Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

Size: px
Start display at page:

Download "Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce"

Transcription

1 Genetic Variability Biology 102 Lecture 9: Genetic Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic hybrids Tendency to inherit best traits of both parents Survival advantage against environmental change, competition, disease, etc. Siblings will often look similar, but not identical Each inherits 50% from each parent, but not the same 50% Crossing over Genetic Variability Ultimate sources of variability Mutations Genetic Variability Crossing over (recombination) Independent assortment Genetic Variability Problem with inbreeding Limited number of genes Increased chances that deleterious mutations will show up Remember how mutations affect genes Protein product altered in 1 of 4 ways 1) No effect Silent mutation Mutations 2) Protein is altered, but it doesn t matter Neutral change HAT vs CAP 3) Protein loses some or all of its function Deleterious change - HAT vs CAT 4) Protein functions better Example: HIV resistance 1

2 Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes are identical Gene: Portion of genetic material that codes for a specific protein Allele: Any form of a given gene in the population Humans are diploid Genetics For any given gene, we carry 2 alleles Homozygous: Both alleles are the same for a given gene Heterozygous: 2 different alleles for a given gene Heterozygosity 2 alleles for a given gene Each codes for a slightly different protein Which will be made? Both? Dominant One allele is usually chosen over the others Consistently chosen across the species Called the dominant allele Need only be present in one copy to be expressed Recessive Consistently ignored alleles are recessive Only expressed if present in 2 copies Can be passed on to offspring, even if not expressed Recessive does NOT mean rare, or even less common! (Lab 9) Describes both alleles present for a given gene Capital letter = dominant Lower case letter = recessive Homozygous dominant = AA Heterozygous = Aa Genotype Homozygous recessive = aa 2

3 Phenotype Genotype is useful scientifically/medically, but what does the organism look like? Phenotype describes observable characteristics based on expression of the genotype Homozygous dominant = AA = brown eyes Heterozygous = Aa = brown eyes Homozygous recessive = aa = blue eyes Gregor Mendel Much of what we know about patterns of inheritance started with experiments done by this man Mendel s Pea Plants Mendel s Pea Plants Mendel observed 7 characteristics let s just look at seed color Examined patterns of inheritance of phenotype Experiment: cross plant with yellow seeds by plant with green seeds Result: all offspring had yellow seeds G Parent F1 Mendel s Pea Plants Experiment: self-pollinated one of the new yellow-seeded plants Result: 25% of new plants had green seeds! Mendel s Pea Plants Experiment: self-pollinated all of the F2 generation G F2 G F1 F2 4:0 G 3:1 G G G G 0:4 G 3:1 F3 3

4 Mendel s Conclusions 1. Factors for traits come in pairs only one will be passed from parent to offspring Carry 2 alleles for each gene Separated during meiosis Inherit one allele from each parent Mendel s Conclusions 2. If factors are identical, only that factor can be passed to offspring Homozygous Mendel s Conclusions 3. If factors are different, there is a 50/50 chance of each trait being passed on Heterozygous Another of Mendel s Conclusions 4. Some factors are inherited as a group, others are inherited randomly When genes are on the same chromosome, they are often inherited together Chromosomes are sorted randomly, so genes on different chromosomes are not inherited together (More on this later) Punnett Square Once diploidity was discovered, Mendel s observations were easily explained Punnett Square: a box diagram used to determine the probability of a given genotype ellow seed color = dominant allele Green seed color = recessive allele Punnett Square Possible offspring genotypes? Phenotypes? g g 4

5 Explaining Mendel g g g g Parent F1 Possible offspring genotypes? Phenotypes? Explaining Mendel g g Explaining Mendel Explaining Mendel g g g F1 F2 g g g g g g g g Mendel s Pea Plants g g F2 F3 Enough with the peas! Let s look at a human disease: Huntington s Disease Autosomal dominant, 100% penetrance Neurodegenerative disorder Decrease in physical coordination Mental decline Behavioral symptoms Symptoms usually do not appear until after age 35, after the gene may have been passed on to offspring 5

6 Scenario: A male is diagnosed with Huntington s Disease. His wife is tested for the disease gene and has two healthy alleles. They have three children. Disease is autosomal dominant How many disease alleles must be present to cause? Let s assume he is heterozygous: Hh His wife is homozygous: hh What is the probability that any one of their children will develop? Possible offspring genotypes? Phenotypes? H h h h Based on this information, the affected individual s children decided to be tested, and to have their children tested This information was compiled into a pedigree Pedigrees A phenotypic family tree Used to determine genotype and track alleles Females are circles Males are squares Darkened individuals have the condition or trait being tracked Pedigrees Note that there is at least one affected individual in every generation Hallmark of a dominant trait Assign a genotype to all individuals in the family Step 1: Assign a genotype to anyone we know is homozygous (remember: dominant disease) Step 2: Assign all offspring of healthy individuals one healthy allele Step 3: Assign all affected individuals one disease allele Step 4: Work from siblings or offspring to fill in any missing information (if possible some alleles may remain unknown)

7 Punnett Squares Hh 5 2 hh Let s look at a another human disease : Tay- Sach s Disease (TSD) Autosomal recessive Affects the enzyme hexosaminidase A Lysosomal enzyme Fatty substance builds up in brain Mental, physical deterioration; death by age Punnett Squares Scenario: 2 healthy individuals have a child with Tay-Sach s Autosomal recessive disease so child must be homozygous One allele inherited from each parent, yet each parent is healthy Both parents must be heterozygous We call these individuals carriers Have the disease gene, but do not have the disease Possible offspring genotypes? Phenotypes? Tay-Sach s Disease T t T t Deafness Let s do a pedigree for an autosomal recessive condition: hereditary deafness (dd) Trait may skip a generation Assign a genotype to each individual Deafness Step 1: Assign a genotype to anyone we know is homozygous Step 2: Give all unaffected individuals one D Step 3: Give all offspring of affected individuals one d Step 4: Work backwards look at affected individuals; d must be present in both parents Step 5: Double check, but some will remain a mystery 7

8 Deafness Inheritance In reality, inheritance is much more complicated Many factors at play that can alter expected inheritance patterns More than two alleles for one gene More than one gene affects a trait One gene modifies expression of another gene (epistasis) We will look at 2 factors here: Incomplete dominance Codominance Incomplete Dominance Sometimes there is not one clear dominant allele In a heterozygous individual, both alleles are expressed Phenotype is a blend of both traits Incomplete Dominance Example: snapdragon color Both red (RR) and white (rr) are dominant Heterozygous (Rr) = pink Use a Punnett square to predict the ratio of red:pink:white offspring if 2 pink snapdragons are crossed Incomplete Dominance Genotype? Phenotype? Incomplete Dominance Example in humans: hair Both curly (CC) and straight (SS) are dominant Heterozygous (CS) = wavy Use a Punnett square to predict the probability of a child with wavy hair from a father with wavy hair and a mother with straight hair 8

9 Incomplete Dominance Genotype? Phenotype? C S S S Codominance Commonly seen when more than 2 alleles exist for the same gene Both dominant alleles are expressed at once Not a blend of the 2 traits both distinct traits can be seen at the same time Incomplete vs. Codominance Codominance Incomplete dominance and codominance are NOT the same thing!! Incomplete dominance: phenotype is a blend of the two traits Codominance: both traits are seen at the same time Dominant Dominant Human example: A, B, O blood types Both type A and type B are dominant (I A and I B ) Make different glycoproteins on the membrane of red blood cells Type O is recessive Makes no such glycoprotein If I A and I B are both present, both will be expressed Blood Type Codominance Consider the following genotypes, and determine the phenotype (blood type) that would be present in each individual Genotype I A I A I A i ii Phenotype I B I B I B i I A I B 9

10 Chaplin Paternity Case Before the days of DNA testing, blood type was used to settle paternity suits Doesn t always work though Charlie Chaplin was involved in such a case in 1942 with actress Joan Barry Chaplin Paternity Case Charlie Chaplin s blood type: AB Joan Barry s blood type: O Child s blood type: O Use a Punnett square to determine whether Charlie Chaplin could have been the child s father Chaplin Paternity Case Chaplin Paternity Case Charlie Chaplin s blood type: AB Only possible genotype: Joan Berry s blood type: O Only possible genotype: Child s blood type: O Only possible genotype: I A I B i i Chaplin Paternity Case Could Charlie Chaplin have been the child s father? 10

Part I: Predicting Genetic Outcomes

Part I: Predicting Genetic Outcomes Part I: Predicting Genetic Outcomes Deoxyribonucleic acid (DNA) is found in every cell of living organisms, and all of the cells in each organism contain the exact same copy of that organism s DNA. Because

More information

Genetics T H E S T U D Y O F H E R E D I T Y

Genetics T H E S T U D Y O F H E R E D I T Y Genetics T H E S T U D Y O F H E R E D I T Y Basic Vocabulary Genetics: The science of heredity Heredity The passing of physical characteristics (traits) from parents to offspring How does an organism

More information

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Mendel & Inheritance SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment Mendel s Law of Segregation: gene pairs separate when gametes (sex cells) are formed; each gamete as only

More information

Section. Test Name: Cell Reproduction and Genetics Test Id: Date: 02/08/2018

Section. Test Name: Cell Reproduction and Genetics Test Id: Date: 02/08/2018 Test Name: Cell Reproduction and Genetics Test Id: 308393 Date: 02/08/2018 Section 1. Gregor Mendel was an Austrian monk that observed the different colors of pea plants in his monestary. He discovered

More information

Scrambling information

Scrambling information Scrambling information Introduction to Genetics GENETICS branch of biology that deals with heredity and variation of organisms. Chromosomes carry the hereditary information (genes) Arrangement of nucleotides

More information

#3: Random Fertilization. If DNA replication and cell division are both so precise, and so accurate, why are we all so unique??

#3: Random Fertilization. If DNA replication and cell division are both so precise, and so accurate, why are we all so unique?? Today: Microbial Genetics Wrap-up Mendelian Genetics Adding Chromosomes to the Mix?? Tomorrow: UW Fieldtrip! Back to Eukaryotes: Bringing in Mendel If DNA replication and cell division are both so precise,

More information

Mendel and The Gene Idea

Mendel and The Gene Idea Mendel and The Gene Idea Gregor Mendel was a monk who experimented with pea plants and was also a scientist He is known as the Father of Genetics. Mendel s two fundamental principles of heredity are now

More information

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses Objective 8: Predict the results of dihybrid genetic crosses by using Punnett squares Exploring Mendelian Genetics 11.3 Dihybrid cross--a cross that involves two pairs of contrasting traits. A cross between

More information

Unit 10: Genetics. Chapter 9: Read P

Unit 10: Genetics. Chapter 9: Read P Unit 10: Genetics Chapter 9: Read P. 145-167 10.0 Genetics The Definition of Genetics The study of heredity and how traits are passed on through generations. Gregor Mendel: The Father of Genetics Gregor

More information

MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law. MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law. Gregor Mendel! 19 th century Austrian monk! Interested in heredity!

More information

GENETICS AND MENDEL 2/20/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different?

GENETICS AND MENDEL 2/20/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different? GENETICS AND MENDEL How is each group the same? How is each group different? Heredity transmission of traits from parents to offspring Genetics study of heredity HISTORY OF DISCOVERERY OF HEREDITY Up to

More information

Genetics. What DNA is telling us!

Genetics. What DNA is telling us! Genetics What DNA is telling us! Learning Goals The student will investigate and understand common mechanisms of inheritance and protein synthesis. Key concepts include: 1. prediction of inheritance of

More information

Observing Patterns in Inherited Traits. Chapter 11

Observing Patterns in Inherited Traits. Chapter 11 Observing Patterns in Inherited Traits Chapter 11 Impacts, Issues: The Color of Skin Like most human traits, skin color has a genetic basis; more than 100 gene products affect the synthesis and deposition

More information

Punnett Square with Heterozygous Cross (Video clip) There is a glaring error with this video clip. Can you spot it???

Punnett Square with Heterozygous Cross (Video clip) There is a glaring error with this video clip. Can you spot it??? Section 3: Studying Heredity Objectives Predict the results of monohybrid genetic crosses by using Punnett squares. Apply a test cross to determine the genotype of an organism with a dominant phenotype.

More information

Genetics. The beginning Drawing from the deck of genes. From general observations it can been seen that there is variation in

Genetics. The beginning Drawing from the deck of genes. From general observations it can been seen that there is variation in Genetics The beginning Drawing from the deck of genes Gregor Mendel Peas From general observations it can been seen that there is variation in characteristics amongst individuals in a population. What

More information

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck!

Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! NAME DATE Multiple Choice (3.35 each) Total = 100pts. Choice the choice that best answers the question! Good luck! 1. Could the characteristic followed in the pedigree be caused by an autosomal dominant

More information

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!)

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!) Genetics Early Ideas about Heredity People knew that sperm and eggs transmitted information about traits Blending theory mother and father s traits blended together Problem: Would expect variation to disappear

More information

CHAPTER 10: Patterns of Inheritance

CHAPTER 10: Patterns of Inheritance CHAPTER 10: Patterns of Inheritance BIO 121 Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Puppies Punchstock/Banana Stock RF Genetics

More information

Complex Inheritance and Human Heredity

Complex Inheritance and Human Heredity Complex Inheritance and Human Heredity Before You Read Use the What I Know column to list the things you know about human heredity and genetics. Then list the questions you have about these topics in the

More information

Why Pea Plants? Mendel chose to study garden peas, because: 1. They reproduce & have a short life cycle 1

Why Pea Plants? Mendel chose to study garden peas, because: 1. They reproduce & have a short life cycle 1 Name: Date: Per: Genetic Notes Genetics Genetics Vocab Identify the definitions and/or vocabulary words below. You will need to know these terms moving forward! 1. P Generation 2. Hybrid (F1) Generation

More information

. Definition The passing down of characteristics from generation to generation resulting in continuity and variation within a species

. Definition The passing down of characteristics from generation to generation resulting in continuity and variation within a species Section 3: The Basics of genetics. Definition The passing down of characteristics from generation to generation resulting in continuity and variation within a species Important Terms. Genes A specific

More information

Heredity. How are traits inherited? Lesson ESSENTIAL QUESTION

Heredity. How are traits inherited? Lesson ESSENTIAL QUESTION Lesson Heredity ESSENTIAL QUESTION How are traits inherited? By the end of this lesson, you should be able to analyze the inheritance of traits in individuals. 4 Houghton Mifflin Harcourt Publishing Company

More information

Inheritance (IGCSE Biology Syllabus )

Inheritance (IGCSE Biology Syllabus ) Inheritance (IGCSE Biology Syllabus 2016-2018) Key definitions Chromosome Allele Gene Haploid nucleus Diploid nucleus Genotype Phenotype Homozygous Heterozygous Dominant Recessive A thread of DNA, made

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

Biology Genetics Practice Quiz

Biology Genetics Practice Quiz Biology Genetics Practice Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The table above shows information related to blood types. What genotype(s)

More information

What DNA is telling us!

What DNA is telling us! Genetics What DNA is telling us! Learning Goals The student will investigate and understand common mechanisms of inheritance and protein synthesis. Key concepts include: 1. prediction of inheritance of

More information

! Allele Interactions

! Allele Interactions Chapter 4!Extensions to Mendelian Genetics! Allele Interactions 1 INTRODUCTION Mendelian inheritance describes inheritance patterns that obey two laws Law of segregation Law of independent assortment Simple

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits 13.1 How Do Alleles Contribute to Traits? Blending inheritance 19th century idea Failed to explain

More information

Mendelian & Non Mendelian Genetics. Copy Dr. M. A. Fouad

Mendelian & Non Mendelian Genetics. Copy Dr. M. A. Fouad Mendelian & Non Mendelian Genetics Copy right @ Dr. M. A. Fouad Mendelian Genetics Mendel s Law of Austrian monk born in 1822 in monastery known for research and teaching after his death (1884) acknowledgment

More information

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above? Review 0 Genotype: alleles that are present 0 Phenotype: physical appearance 0 Rr 0 RR 0 rr 0 If Red is dominant to white, what is the phenotype of the above? 2 Vocab to Remember! 0 Allele 0 Gene 0 Trait

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 4: Mendel and the Gene Idea. The Experiments of Gregor Mendel 2. Beyond Mendelian Genetics 3. Human Genetics . The Experiments of Gregor Mendel Chapter Reading pp. 268-276 TECHNIQUE Parental generation

More information

Observing Patterns In Inherited Traits

Observing Patterns In Inherited Traits Observing Patterns In Inherited Traits Ø Where Modern Genetics Started/ Gregor Mendel Ø Law of Segregation Ø Law of Independent Assortment Ø Non-Mendelian Inheritance Ø Complex Variations in Traits Genetics:

More information

Chapter 14. Mendel and the Gene Idea

Chapter 14. Mendel and the Gene Idea Chapter 14 Mendel and the Gene Idea Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The blending hypothesis is the idea that

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Keystone Biology Remediation B2: Genetics

Keystone Biology Remediation B2: Genetics Keystone Biology Remediation B2: Genetics Assessment Anchors: to describe and/or predict observed patterns of inheritance (i.e. dominant, recessive, codominance, incomplete dominance, sex-linked, polygenic,

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel TEKS 6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected

More information

(A) Type AB only. (B) Type A or Type B only. (C) Type A, AB, and B only. (D) All four types are possible: type A, AB, B or O.

(A) Type AB only. (B) Type A or Type B only. (C) Type A, AB, and B only. (D) All four types are possible: type A, AB, B or O. Genetics - Problem Drill 02:Mendelian Genetics and its Extensions No. 1 of 10 1. In the case of a couple, where the husband has type A blood and the wife has type B, the blood types of their children should

More information

Topic 3: Genetics (Student)

Topic 3: Genetics (Student) Topic 3: Genetics (Student) 3.4 Essential Idea: The inheritance of genes follows patterns. 3.4 Inheritance Some definitions Genotype: the specific alleles of an organism. Phenotype: the observable characteristics

More information

BIOLOGY - CLUTCH CH.14 - MENDELIAN GENETICS.

BIOLOGY - CLUTCH CH.14 - MENDELIAN GENETICS. !! www.clutchprep.com CONCEPT: MENDEL S EXPERIMENT Gregor Mendel designed an experiment to study inheritance in pea plants. Character a feature that can be inherited, and shows variation between individuals

More information

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Name Biol 211 - Group Number Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance Reference: Chapter 14-15 (Biology by Campbell/Reece, 8 th ed.) Note: In addition to the

More information

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross Practice Problems HW CHECK: 2/3

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross Practice Problems HW CHECK: 2/3 GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 Cell Cycle & Meiosis Post Test Review Intro to Genetics 2/1 Non Mendelian Genetics: Codominance Problems 1/26 Mendelian

More information

Introduction to Genetics. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences

Introduction to Genetics. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences Introduction to Genetics DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences GENETICS Introduction to Genetics and heredity Gregor Mendel a brief bio Genetic terminology (glossary) Monohybrid

More information

Non Mendelian Genetics

Non Mendelian Genetics Non Mendelian Genetics TEKS 6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to: 6F

More information

Content Objectives Write these down!

Content Objectives Write these down! Content Objectives Write these down! I will be able to identify: Key terms associated with Mendelian Genetics The patterns of heredity explained by Mendel The law of segregation The relationship between

More information

LECTURE 1 : GENETICS

LECTURE 1 : GENETICS LECTURE 1 : GENETICS Introduction to Genetics and heredity Gregor Mendel Genetic terminology (glossary) Monohybrid crosses Patterns of inheritance Dihybrid crosses Test cross Introduction to Genetics GENETICS

More information

Exam 1 Answers Biology 210 Sept. 20, 2006

Exam 1 Answers Biology 210 Sept. 20, 2006 Exam Answers Biology 20 Sept. 20, 2006 Name: Section:. (5 points) Circle the answer that gives the maximum number of different alleles that might exist for any one locus in a normal mammalian cell. A.

More information

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology. Biology 1 of 31 11-3 Exploring Mendelian Exploring Genetics Mendelian Genetics 2 of 31 What is the principle of independent assortment? 3 of 31 1 The principle of independent assortment states that genes

More information

Text Reference: Ch and 12-2

Text Reference: Ch and 12-2 Text Reference: Ch. 12-1 and 12-2 Name Date Block Part I: Short Answer/ Completion 1. What combination of sex chromosomes produces a female? 2. What combination of sex chromosomes produces a male? 3. Which

More information

DNA segment: T A C T G T G G C A A A

DNA segment: T A C T G T G G C A A A DNA Structure, Replication, Protein Synthesis & Name Period Genetics Study Guide Chapter 12 and 13 Structure of DNA and Protein Synthesis 1. What macromolecule is coded for by genes located on DNA? Provide

More information

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question. Chapter Test A CHAPTER 11 Complex Inheritance and Human Heredity Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best completes each statement or answers each

More information

Genetics, Fall 2005 TEST 2, 11/16/05 Page 1

Genetics, Fall 2005 TEST 2, 11/16/05 Page 1 Genetics, Fall 2005 TEST 2, 11/16/05 Page 1 STUDENT NAME: Give a brief definition of the following terms (5 points each; only nine definitions count for the grade): 1. phenotype 2. homozygous 3. codominance

More information

Genetics is the study of inheritance The field of genetics began with the work of Gregor Mendel He had no knowledge of chromosomes, meiosis, or DNA

Genetics is the study of inheritance The field of genetics began with the work of Gregor Mendel He had no knowledge of chromosomes, meiosis, or DNA Inheritance 1 Mendel and the Black Box 2 The Experimental Subjects: Pisum sativum 3 Starting the Experiments: Purple and White Flowers 4 Mendel s Generations Illustrated 5 Crosses Involving Two Characters

More information

Chapter 9. Objectives. Table of Contents. Gregor Mendel. Gregor Mendel, continued. Section 1 Mendel s Legacy. Section 2 Genetic Crosses

Chapter 9. Objectives. Table of Contents. Gregor Mendel. Gregor Mendel, continued. Section 1 Mendel s Legacy. Section 2 Genetic Crosses Fundamentals of Genetics Table of Contents Objectives Describe how Mendel was able to control how his pea plants were pollinated. Describe the steps in Mendel s experiments on true-breeding garden peas.

More information

Genetics. Chapter 10/12-ish

Genetics. Chapter 10/12-ish Genetics Chapter 10/12-ish Learning Goals For Biweekly Quiz #7 You will be able to explain how offspring receive genes from their parents You will be able to calculate probabilities of simple Mendelian

More information

Ch. 14 Mendel and the Gene Idea

Ch. 14 Mendel and the Gene Idea Ch. 14 Mendel and the Gene Idea 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Some Vocab. Genotype allele combination. Phenotype physical appearance

Some Vocab. Genotype allele combination. Phenotype physical appearance Genetics Some Vocab. Genotype allele combination Capital letter = dominant allele Lowercase letter = recessive allele Ex AA, Aa, aa Phenotype physical appearance Ex green, yellow Some Vocab. Homozygous

More information

Quiz will begin at 10:00 am. Please Sign In

Quiz will begin at 10:00 am. Please Sign In Quiz will begin at 10:00 am Please Sign In You have 15 minutes to complete the quiz Put all your belongings away, including phones Put your name and date on the top of the page Circle your answer clearly

More information

This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group.

This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group. Biology 160 NAME: Reading Guide 12: Population Dynamics, Humans, Part II This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group. *As before, please turn in only the Critical

More information

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross. HW CHECK: Part A Q 1-2 2/3

GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/27. Monohybrid Cross. HW CHECK: Part A Q 1-2 2/3 GENETICS UNIT GUIDE DUE TUESDAY 2/9 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 1/25 1/26 1/27 1/28 1/29 Cell Cycle & Meiosis Test Corrections Mendelian s & Monohybrid Cross Intro Monohybrid Cross Part A

More information

Genetics. Biology. vocabulary terms

Genetics. Biology. vocabulary terms Genetics Biology vocabulary terms INHERITANCE or HEREDITY- The genetic transmission of characteristics from parent to offspring, such as hair, eye, and skin color. 1 vocabulary terms HOMOLOGOUS CHROMOSOME-

More information

Ch 6.1 Complex Patterns of Inheritance.notebook April 19, 2018

Ch 6.1 Complex Patterns of Inheritance.notebook April 19, 2018 Name 3 "Big Ideas" from our last notebook lecture: * * * 1 6.1 Beyond Mendel's Observations of Inheritance Mendel's work was the foundation for further understanding as more sophisticated experimental

More information

Genetics and Heredity Power Point Questions

Genetics and Heredity Power Point Questions Name period date assigned date due date returned Genetics and Heredity Power Point Questions 1. Heredity is the process in which pass from parent to offspring. 2. is the study of heredity. 3. A trait is

More information

1. (a) Define sex linkage... State one example of sex linkage... Key. 1st generation. Male. Female

1. (a) Define sex linkage... State one example of sex linkage... Key. 1st generation. Male. Female 1. Define sex linkage. State one example of sex linkage. Draw a simple pedigree chart that clearly shows sex linkage in humans. Use conventional symbols. Start with an affected woman and an unaffected

More information

Biology 105: Introduction to Genetics Page 1 Midterm Fall 2004

Biology 105: Introduction to Genetics Page 1 Midterm Fall 2004 Biology 105: Introduction to Genetics Page 1 Midterm Fall 2004 KEY Part I. Definitions Hemizygous: The genotype for genes present only in one copy in an otherwise diploid organism; e.g. X-linked genes

More information

Chp 10 Patterns of Inheritance

Chp 10 Patterns of Inheritance Chp 10 Patterns of Inheritance Dogs, one of human s longest genetic experiments Over 1,000 s of years, humans have chosen and mated dogs with specific traits. A process called -artificial selection The

More information

Mendel and the Gene Idea

Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance Gregor Mendel Austrian monk * Studied science and mathematics

More information

Genetics. Ms. Gunjan M. Chaudhari

Genetics. Ms. Gunjan M. Chaudhari Genetics Ms. Gunjan M. Chaudhari UNIT 1 Introduction to genetics Genetics:: The scientific study of heredity Heredity : The passing on of characteristics (traits) from parents to offspring Importance of

More information

Genetics Review Our understanding of the shape of the DNA molecule was established with the help of experimental results from Rosalind Franklin.

Genetics Review Our understanding of the shape of the DNA molecule was established with the help of experimental results from Rosalind Franklin. Genetics Review 1 Name: ate: 1. Genetic engineering in corn allows genes from bacteria to be added to the genetic material of corn. In traditional breeding, genes of only closely related types of corn

More information

Chapter 9: Part 2. Breeding plants identical for 5 traits, but differing in 2

Chapter 9: Part 2. Breeding plants identical for 5 traits, but differing in 2 Chapter 9: Part 2 Dihybrid crosses Human Traits and diseases controlled by a single gene Pedigrees Beyond Mendel Incomplete dominance Multiple alleles Pleiotropy and Polygenic inheritance Linked genes

More information

Activity 3.3.1: How is DNA Passed through the Generations?

Activity 3.3.1: How is DNA Passed through the Generations? Activity 3.3.1: How is DNA Passed through the Generations? Introduction In the previous activities, you learned that Anna Garcia lived with a life altering disease called sickle cell anemia. Unlike the

More information

6E identify and illustrate changes in DNA and evaluate the significance of these changes

6E identify and illustrate changes in DNA and evaluate the significance of these changes 6E identify and illustrate changes in DNA and evaluate the significance of these changes 1. This illustration is an example of a normal DNA sequence. Which of the following represents a point mutation

More information

Dr. Mallery Biology Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS

Dr. Mallery Biology Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS Dr. Mallery Biology 150 - Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS CELL REPRODUCTION The goal of today's exercise is for you to look at mitosis and meiosis and to develop the ability

More information

What is Genetics? Genetics The study of how heredity information is passed from parents to offspring. The Modern Theory of Evolution =

What is Genetics? Genetics The study of how heredity information is passed from parents to offspring. The Modern Theory of Evolution = What is Genetics? Genetics The study of how heredity information is passed from parents to offspring The Modern Theory of Evolution = Genetics + Darwin s Theory of Natural Selection Gregor Mendel Father

More information

GENETICS AND MENDEL 2/4/2018. Mendel s Experiment. Genetic Terms. Genetic Terms. Mendel: Experiment 1 HISTORY OF DISCOVERERY OF HEREDITY

GENETICS AND MENDEL 2/4/2018. Mendel s Experiment. Genetic Terms. Genetic Terms. Mendel: Experiment 1 HISTORY OF DISCOVERERY OF HEREDITY HISTORY OF DISCOVERERY OF HEREDITY 1851: Gregor Mendel, father of heredity studied pea plants GENETICS AND MENDEL prevented self pollination used cross pollination brought experimental and quantitative

More information

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1 Biology Mrs. Howe Tues, 2/7 New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1 Start fresh with semester 2 and our next unit. Due Today: None Announcements: Have you checked your Semester

More information

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene Genetics The Study of Inherited Characteristics Meiosis in the Gonads makes gametes: Sperm Meiotic cell division Egg Chromosome DNA Code for Gene Segments of DNA Code Code for a trait Hair Color Eye Color

More information

Chapter 11 Complex Inheritance and Human Heredity

Chapter 11 Complex Inheritance and Human Heredity Chapter 11 Complex Inheritance and Human Heredity 11.1 Basic Patterns of Human Inheritance o The inheritance of a trait over can be shown in a o Pedigrees can help us to track and understand Genetic Disorders

More information

Anthro 101: Human Biological Evolution. Lecture 3: Genetics & Inheritance. Prof. Kenneth Feldmeier feldmekj.weebly.

Anthro 101: Human Biological Evolution. Lecture 3: Genetics & Inheritance. Prof. Kenneth Feldmeier feldmekj.weebly. Anthro 101: Human Biological Evolution Lecture 3: Genetics & Inheritance Prof. Kenneth Feldmeier feldmekj@lavc.edu feldmekj.weebly.com What is Genetics??? Genetics is the scientific study of heredity.

More information

Chapter 11 Reading Guide: Mendel and the Gene Idea

Chapter 11 Reading Guide: Mendel and the Gene Idea Chapter 11 Reading Guide: Mendel and the Gene Idea Since you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Anthro 101: Human Biological Evolution. Lecture 3: Genetics & Inheritance. Prof. Kenneth Feldmeier feldmekj.weebly.

Anthro 101: Human Biological Evolution. Lecture 3: Genetics & Inheritance. Prof. Kenneth Feldmeier feldmekj.weebly. Anthro 101: Human Biological Evolution Lecture 3: Genetics & Inheritance Prof. Kenneth Feldmeier feldmekj@lavc.edu feldmekj.weebly.com What is Genetics??? Genetics is the scientific study of heredity.

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

January 11, Genetics with DNA.notebook. Genetics

January 11, Genetics with DNA.notebook. Genetics Genetics 1.DNA (deoxyribonucleic acid) is a chemical code that contains information for an organisms growth and function. It is found in the nucleus of all cells. 2. A gene is a section of DNA on a chromosome.the

More information

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue Benjamin A. Pierce Genetics Essentials Concepts and Connections SECOND EDITION CHAPTER 3 Basic Principles of Heredity CHAPTER 3 OUTLINE 3.1 Gregor Mendel Discovered the Basic Principles of Heredity, 44

More information

Observing Patterns in Inherited Traits. Chapter 11 Updated Reading Not

Observing Patterns in Inherited Traits. Chapter 11 Updated Reading Not Observing Patterns in Inherited Traits Chapter 11 Updated Reading 11.1-11.3 Not 11.5-11.7 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles,

More information

Chapter 02 Mendel s Principles of Heredity

Chapter 02 Mendel s Principles of Heredity Chapter 02 Mendel s Principles of Heredity Multiple Choice Questions 1. What was the importance of Mendel performing reciprocal crosses? To be able to breed plants all year round To obtain enough plants

More information

Gregor Mendel. Austrian Monk Worked with pea plants

Gregor Mendel. Austrian Monk Worked with pea plants Gregor Mendel Austrian Monk Worked with pea plants A. True Breeding Pea Plants Self pollinate and produce new plants genetically identical to themselves Mendel decides to cross pollinate the plants Offspring

More information

5. Alternate versions of the same gene, like purple and white flower color, are termed.

5. Alternate versions of the same gene, like purple and white flower color, are termed. Name Period If you have completed a first- year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics. For other students, this may be your

More information

GENETICS. Genetics developed from curiosity about inheritance.

GENETICS. Genetics developed from curiosity about inheritance. GENETICS Genetics developed from curiosity about inheritance. SMP - 2013 1 Genetics The study of heredity (how traits are passed from one generation to the next (inherited) An inherited trait of an individual

More information

Subterm 2 Final Review Guide

Subterm 2 Final Review Guide Name: Date: Period: Subterm 2 Final Review Guide *** This review guide is only some of what you should know for the final. Make sure you study ALL of your notes and any diagrams that are appropriate (Pedigrees,

More information

chromosome locus of gene

chromosome locus of gene Genetic Terminology chromosome locus of gene gene alleles a B A B Each chromosome consists of; A linear sequence of genes c d c D A centromere Regions of repetitive DNA NOT organised into genes Term Phenotype

More information

Complex inheritance of traits does not follow inheritance patterns described by Mendel.

Complex inheritance of traits does not follow inheritance patterns described by Mendel. Section 2: Complex inheritance of traits does not follow inheritance patterns described by Mendel. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the differences

More information

3. A form of a gene that is only expressed in the absence of a dominant alternative is:

3. A form of a gene that is only expressed in the absence of a dominant alternative is: Student Name: Teacher: Date: District: Robeson Assessment: 9_12 Agriculture AU71 - Biotech and Agrisci Rsch I Test 3 Description: Obj 12 - Simple Mendelian Genetics Form: 501 1. The genotype of an organism

More information

Genetics & Human Inheritance

Genetics & Human Inheritance Genetics & Human Inheritance BIO 105 Chapter 20 Vocabulary Alleles alternate forms of a gene Trait some characteristic Homozygous individuals that contain two copies of the same allele Heterozygous individuals

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Chapter 14. Beyond Mendel s Laws of Inheritance Modified from Kim Foglia Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single

More information

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium Gregor Mendel Hardy Weinberg Equilibrium Lectures 4-11: Mechanisms of Evolution (Microevolution) Hardy Weinberg Principle (Mendelian Inheritance) Genetic Drift Mutation Sex: Recombination and Random Mating

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 14 Mendel and the Gene Idea Lectures

More information

Exploring Mendelian Genetics 11-3

Exploring Mendelian Genetics 11-3 Exploring Mendelian Genetics 11- GENES are more complicated than Mendel thought Some traits have MORE than 2 allele choices = MULTIPLE ALLELE TRAIT http://www.eslkidstuff.com/images/tallshort.gif EX: blood

More information

Anthro 101: Human Biological Evolution. Lecture 3: Genetics & Inheritance. Prof. Kenneth Feldmeier feldmekj.weebly.

Anthro 101: Human Biological Evolution. Lecture 3: Genetics & Inheritance. Prof. Kenneth Feldmeier feldmekj.weebly. Anthro 101: Human Biological Evolution Lecture 3: Genetics & Inheritance Prof. Kenneth Feldmeier feldmekj@lavc.edu feldmekj.weebly.com What is Genetics??? Spend a few minutes discussing Genetics.. Genetics

More information

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a GENETICS I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide 1. 2. 3. chains wrap around each other to form a Chains run in opposite direction known as Type of bond between the

More information