carla Severini University of Foggia - Italy Xi an, China 2013 September 26-28

Prof. Carla Severini University of Foggia - Italy Xi an, China 2013 September 26-28 Total reuse of vegetable industrial waste to produce bio-packaging Prof. Carla Severini University of Foggia - Italy Xi an, China 2013 September 26-28 Following the EU strategy it is necessary to minimize

More information

DEVELOPMENT OF BASALT FIBRE AND MONTMORILLONITE NANOPARTICLE CO-REINFORCED POLY(LACTIC-ACID) MATRIX HYBRID COMPOSITES

DEVELOPMENT OF BASALT FIBRE AND MONTMORILLONITE NANOPARTICLE CO-REINFORCED POLY(LACTIC-ACID) MATRIX HYBRID COMPOSITES DEVELOPMENT OF BASALT FIBRE AND MONTMORILLONITE NANOPARTICLE CO-REINFORCED POLY(LACTIC-ACID) MATRIX HYBRID COMPOSITES MÉSZÁROS László 1,2, GONDA Bence 1 1 Department of Polymer Engineering, Faculty of

More information

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction High Performance Structures and Materials IV 211 Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction K. Tanaka 1, T. Katsura 1,

More information

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction Natural Filler and Fibre Composites: Development and Characterisation 115 Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction

More information

Development of a Thermoplastic Biocomposite for 3D Printing. John Obielodan,* Joshua Helman, and Andrew Grumbles

Development of a Thermoplastic Biocomposite for 3D Printing. John Obielodan,* Joshua Helman, and Andrew Grumbles Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Development of a Thermoplastic Biocomposite for 3D

More information

Industrial implementation of biodegradable and compostable packaging nets for agricultural and shellfish products

Industrial implementation of biodegradable and compostable packaging nets for agricultural and shellfish products Industrial implementation of biodegradable and compostable packaging nets for agricultural and shellfish products [2009-2013] Reducing plastic waste and waste management costs through the development of

More information

Processing Guide Rev.No. 1

Processing Guide Rev.No. 1 Compounding high heat PLA/PDLA Introduction This processing guide describes the handling and compounding of high heat PLA. Compounding is a process of melt-mixing PLA with polymers, additives, fillers

More information

These two types of analysis can therefore show uniformity of filler content, identity of filler, and concentration of filler.

These two types of analysis can therefore show uniformity of filler content, identity of filler, and concentration of filler. Summary This application note describes analysis techniques to assess the distribution and quantity of inorganic fillers in thermoplastics using scanning electron microscopy with energy dispersive spectroscopy,

More information

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS M. Oishi et al. Nano Studies, 2015, 11, 69-74. DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS M. Oishi 1, 2, Ch. Dal Castel 1, R. Park 1, B. Wolff 1, 3, L. Simon 1 1 University of

More information

LAPOL HDT-P BIOPOLYMER COMPOUND TECHNICAL BULLETIN

LAPOL HDT-P BIOPOLYMER COMPOUND TECHNICAL BULLETIN Lapol HDT-P Raising the Heat Deflection Temperature of PLA LAPOL HDT-P BIOPOLYMER COMPOUND TECHNICAL BULLETIN OCTOBER 2 0 1 7 1 Polylactic Acid (PLA) Biopolymer The Front Runner in Bioplastics Biodegradable

More information

MAXITHEN BIOL. Masterbatches for the colouring of. PLA (polylactic acid)

MAXITHEN BIOL. Masterbatches for the colouring of. PLA (polylactic acid) MAXITHEN BIOL Masterbatches for the colouring of PLA (polylactic acid) MAXITHEN BIOL range HISTORY The environmental consciousness of consumers has become ever more important in recent years. Biodegradable

More information

PROJECT TITLE: Rice Board Laminate BioComposite Development to Rice Straw Based Construction Panels

PROJECT TITLE: Rice Board Laminate BioComposite Development to Rice Straw Based Construction Panels PROJECT NO. RU-07 ANNUAL REPORT COMPREHENSIVE RESEARCH ON RICE January 1, 2014 - December 31, 2014 PROJECT TITLE: Rice Board Laminate BioComposite Development to Rice Straw Based Construction Panels PROJECT

More information

Development of cellulose-reinforced Poly(Lactic Acid) (PLA) for engineering applications Sándor Hajba 1,a, Tibor Czigány 1,2,b, Tamás Tábi 1,2,c,

Development of cellulose-reinforced Poly(Lactic Acid) (PLA) for engineering applications Sándor Hajba 1,a, Tibor Czigány 1,2,b, Tamás Tábi 1,2,c, Development of cellulose-reinforced Poly(Lactic Acid) (PLA) for engineering applications Sándor Hajba 1,a, Tibor Czigány 1,2,b, Tamás Tábi 1,2,c, 1 Department of Polymer Engineering, Faculty of Mechanical

More information

Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process

Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene

More information

6 Biodegradability test

6 Biodegradability test 6 Biodegradability test 6.1 Soil burial and compost conditions Biodegradation occurs with enzymatic action and involves living organisms (micro/macro). Molecular degradation is promoted by enzymes and

More information

Flammability and Mechanical Properties of Ramie Reinforced Poly(lactic Acid) Composites by Using DOPO

Flammability and Mechanical Properties of Ramie Reinforced Poly(lactic Acid) Composites by Using DOPO Journal of Engineering Science, Vol. 10, 9 18, 2014 Flammability and Mechanical Properties of Ramie Reinforced Poly(lactic Acid) Composites by Using DOPO Tao Yu, Yan Li * and Yonglong Wang School of Aerospace

More information

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK Technical University of Liberec, Liberec, Czech Republic, EU jiri.habr@tul.cz, petr.lenfeld@tul.cz,

More information

Press-meeting: May 28, 2009

Press-meeting: May 28, 2009 Innovation insightful ideas successfully to the market Press-meeting: May 28, 2009 o Requirements on the Cellulose Fibres from the Composite Industry Prof. Laboratory of Polymer and Composite Technology

More information

We are a full service provider of custom formulations of biocomposite materials and technical support. We are at the forefront of

We are a full service provider of custom formulations of biocomposite materials and technical support. We are at the forefront of We are a full service provider of custom formulations of biocomposite materials and technical support. We are at the forefront of environmentally-friendly plastic biocomposites and in providing solutions

More information

Hemp fines - an agricultural by-product for biocomposites? a holistic approach

Hemp fines - an agricultural by-product for biocomposites? a holistic approach Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Hemp fines - an agricultural by-product for biocomposites? a holistic approach

More information

Breaking the limits of bioplastics using degradable glass fiber as reinforcement Arctic Biomaterials Oy Tomi Kangas, Sales Director

Breaking the limits of bioplastics using degradable glass fiber as reinforcement Arctic Biomaterials Oy Tomi Kangas, Sales Director Breaking the limits of bioplastics using degradable glass fiber as reinforcement 6.2.2019 Arctic Biomaterials Oy Tomi Kangas, Sales Director GENERAL COMPANY INFO Founded 2014 35 professional persons and

More information

Injection molding of standard & high heat PLA compounds. 2

Injection molding of standard & high heat PLA compounds. 2 Page 1 of 5 Date previous version 21 Apr 2016 PROCESSING GUIDE INJECTION MOLDING OF STANDARD AND HIGH HEAT PLA COMPOUNDS Interested in solutions for bioplastics? Please contact us at 2 www.total-corbion.com

More information

PHYSICAL-MECHANICAL PROPERTIES OF BIOCOMPOSITES REINFORCED WITH COIR (NANO)FIBERS. Luboš BĚHÁLEK, Jiří HABR, Jiří BOBEK, Martin SEIDL, Petr LENFELD

PHYSICAL-MECHANICAL PROPERTIES OF BIOCOMPOSITES REINFORCED WITH COIR (NANO)FIBERS. Luboš BĚHÁLEK, Jiří HABR, Jiří BOBEK, Martin SEIDL, Petr LENFELD PHYSICAL-MECHANICAL PROPERTIES OF BIOCOMPOSITES REINFORCED WITH COIR (NANO)FIBERS Luboš BĚHÁLEK, Jiří HABR, Jiří BOBEK, Martin SEIDL, Petr LENFELD Technical University of Liberec, Studentská 2, 461 17

More information

Processing of non-dried PET-Bottle-Scrap using Co-rotating Twin Screw Extruders

Processing of non-dried PET-Bottle-Scrap using Co-rotating Twin Screw Extruders Processing of non-dried PET-Bottle-Scrap using Co-rotating Twin Screw Extruders Sabine Schönfeld, Sr. Process Engineer: Coperion Werner & Pfleiderer, Germany Paul Andersen, Director, Process Technology:

More information

PROJECT TITLE: Rice Board Laminate BioComposite Development to Rice Straw Based Construction Panels Continuation

PROJECT TITLE: Rice Board Laminate BioComposite Development to Rice Straw Based Construction Panels Continuation PROJECT NO. RP-07 ANNUAL REPORT COMPREHENSIVE RESEARCH ON RICE January 1, 2015 - December 31, 2015 PROJECT TITLE: Rice Board Laminate BioComposite Development to Rice Straw Based Construction Panels Continuation

More information

Advances in Twin Screw Compounding Technology

Advances in Twin Screw Compounding Technology Advances in Twin Screw Compounding Technology Extrusion technology from micro to production scale Ing. Manfred Dobersberger 19.08.2011 Labor- and Pilotanlagen für die Kunststoffverarbeitung, Dr. Collin

More information

Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite

Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite High Performance Structures and Materials V 167 Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite K. Takemura Department of Mechanical Engineering, Kanagawa

More information

INJECTION-MOLDED COMPOSITES FROM KENAF AND RECYCLED PLASTIC

INJECTION-MOLDED COMPOSITES FROM KENAF AND RECYCLED PLASTIC INJECTION-MOLDED COMPOSITES FROM KENAF AND RECYCLED PLASTIC Poo Chow, Dilpreet S. Bajwa, and Wen-da Lu Department of Natural Resources and Environmental Sciences University of Illinois John A Youngquist,

More information

From a raw material to an end product System solutions for natural fiber-reinforced plastics

From a raw material to an end product System solutions for natural fiber-reinforced plastics From a raw material to an end product System solutions for natural fiber-reinforced plastics Engineering Value Numerous applications Overview of natural fiber-reinforced plastics Decking profiles Fence

More information

Thai plastic converters and the ways to develop new applications for bioplastics

Thai plastic converters and the ways to develop new applications for bioplastics Thai plastic converters and the ways to develop new applications for bioplastics By Pornchai Sangrungsri Technical Service and development manager SCG Plastics Co., Ltd. Thai plastics convertors have variety

More information

Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement. Dr. Heinz Zhang. Product R&D Center

Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement. Dr. Heinz Zhang. Product R&D Center Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement Dr. Heinz Zhang Product R&D Center Overview 1 Fiberglass Reinforced Thermoplastic Composites 2 PA & Fiberglass Reinforced

More information

1/31/ Plastics Processing. Thermoplastics (Tampere)

1/31/ Plastics Processing. Thermoplastics (Tampere) 1/31/2012 1 Plastics Processing Thermoplastics (Tampere) 1/31/2012 2 Plastics processing Micro-scale melt processing Small Scale Processing Pilot Scale Processing Injection Moulding Extrusion Pre- and

More information

PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS

PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS R. Forstner, W. Stadlbauer Transfercenter für Kunststofftechnik GmbH Franz-Fritsch-Straße 11, A-4600 Wels, Austria reinhard.forstner@tckt.at

More information

IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS

IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS Jim Mihalich Cyclics Corp Abstract Most reinforced thermoplastics are produced from fully polymerized resins which are then introduced to the reinforcement

More information

Functional polysaccharides and cellulose fibres: spray mulching for a sustainable agriculture. Mario Malinconico

Functional polysaccharides and cellulose fibres: spray mulching for a sustainable agriculture. Mario Malinconico Functional polysaccharides and cellulose fibres: spray mulching for a sustainable agriculture By Mario Malinconico (mali@ictp.cnr.it) Biopolymers in crop protection Mulching allows: Reduction of spontaneous

More information

An Introduction to Single Screw Extrusion

An Introduction to Single Screw Extrusion An Introduction to Single Screw Extrusion Sponsored by Dynisco Feb 14 2017 Table of Contents Single Screw Extrusion Extrusion and Thermoplastics Extruder Classification Machine Construction Post Extrusion

More information

Wood and Mineral Fillers for Injection Molding Grade Polypropylene

Wood and Mineral Fillers for Injection Molding Grade Polypropylene Wood and Mineral Fillers for Injection Molding Grade Polypropylene Brent English, Industrial Specialist Nicole Stark, Chemical Engineer Craig Clemens, Chemical Engineer, USDA Forest Service Forest Products

More information

Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength

Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength Yucheng Peng, 1 Sergio A. Gallegos, 2 Douglas J. Gardner, 3. 4 Yousoo Han, 3. 4 Zhiyong

More information

DEVELOPING BIO-DEGRADABLE LOW-DENSITY POLYETHYLENE USING CELLULOSE AS ADDITIVES IN THE CLIMATE CONDITION OF BANGLADESH

DEVELOPING BIO-DEGRADABLE LOW-DENSITY POLYETHYLENE USING CELLULOSE AS ADDITIVES IN THE CLIMATE CONDITION OF BANGLADESH Proceedings of the International Conference on Mechanical Engineering and Renewable Energy (ICMERE) 8 December,, Chittagong, Bangladesh ICMERE-PI-363 DEVELOPING BIO-DEGRADABLE LOW-DENSITY POLYETHYLENE

More information

MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE

MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE P.Selvakumar and Naresh Bhatnagar * Department of Mechanical Engineering Indian Institute

More information

EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS

EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS D.K.Verma 1*, M. A. Siddiqui 2,S.C.Srivastava 3 1* M.Tech, Department of Mechanical Engineering, Aligarh Muslim University deepak.vermag@gmail.com

More information

Foaming PLA with Thermoplastic Starch by Extrusion Assisted by Supercritical CO 2

Foaming PLA with Thermoplastic Starch by Extrusion Assisted by Supercritical CO 2 Foaming PLA with Thermoplastic Starch by Extrusion Assisted by Supercritical CO 2 Margot Chauvet, Martial Sauceau, Fabien Baillon, Jacques Fages To cite this version: Margot Chauvet, Martial Sauceau, Fabien

More information

CO-ROTATING TSE: FLEXIBILITY IN PLASTIC RECYCLING

CO-ROTATING TSE: FLEXIBILITY IN PLASTIC RECYCLING CO-ROTATING TSE: FLEXIBILITY IN PLASTIC RECYCLING PRESENTATION SCHEME Intruduction Extruder design flexibility Process flexibility Advanced Recycling examples INTRODUCTION Plastic recycling extrusion process

More information

Grafted α-cellulose-poly(hydroxybutyrate-co-hydroxyvalerate) Biocomposites. Liqing Wei and Armando G. McDonald Renewable Materials Program June 2015

Grafted α-cellulose-poly(hydroxybutyrate-co-hydroxyvalerate) Biocomposites. Liqing Wei and Armando G. McDonald Renewable Materials Program June 2015 Grafted α-cellulose-poly(hydroxybutyrate-co-hydroxyvalerate) Biocomposites Liqing Wei and Armando G. McDonald Renewable Materials Program June 2015 1.1 Why Use Bioplastics Issues with Conventional Plastic

More information

BIO-PLASTICS AND BIO-PIGMENTS. Properly dyeing and conditioning

BIO-PLASTICS AND BIO-PIGMENTS. Properly dyeing and conditioning BIO-PLASTICS AND BIO-PIGMENTS Properly dyeing and conditioning Products made of bio-plastics are becoming increasingly significant in our living environment. Whether as shopping bags or in the food industry,

More information

Coconut Fiber Reinforced High Density Polyethylene Composites By Compatibilizer Process

Coconut Fiber Reinforced High Density Polyethylene Composites By Compatibilizer Process Coconut Fiber Reinforced High Density Polyethylene Composites By Compatibilizer Process Coconut Fiber Reinforced High Density Polyethylene Composites By Compatibilizer Process Anshu Anjali Singh*, Kishor

More information

COMPATIBILIZATION OF POLYLACTIDE-BASED FLAX FIBER BIOCOMPOSITES

COMPATIBILIZATION OF POLYLACTIDE-BASED FLAX FIBER BIOCOMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPATIBILIZATION OF POLYLACTIDE-BASED FLAX FIBER BIOCOMPOSITES A. Arias 1 *, C. Kawano 1, M-C. Heuzey 1, M.A. Huneault 2 1 Chemical Engineering,

More information

P. Pereira, C. N. Barbosa, J. C. Viana. University of Minho, Portugal

P. Pereira, C. N. Barbosa, J. C. Viana. University of Minho, Portugal P. Pereira, C. N. Barbosa, J. C. Viana University of Minho, Portugal » University of Minho Guimarães, Portugal 26 October 211 » Aims INTERREG EUROPEANPROJECT PROJECT : TECNA» To promote the uses of polymer

More information

Twin Screw Extruder and Continuous Mixer Rate Limitations

Twin Screw Extruder and Continuous Mixer Rate Limitations MPC Materials Processing Consultants LLC Twin Screw Extruder and Continuous Mixer Rate Limitations Anthony C. Neubauer SPE Fellow; Dow Fellow (retired) Materials Processing Consultants LLC Why Extruders?

More information

MECHANICAL PROPERTIES OF HYBRID BASALT-CARBON FIBER- FILLED RECYCLED POLYPROPYLENE AND POLYAMIDE 6 COMPOSITES

MECHANICAL PROPERTIES OF HYBRID BASALT-CARBON FIBER- FILLED RECYCLED POLYPROPYLENE AND POLYAMIDE 6 COMPOSITES MECHANICAL PROPERTIES OF HYBRID BASALT-CARBON FIBER- FILLED RECYCLED POLYPROPYLENE AND POLYAMIDE 6 COMPOSITES Douglas J. Gardner, Yousoo Han University of Maine, Advanced Structures and Composites Center

More information

Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test

Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test Natural Filler and Fibre Composites: Development and Characterisation 63 Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test A. Maki, A. Sakuratani,

More information

FEED ENHANCEMENT TECHNOLOGY FOR LOW BULK DENSITY MATERIAL INTO CO-ROTATING TWIN-SCREW COMPOUNDING EXTRUDERS

FEED ENHANCEMENT TECHNOLOGY FOR LOW BULK DENSITY MATERIAL INTO CO-ROTATING TWIN-SCREW COMPOUNDING EXTRUDERS FEED ENHANCEMENT TECHNOLOGY FOR LOW BULK DENSITY MATERIAL INTO CO-ROTATING TWIN-SCREW COMPOUNDING EXTRUDERS Paul G. Andersen, Coperion Corporation, Ramsey, NJ Maria Hoelzel and Thorsten Stirner, Coperion

More information

P.Cinelli. S. Bronco2, N. Mallegni1, C. Righetti2, E. Bugnicourt3, G. Belotti3, A. Lazzeri1

P.Cinelli. S. Bronco2, N. Mallegni1, C. Righetti2, E. Bugnicourt3, G. Belotti3, A. Lazzeri1 Innovative fully biodegradable mulching films & fruit protection bags for sustainable agricultural practices LIFE14 ENV/ES/00048 LIFE MULTIBIOSOL AGRIMAX Agri & food waste valorisation co-ops based on

More information

Bio-based Polymers From Renewable Resources. From Biopolymers to Bioplastics Compounding is The Key

Bio-based Polymers From Renewable Resources. From Biopolymers to Bioplastics Compounding is The Key Why Plastics Are Irreplaceable Structure Introduction Resource Efficiency Through Plastics Products Bio-based Polymers From Renewable Resources Degradation of Plastics Risks And Opportunities Compounding

More information

Let s make our Planet Clean & Green for the Next Generation!!!

Let s make our Planet Clean & Green for the Next Generation!!! Let s make our Planet Clean & Green for the Next Generation!!! 100% BIODEGRADABLE & COMPOSTABLE PLASTIC PRODUCTS FOR A SAFER AND CLEANER ENVIRONMENT FOR A SAFER AND CLEANER ENVIRONMENT CEO. B. Subramanian.

More information

Reducing a Company s Environmental Footprint with. Sustainable Packaging Solutions

Reducing a Company s Environmental Footprint with. Sustainable Packaging Solutions Footprint with Sustainable Packaging January 2007 At DuPont, our vision is to be the world s most dynamic science company, creating sustainable solutions essential to a better, safer, healthier way of

More information

DEVELOPMENT OF NATURAL FIBRE REINFORCED POLY(LACTIC ACID) BIOCOMPOSITES

DEVELOPMENT OF NATURAL FIBRE REINFORCED POLY(LACTIC ACID) BIOCOMPOSITES DEVELOPMENT OF NATURAL FIBRE REINFORCED POLY(LACTIC ACID) BIOCOMPOSITES S. Hajba a*, T. Tábi a,b a Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology

More information

PROCESSING AND MECHANICAL PROPERTIES OF BIODEGRADABLE COMPOSITES

PROCESSING AND MECHANICAL PROPERTIES OF BIODEGRADABLE COMPOSITES FPCM-9 (28) The 9 th International Conference on Flow Processes in Composite Materials Montréal (Québec), Canada 8 ~ 1 July 28 PROCESSING AND MECHANICAL PROPERTIES OF BIODEGRADABLE COMPOSITES Naoyuki Shikamoto

More information

Bioplastics Processing & Properties Conference Extruding Biopolymers on Conventional Extrusion Equipment

Bioplastics Processing & Properties Conference Extruding Biopolymers on Conventional Extrusion Equipment Extruding Biopolymers on Conventional Extrusion Equipment 1 Summary This paper will briefly present some aspects of the extrusion of the following polymers using the Blown, Cast or Thermoforming Sheet

More information

EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES

EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES Nicole M. Stark Chemical Engineer U.S. Department of Agriculture Forest Service Forest Products Laboratory

More information

High Melt Strength Polypropylene

High Melt Strength Polypropylene High Melt Strength Polypropylene Polypropylene benefits combined with high melt strength open doors for many applications High Melt Strength Polypropylene Features and Benefits High melt strength and extensibility

More information

In the world market for 25 years...

In the world market for 25 years... In the world market for 25 years... for the regeneration of plastics Since 1988 Gamma Meccanica S.p.A. has designed and produced machines and plants to recycle plastics. Continual technological improvements

More information

DRIVING FORWARD CONTINUED SUCCESS IN THE BIOECONOMY DOMTAR S BIOMATERIALS

DRIVING FORWARD CONTINUED SUCCESS IN THE BIOECONOMY DOMTAR S BIOMATERIALS REPLICATING COMMERCIAL SUCCESS IN THE CANADIAN FOREST INDUSTRY July. 2017 DRIVING FORWARD CONTINUED SUCCESS IN THE BIOECONOMY DOMTAR S BIOMATERIALS Author: Bruno S Marcoccia, PhD Director of Research and

More information

Biorefinery (Vasquez)

Biorefinery (Vasquez) Biorefinery (Vasquez) Biorefinery is similar in concept to the petroleum refinery, except that the process technologies transform renewable, biomass materials rather than crude oil. Biorefining process

More information

Dynamar TM Polymer Processing Additives (PPA s)

Dynamar TM Polymer Processing Additives (PPA s) 3M TM Specialty Additives Energy & Advanced Materials Division People Technology - Future Dynamar TM Polymer Processing Additives (PPA s) 1 Dyneon 2012 What are Dynamar TM PPA s? Dynamar TM polymer processing

More information

Chapter 23: Economic, Environmental, and Societal Issues in Materials Science and Engineering

Chapter 23: Economic, Environmental, and Societal Issues in Materials Science and Engineering Chapter 23: Economic, Environmental, and Societal Issues in Materials Science and Engineering ISSUES TO ADDRESS... What factors affect product cost? What factors determine the overall environmental impact

More information

Effects of PP modification and processing time on fiber/matrix interfacial strength for carbon fiber reinforced polypropylene

Effects of PP modification and processing time on fiber/matrix interfacial strength for carbon fiber reinforced polypropylene This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 216) www.witconferences.com Effects of PP modification

More information

Advances in Plastics Processing: Cost Saving Techniques Sep 2015 Compounding of Filled Polymers with the Co-rotating Twin Screw Extruder ZSK and STS

Advances in Plastics Processing: Cost Saving Techniques Sep 2015 Compounding of Filled Polymers with the Co-rotating Twin Screw Extruder ZSK and STS Sep 2015 Compounding of Filled Polymers with the Co-rotating Twin Screw Extruder ZSK and STS Page 1 Compounding of Filled Polymers with the Co-rotating Twin Screw Extruder ZSK and STS Dr. Oliver Eitel

More information

VESTAMID Terra. High performance biopolyamides reinforced with high performance biofibers. High Performance Polymers Growth Line Resource Efficiency

VESTAMID Terra. High performance biopolyamides reinforced with high performance biofibers. High Performance Polymers Growth Line Resource Efficiency VESTAMID Terra High performance biopolyamides reinforced with high performance biofibers High Performance Polymers Growth Line Resource Efficiency Dr. Benjamin Brehmer, June 18 th, 2013 Natural fibers

More information

Target Markets. Wire and cable

Target Markets. Wire and cable Use of Functionalized Polybutadienes in Aluminum Trihydrate (ATH) Filled Ethylene Vinyl Acetate (EVA) Compounds Benefits Improved dispersion Increased ductility Enhanced flame retardancy Target Markets

More information

Contents. 1. Making a Blue Tank 2. Material Production Options 3. Methods for Adding Color 4. Grinding the Pellets 5. Benefits of Using Micros

Contents. 1. Making a Blue Tank 2. Material Production Options 3. Methods for Adding Color 4. Grinding the Pellets 5. Benefits of Using Micros Contents 1. Making a Blue Tank 2. Material Production Options 3. Methods for Adding Color 4. Grinding the Pellets 5. Benefits of Using Micros Making a Blue Tank Additives Process Stabilizers (Phosphates)

More information

Lapol Disposable Food Service Packaging From the Earth Back to Earth SEPTEMBER

Lapol Disposable Food Service Packaging From the Earth Back to Earth SEPTEMBER Lapol Disposable Food Service Packaging From the Earth Back to Earth SEPTEMBER 2 0 1 8 1 Food Service Disposables in China Environmental Food Service Packaging is Growing In 2016, China consumed about

More information

CHANGES OF MECHANICAL PROPERTIES AND STRUCTURE OF PA 6 COMPOSITES FILLED BY GLASS FIBER UNDER DYNAMICAL LOADING

CHANGES OF MECHANICAL PROPERTIES AND STRUCTURE OF PA 6 COMPOSITES FILLED BY GLASS FIBER UNDER DYNAMICAL LOADING CHANGES OF MECHANICAL PROPERTIES AND STRUCTURE OF PA 6 COMPOSITES FILLED BY GLASS FIBER UNDER DYNAMICAL LOADING A. Liber-Knec, S. Kuciel Krakow University of Technology, Division of Experimental Mechanics

More information

Extruded Bagasse Fiber Plastic Composites: - Creep Performance

Extruded Bagasse Fiber Plastic Composites: - Creep Performance Extruded Bagasse Fiber Plastic Composites: - Creep Performance Wu, Q. 1, Y. Xu 1, Y. Lei 1, C. M. Clemons 2 1 School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA

More information

CURRENT TECHNOLOGY Correctly colouring and conditioning Bioplastics

CURRENT TECHNOLOGY Correctly colouring and conditioning Bioplastics CURRENT TECHNOLOGY Correctly colouring and conditioning Bioplastics What are bioplastics exactly? The terms bioplastics and biopolymers are not yet protected and as a result they are not used consistently.

More information

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing M.Stephan, S.Große: Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing Workshop January, 28 th -29 th 2005, Dresden Particulate Heterogeneities

More information

Calcium Carbonate in Blown HDPE Film

Calcium Carbonate in Blown HDPE Film Calcium Carbonate in Blown HDPE Film New Developments to Increase Productivity and Profitability by Gil Morieras - Marketing Manager Polyolefines (Omya) and Dr. Gerard Schaeffer (GS Technology) Many interesting

More information

Bio-Polymers & New Materials: Polymers from Renewable Resources. April 2008

Bio-Polymers & New Materials: Polymers from Renewable Resources. April 2008 Bio-Polymers & New Materials: Polymers from Renewable Resources April 2008 What are Bio-Polymers? Bio-Based or Bio-Sourced means that the product has been made from a biological (living) or renewable source,

More information

SCREW & BARREL METALLURGY & SERVICE LIFE. Mrunal Sanghvi Regional Sales Manager Nordson Xaloy Asia (Thailand) Ltd.

SCREW & BARREL METALLURGY & SERVICE LIFE. Mrunal Sanghvi Regional Sales Manager Nordson Xaloy Asia (Thailand) Ltd. SCREW & BARREL METALLURGY & SERVICE LIFE Mrunal Sanghvi Regional Sales Manager Nordson Xaloy Asia (Thailand) Ltd. 1 Topics of Discussion Current Requirements Screw & Barrel Wear Types of Wear Screw & Barrel

More information

PLANT FIBERS FOR AUTOMOTIVE APPLICATIONS

PLANT FIBERS FOR AUTOMOTIVE APPLICATIONS PLANT FIBERS FOR AUTOMOTIVE APPLICATIONS Marcela HEJDUKOVÁ 1, Eva AKOVÁ 2 1 Katedra údržby techniky, Fakulta špeciálnej techniky, Univerzita A. Dubčeka v Trenčíne, Študentská 2, 911 50 Trenčín,SK, e-mail:hejdukova.marcela@gmail.com

More information

Olof Frisk. Fibre damage in WPC for two different compounding processes WSE2016 Riga

Olof Frisk. Fibre damage in WPC for two different compounding processes WSE2016 Riga Olof Frisk Fibre damage in WPC for two different compounding processes WSE2016 Riga Presentation WPC&NFC Compounding techniques The challange The fibre Methods Overview Olof Frisk 50% Industrial PhD student

More information

Effect of Graphite on Tribological Behaviour of PTFE Composites

Effect of Graphite on Tribological Behaviour of PTFE Composites Effect of Graphite on Tribological Behaviour of PTFE Composites Prakash S T 1, Avinash H S 2, Amit Kumar H 3, Ramswamy M P 4 Assistant Professor, Department of Automobile Engineering, Srinivas Institute

More information

powder coating pharmaceuticals. The parallel, segmented compounder

powder coating pharmaceuticals. The parallel, segmented compounder The Concept The continuous compounding of polymers, technical ceramics and foodstuffs whilst miing in various additives at specific points along the etruder barrel is an established technique used in the

More information

Preparation of Biodegradable Materials by Reactive Extrusion

Preparation of Biodegradable Materials by Reactive Extrusion Materials Science Forum Vols. 587-588 (2008) pp 520-524 online at http://www.scientific.net (2008) Trans Tech Publications, Switzerland Preparation of Biodegradable Materials by Reactive Extrusion I. Moura

More information

Working Group Biodegradable Packaging Recovery Project REPORT

Working Group Biodegradable Packaging Recovery Project REPORT Working Group Biodegradable Packaging Recovery Project REPORT 01.10.2012 0 CONTENTS Preface 2 Report 3 1. Working Group (WG) 2. Working Group Goals 3. Working Procedure 4. Studies, tests and results a)

More information

FINAL REPORT 1.) PROJECT SUMMARY. The deliverables of this project included:

FINAL REPORT 1.) PROJECT SUMMARY. The deliverables of this project included: FINAL REPORT PROJECT TITLE: Corn Protein for Agricultural Applications PROJECT NUMBER: AIC207IN REPORTING PERIOD: July 15, 2013-July 31, 2016 PRINCIPAL INVESTIGATOR: David Grewell, Co-Author James Schrader

More information

Effect of processing conditions on mechanical and barrier properties of PLA/Clay nanocomposites

Effect of processing conditions on mechanical and barrier properties of PLA/Clay nanocomposites Effect of processing conditions on mechanical and barrier properties of PLA/Clay nanocomposites Yoji NAKADE a*, Tatsuya TANAKA b, Yoshihiko ARAO b a Graduate school of Doshisha University b Depertment

More information

Bioplastic raw materials. Biocomposite fibers and coproducts. Bioplastic compounds.

Bioplastic raw materials. Biocomposite fibers and coproducts. Bioplastic compounds. Bioplastic raw materials Biocomposite fibers and coproducts Bioplastic compounds Expert in bioplastics Your partner to develop your solution in bioplastic www.natureplast.eu An unavoidable evolution! The

More information

Study Of Mechanical and Physical Properties of Wood Plastic Composite, Polypropylene, Rose, Teak and Neem Wood Sunil C 1 Dr. G. B.

Study Of Mechanical and Physical Properties of Wood Plastic Composite, Polypropylene, Rose, Teak and Neem Wood Sunil C 1 Dr. G. B. IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): 2321-0613 Study Of Mechanical and Physical Properties of Wood Plastic Composite, Polypropylene,

More information

Optinyl COP2342. Optinyl COP2342 is a granulate developed for compounders to improve processing and properties of bioplastics.

Optinyl COP2342. Optinyl COP2342 is a granulate developed for compounders to improve processing and properties of bioplastics. is a granulate developed for compounders to improve processing and properties of bioplastics. is a biodegradable granulate based on vinyl and lactic acid homo- and/or copolymers. Version 01 / Date 07-07-2013

More information

FINAL TECHNICAL REPORT

FINAL TECHNICAL REPORT FINAL TECHNICAL REPORT The MASTALMOND project aims to develop new masterbatches, or colour concentrates, based on natural waste (almond shell) on biodegradable thermoplastic matrixes, replacing mineral

More information

IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS

IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS Stefan Epple, Institut für Kunststofftechnik, University of Stuttgart, Germany Christian Bonten, Institut für Kunststofftechnik, University of Stuttgart,

More information

5.1 Essentials of Polymer Composites

5.1 Essentials of Polymer Composites 5 Polymer Composites Polymer modification can follow from the mixing of two or more macromolecular compounds or their filling with reinforcing materials of inorganic or organic substances. It enables the

More information