AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

Size: px
Start display at page:

Download "AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1"

Transcription

1 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 - Genetics: Progress from Mendel to DNA: Gregor Mendel, in the mid 19 th century provided the foundation of the science of genetics. - Mendel s work on transmission of traits: - Traits of living things are passed from parents to offspring in predictable ways. - Traits are controlled by discrete units of inheritance (genes). - Each trait is controlled by a pair of genes and the members of each gene pair separate from each other during the formation of egg and sperm. - During sexual reproduction, genes are passed from parents to offspring. - The principles of inheritance can be explained by the behavior of chromosomes during cell division. Genes are passed from parent to offspring as discrete units. - Sexually-reproducing species are diploid; they have two copies of each chromosome, one from each parent. - The two copies are termed homologues. - Homologues contain the same genes, but not necessarily the same alleles. - Gametes are haploid. - The union of sperm and egg during fertilization restores the diploid number. - Sexual reproduction enhances genetic variation combination of traits not found in either parent. - The genetic composition of a species evolves over the course of many generations. - The genetic composition of a population can change over time - this is termed biological evolution. - Biological evolution is possible because of natural selection. Natural selection can be summarized as such: - members of a species compete for essential resources - In some individuals, random mutations leads to beneficial alleles - These individuals are more likely to survive and reproduce - Therefore, the beneficial alleles are passed on to subsequent generations. - Thus, genetic changes can accumulate - These can slowly lead to remarkable modifications in the characteristics of a species. - Chromosome theory of Inheritance: - Members of each species have a characteristic number of chromosomes, called the diploid number (2n). - Chromosomes in diploid cells exist in pairs, called homologous chromosomes. - Behavior of chromosomes in two forms of cell division, mitosis and meiosis. In mitosis, chromosomes are copied and distributed such that each daughter cell receives a diploid set of chromosomes. Meiosis is associated with the formation of eggs and sperms and here the cells produced receive only one chromosome from each chromosome pair. 1

2 - Genes are carried on chromosomes, both occur as pairs and separate from each other during gamete formation. - Chromosome theory of inheritance states that inherited traits are controlled by genes residing on chromosomes that are faithfully transmitted through gametes, maintaining genetic continuity from generation to generation. - The relationship between genes and traits: - Genetics is the study of heredity and variation - it is a unifying discipline in biology. - The central theme in genetics is the gene. - The gene is a segment of DNA that produces a functional product. It is classically defined as the unit of heredity. - Genes provide the blueprint that determines the traits of an organism. - Living cells are composed of biochemicals: - all cells are constructed from small organic molecules breakage of chemical bonds provides energy, and they act as building blocks for the synthesis of larger molecules. - cells contain four main types of large molecules: Nucleic acids, Proteins, Carbohydrates, Lipids. - Nucleic acids, proteins and carbohydrates are polymers constructed from smaller molecules (monomers) and are termed macromolecules. - Each cell contains many different proteins that determine cellular structure and function: - the characteristics of a cell largely depend on the proteins it produces - proteins are the workhorses of cells; they have diverse biological functions: - Structural proteins e.g. tubulin, which aggregates to form microtubules that play a role in cell shape and movement. - Contractile proteins e.g. Myosin, which plays a role in muscle contraction. - Hormonal proteins e.g. Insulin, which regulates the level of glucose in the blood. A particularly important group of proteins are the enzymes. - Enzymes are biological catalysts: - Catabolic enzymes - are involved in the breakdown of larger molecules into smaller molecules and provide energy for the activities of the cell. - Anabolic enzymes - are involved in the synthesis of larger molecules from smaller ones and provide components for the construction of cells. - DNA stores the information for protein synthesis: - the genetic material in living organisms is deoxyribonucleic acid (DNA). - DNA encodes the information required to synthesize all cellular proteins. It is able to do so because of its molecular structure. - DNA is a polymer of nucleotides. A nucleotide contains one nitrogenous base - Adenine (A) - Thymine (T) 2

3 - Cytosine (C) - Guanine (G) - the genetic information is stored in the linear sequence of these bases along the DNA molecule The DNA in living cells is contained within large structures termed chromosomes - Each chromosome is complex of DNA and proteins. - An average human chromosome contains more than 100 million nucleotides and contains genes. - The information within the DNA is accessed during the process of gene expression - - Gene expression occurs in two steps: -Transcription the genetic information in DNA is copied into a nucleotide sequence of ribonucleic acid (RNA) - Translation the nucleotide sequence in RNA is converted (using the genetic code) into the amino acid sequence of a protein - The molecular expression of genes within cells leads to an organism s traits: - A trait is any characteristic that an organism displays - There are two main types of traits o Morphological - affect the appearance o Physiological - affect the function o Behavioral- affects response to environment. - The relationship between genes and traits spans 4 levels of biological organization: 1. Genes are expressed at the molecular level. 2. Proteins function at the cellular level 3. Traits are observed at the organismal level 4. Genes/traits within a particular species can also be studied at the population level. - Inherited differences in traits are due to genetic variation: - Genetic variation refers to differences in inherited traits among individuals within a population, e.g. white versus purple petunias. - In some cases, genetic variation is very striking. o Members of the same species may be misidentified as belonging to different species. Contrasting forms within the same species are termed as morphs. - Genetic variation is a result of various types of changes at the molecular level - 1. Gene mutations: small differences in gene sequences; lead to two or more alleles of the same gene. a. Different alleles of a gene have different DNA sequences. b. An example is eye color in humans. The gene is for eye pigmentation, the alleles of the gene determine the color, and different eye colors are produced by different alleles. 3

4 2. Changes in chromosome structure: large segments of the chromosome may be deleted or duplicated 3. Changes in chromosome number: single chromosomes may be lost or gained; a whole set of chromosomes may be inherited o Down syndrome extra chromosome 21 - Traits are governed by genes and by the environment: - The traits an individual expresses often do not result from its genes alone. - Rather traits are a result of the interaction between genes and the environment. - In some cases, the environment dictates whether a disease is manifested in an individual or not. An example of this kind is the disease phenylketonuria. - Development of Recombinant DNA Technology - This era began in the early 1970s, when researchers discovered that bacteria protect themselves from viral infection by producing enzymes that cut viral DNA at specific sites. Scientists quickly realized that such enzymes called restriction enzymes, could be used to cut any DNA at specific sites producing reproducible set of fragments. This set the stage for the development of DNA cloning or making many copies of the DNA sequences. - Soon scientists developed methods to insert the DNA fragments into carrier DNA molecules called vectors to make recombinant DNA molecules and transfer them into bacterial cells. As the bacterial cells reproduce, thousands of copies or clones of combined vector and DNA fragments are produced. Once large quantities of specific DNA fragments become available, they can be used for further characterization. - - Development of genetic technologies - Gene cloning - DNA fingerprinting - Gene therapy - Mammalian cloning (the first clone, a sheep named Dolly); legislative bans on human cloning. - GMOs (Genetically modified organisms) - Recombinant DNA technology has led to the characterization of entire genomes which has resulted in the field of genomics. - Recombinant DNA technology has given rise to the biotechnology industry, which has grown over the last 25 years to become a major contributor to the US economy. - Creating a genome from scratch - Biotechnology - Biotechnology has revolutionized many aspects of everyday life. - It has allowed us to genetically modify organisms in new ways and use their products to enhance our lives. - Biotechnology is the use of these modified organisms or their products 4

5 - The genetic modification of crop plants is one of the most rapidly expanding areas of biotechnology. - This agricultural transformation is a source of controversy. - Biotechnology in Genetics and Medicine. o Genetic testing and gene therapy, already an important part of medicine will be a leading force deciding the nature of medical practice in the 21 st century. o Genes for many disorders have been isolated and cloned and are now used in genetic tests. o Instead of testing one gene at a time, a new technology is being developed that will allow screening the entire genome for any possible genetic defect. This technology uses devices called DNA microarrays or DNA chips. o In gene therapy, normal genes are transferred into individuals affected with genetic disorders. Genomics, Proteomics, and Bioinformatics: Genomics: - Laboratories around the world have initiated projects to sequence and analyze genomes of different organisms including those that cause human diseases. To date the genomes of over 550 organisms have been sequenced. - As genome projects multiplied, several new biological disciplines arose. One called genomics, sequences genomes and studies the structure, function and evolution of genes and genomes. - Human Genome Project Coordinated by NIH (National Institute of Health) and DOE (Department of Energy) Started in Genome is the DNA found in all the chromosomes. o The complete sequence of the genome was completed in o Each cell has 46 chromosomes o 2 meters of DNA o Nearly 3 billion nucleotides o Approximately 35,000 genes o The knowledge from the human genome project will lead to improvements in the diagnosis and treatment and prevention of diseases. Proteomics: - It identifies the set of proteins present in a cell under certain conditions, studies the post-translational modification of these proteins, their location within the cells, and the protein-protein interactions occurring in the cell. Bioinformatics: - To store, retrieve and analyze the massive amount of data generated by genomics and proteomics, a specialized subfield of information technology called bioinformatics was created to develop hardware and software for processing the data. Medical Genetics: 5

6 - Inherited pattern of genetic diseases - Genetic screening - Genetic basis of cancer Fields of Genetics: - Transmission genetics explores the inheritance patterns of traits as they are passed from parents to offspring - transmission genetics is the oldest field of genetics - it examines how traits are passed from one generation to the next - the conceptual framework was provided by Gregor Mendel in the 1860s. - Molecular genetics seeks a biochemical understanding of the hereditary material - molecular genetics is the most modern field of genetics. - It deals with the gene - its features, organization and function Involves study of mutant genes that have abnormal function, like elimination of gene function, loss-of-function mutation - genetic approach. - Population genetics is concerned with genetic variation and its role in evolution. - population genetics deals with the genetic composition of populations and how it changes over time and space. - It connects the Mendelian concepts to that of Darwin s concept on evolution - Genomics: refers to the molecular analysis of the entire genome of a species (genome: genetic composition of an organism) - Structural genomics: mapping and sequencing of genomes - Functional genomics: the roles of genetic sequences in a given species Genetics is an experimental science - The scientific method underlies scientific research: two general types of scientific approaches : o Hypothesis testing o Discovery-based - Finally, remember that science is a social discipline think of it as a continuous dialogue! We live in the age of Genetics - The Nobel Prize and Genetics: Although other scientific disciplines have also expanded in recent years, none has paralleled the explosion of information and excitement generated by the discoveries in Genetics. Nowhere, is this impact more apparent than in the list of Nobel prizes in the fields of medicine and chemistry. - Genetics and Society: The impact of this discipline on society has never been more profound than it is today. Genetics and its applications in biotechnology are developing much faster than the social conventions, public policies, and laws required to regulate their use. As a society, we are grappling with a host of sensitive issues like prenatal testing, insurance coverage, genetic discrimination, ownership of genes, access and safety to gene therapy, genetic privacy and genetically modified organisms. 6

7 7

Concepts of Genetics, 10e (Klug/Cummings/Spencer/Palladino) Chapter 1 Introduction to Genetics

Concepts of Genetics, 10e (Klug/Cummings/Spencer/Palladino) Chapter 1 Introduction to Genetics 1 Concepts of Genetics, 10e (Klug/Cummings/Spencer/Palladino) Chapter 1 Introduction to Genetics 1) What is the name of the company or institution that has access to the health, genealogical, and genetic

More information

UNIT MOLECULAR GENETICS AND BIOTECHNOLOGY

UNIT MOLECULAR GENETICS AND BIOTECHNOLOGY UNIT MOLECULAR GENETICS AND BIOTECHNOLOGY Standard B-4: The student will demonstrate an understanding of the molecular basis of heredity. B-4.1-4,8,9 Effective June 2008 All Indicators in Standard B-4

More information

Image adapted from: National Human Genome Research Institute

Image adapted from: National Human Genome Research Institute Jargon buster Image 1: The structure of DNA A double helix with base pairing 1 Image adapted from: National Human Genome Research Institute Allele An allele is one of two or more versions of a gene. An

More information

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA 21 DNA and Biotechnology DNA and Biotechnology OUTLINE: Replication of DNA Gene Expression Mutations Regulating Gene Activity Genetic Engineering Genomics DNA (deoxyribonucleic acid) Double-stranded molecule

More information

Unit 5 - Genetics. Page 1

Unit 5 - Genetics. Page 1 Living Environment Practice Exam- Parts A and B-1 1. Many years ago, a scientist grew pea plants that produced wrinkled peas. The peas from these plants produced new plants that also produced wrinkled

More information

What is Genetics? Genetics The study of how heredity information is passed from parents to offspring. The Modern Theory of Evolution =

What is Genetics? Genetics The study of how heredity information is passed from parents to offspring. The Modern Theory of Evolution = What is Genetics? Genetics The study of how heredity information is passed from parents to offspring The Modern Theory of Evolution = Genetics + Darwin s Theory of Natural Selection Gregor Mendel Father

More information

4. Base your answer to the following question on A product of genetic engineering technology is represented below.

4. Base your answer to the following question on A product of genetic engineering technology is represented below. name 1. When humans first domesticated dogs, there was relatively little diversity in the species. Today, there are many variations such as the German shepherd and the dalmatian. This increase in diversity

More information

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology. Name: 1117 1 Page 1 1) A small amount of DNA was taken from a fossil of a mammoth found frozen in glacial ice. Genetic technology can be used to produce a large quantity of identical DNA from this mammoth's

More information

Classical and Modern Genetics

Classical and Modern Genetics Classical and Modern Genetics Chapter 23 Great Idea: All living things use the same genetic code to guide the chemical reactions in every cell. 1 Chapter Outline Classical Genetics DNA and the Birth of

More information

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below.

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below. Base your answers to questions 1 and 2 on the statement below and on your knowledge of biology. Scientists have found a gene in the DNA of a certain plant that could be the key to increasing the amount

More information

Genetic analysis is extremely powerful, but also limited in the absence of other types of information

Genetic analysis is extremely powerful, but also limited in the absence of other types of information Genetic analysis is extremely powerful, but also limited in the absence of other types of information Mendel was interested in variation among peas as a formalism - because he realized that these phenotypes

More information

Goal 3. Friday, May 10, 13

Goal 3. Friday, May 10, 13 Goal 3 Bio.3.1 Explain how traits are determined by the structure and function of DNA. Bio.3.2 Understand how the environment, and/or the interaction of alleles, influences the expression of genetic traits.

More information

EOC Review Reporting Category 2 Mechanisms of Genetics

EOC Review Reporting Category 2 Mechanisms of Genetics EOC Review Reporting Category 2 Mechanisms of Genetics The student will demonstrate an understanding of the mechanisms of genetics. Langham Creek High School 2012-2013 By PresenterMedia.com TEK 6A Identify

More information

Physical Anthropology 1 Milner-Rose

Physical Anthropology 1 Milner-Rose Physical Anthropology 1 Milner-Rose Chapter 3 Genetics: Reproducing Life and Producing Variation Our Origins By Clark Spencer Larsen Natural Selection operates on the levels of the 1. living, behaving

More information

Genetics 2 star. 1. Two different types of cells from an organism are shown. A. cause mutations to occur

Genetics 2 star. 1. Two different types of cells from an organism are shown. A. cause mutations to occur Name: Date: 1. Two different types of cells from an organism are shown. 3. Plants inherit genes that enable them to produce chlorophyll, but this pigment is not produced unless the plants are exposed to

More information

Genomics and Biotechnology

Genomics and Biotechnology Genomics and Biotechnology Expansion of the Central Dogma DNA-Directed-DNA-Polymerase RNA-Directed- DNA-Polymerase DNA-Directed-RNA-Polymerase RNA-Directed-RNA-Polymerase RETROVIRUSES Cell Free Protein

More information

DNA. Function: Carry genetic material. located in the nucleus. Many People contributed to the discovery of DNA.

DNA. Function: Carry genetic material. located in the nucleus. Many People contributed to the discovery of DNA. DNA CLIP 1 DNA located in the nucleus Function: Carry genetic material Many People contributed to the discovery of DNA. 2 People Who Discovered DNA 1928 Frederick Griffith - DNA = carrier of genetic info

More information

CBA #4 Practice Exam Genetics. 1) (TEKS 5A) Which of the diagrams below shows the process of transcription:

CBA #4 Practice Exam Genetics. 1) (TEKS 5A) Which of the diagrams below shows the process of transcription: CBA #4 Practice Exam Genetics 1) (TEKS 5A) Which of the diagrams below shows the process of transcription: 2) (TEKS 5C) All of the following are true statements about cell differentiation EXCEPT A. Cell

More information

GENETICS. +he is considered the +he developed the of genetics that still apply today

GENETICS. +he is considered the +he developed the of genetics that still apply today GENETICS MENDELIAN GENETICS *A Historical Representation of Mendel s Work ---Who was Gregor Mendel? +he is considered the +he developed the of genetics that still apply today ---How did Mendel describe

More information

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases.

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases. DNA and RNA Nucleic Acids What is a Nucleic Acid? Nucleic Acids are organic molecules that carry information needed to make proteins Remember: proteins carry out ALL cellular activity There are two types

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

Genetics. Genetics- is the study of all manifestation of inheritance from the distributions of traits to the molecules of the gene itself

Genetics. Genetics- is the study of all manifestation of inheritance from the distributions of traits to the molecules of the gene itself What is Genetics? Genetics Mapping of genes Basis of life Inheritable traits Abnormalities Disease Development DNA RNA Proteins Central dogma - Watson & Crick Genes- segments of DNA that code for proteins

More information

Genetics and Evolution. Mary Susan Mardon

Genetics and Evolution. Mary Susan Mardon Genetics and Evolution Mary Susan Mardon Nucleotides Building blocks of DNA and RNA. Each nucleotide contains: phosphate group. deoxyribose (DNA), ribose (RNA) nitrogen base. * adenine * cytosine * thymine

More information

A Perspective on Human Genetics

A Perspective on Human Genetics Michael Cummings Chapter 1 A Perspective on Human Genetics David Reisman University of South Carolina 1.1 Genetics is the Key to Biology Genetics The scientific study of heredity Geneticists study how

More information

Standard B-4: The student will demonstrate an understanding of the molecular basis of heredity.

Standard B-4: The student will demonstrate an understanding of the molecular basis of heredity. B-4.1 Compare DNA and RNA in terms of structure, nucleotides, and base pairs. Taxonomy Level: 2.6-B Understand Conceptual Knowledge Key Concepts: Nucleic acids: deoxyribonucleic acid (DNA), ribonucleic

More information

Chapter 13-The Molecular Basis of Inheritance

Chapter 13-The Molecular Basis of Inheritance Name Fred and Theresa Holtzclaw AP Biology Reading Guide Copyright 2010 Pearson Education, Inc. Chapter 13-The Molecular Basis of Inheritance 13.1 DNA is the genetic material 1) What are the two chemical

More information

Assessment Builder - Printer Friendly Version. Name: Date:

Assessment Builder - Printer Friendly Version. Name: Date: Assessment Builder - Printer Friendly Version 1 Name: Date: 2 3 4 5 6 7 8 9 10 11 12 13 14 Which statement best describes the relationship between cells, DNA, and proteins? (1) Cells contain DNA that controls

More information

Human Anatomy & Physiology I Dr. Sullivan Unit IV Cellular Function Chapter 4, Chapter 27 (meiosis only)

Human Anatomy & Physiology I Dr. Sullivan Unit IV Cellular Function Chapter 4, Chapter 27 (meiosis only) Human Anatomy & Physiology I Dr. Sullivan Unit IV Cellular Function Chapter 4, Chapter 27 (meiosis only) I. Protein Synthesis: creation of new proteins a. Much of the cellular machinery is devoted to synthesizing

More information

Outline. Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage

Outline. Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage Genetics Outline Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage Chromosomes are composed of chromatin, which is DNA and associated

More information

3. INHERITED MUTATIONS

3. INHERITED MUTATIONS THE CENTRAL DOGMA OF BIOLOGY 1. DNA B4.2 The genetic information encoded in DNA molecules provides instructions for assembling protein molecules. Genes are segments of DNA molecules. Inserting, deleting,

More information

Chapter 9 WHAT IS DNA?

Chapter 9 WHAT IS DNA? Notes DNA Chapter 9 WHAT IS DNA? DNA= Deoxyribonucleic Acid DNA s job is to hold the entire genetic code for the organism. Human, tree, bacteria, mushroom, paramecium, etc! ALL HAVE DNA! DNA is held on

More information

Lesson Overview. Studying the Human Genome. Lesson Overview Studying the Human Genome

Lesson Overview. Studying the Human Genome. Lesson Overview Studying the Human Genome Lesson Overview 14.3 Studying the Human Genome THINK ABOUT IT Just a few decades ago, computers were gigantic machines found only in laboratories and universities. Today, many of us carry small, powerful

More information

Applied Practice. Inheritance, Genetic Mutations, and DNA Technology STAAR Biology EOC

Applied Practice. Inheritance, Genetic Mutations, and DNA Technology STAAR Biology EOC Applied Practice Inheritance, Genetic Mutations, and DNA Technology STAAR Biology EOC RESOURCE GUIDE Volume 4 Copyright 2013 by Applied Practice All rights reserved. No part of the Answer Key and Explanations

More information

CHAPTER 5 Principle of Genetics Review

CHAPTER 5 Principle of Genetics Review CHAPTER 5 Principle of Genetics Review I. Mendel s Investigations Gregor Johann Mendel Hybridized peas 1856-1864 Formulated Principles of Heredity published in 1866 II. Chromosomal Basis of Inheritance

More information

GENETICS. Genetics developed from curiosity about inheritance.

GENETICS. Genetics developed from curiosity about inheritance. GENETICS Genetics developed from curiosity about inheritance. SMP - 2013 1 Genetics The study of heredity (how traits are passed from one generation to the next (inherited) An inherited trait of an individual

More information

objective To Study basics of DNA Structure Properties Replication Transcription Translation

objective To Study basics of DNA Structure Properties Replication Transcription Translation Basics of DNA Dr. Amol Kharat objective To Study basics of DNA Structure Properties Replication Transcription Translation Cellular composition DNA is contained in nucleus of cell Phospho-lipids and proteins

More information

Regents Biology REVIEW 5: GENETICS

Regents Biology REVIEW 5: GENETICS Period Date REVIEW 5: GENETICS 1. Chromosomes: a. Humans have chromosomes, or homologous pairs. Homologous: b. Chromosome pairs carry genes for the same traits. Most organisms have two copies of the gene

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A protein's shape and chemical behavior are determined by. 1) A) the cell's age B) the

More information

Genetics 1 Star Test

Genetics 1 Star Test Name: ate: 1. The accompanying data table summarizes the results of an investigation in which seeds from the same plant were grown under different conditions of temperature and relative humidity. 2. The

More information

Unit 3: DNA and Genetics Module 6: Molecular Basis of Heredity

Unit 3: DNA and Genetics Module 6: Molecular Basis of Heredity Unit 3: DNA and Genetics Module 6: Molecular Basis of Heredity NC Essential Standard 3.1 Explain how traits are determined by the structure and function of DNA How much DNA is in my body? DNA is found

More information

THE STUDY OF GENETICS is extremely

THE STUDY OF GENETICS is extremely Exploring Animal Genetics and Probability THE STUDY OF GENETICS is extremely valuable to several areas of science. From medical to agricultural applications, the development of new techniques in studying

More information

Chapter 11: Applications of Biotechnology

Chapter 11: Applications of Biotechnology Chapter 11: Applications of Biotechnology Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 11-1 Why Biotechnology Works 11-2 Biotechnology

More information

Genetics and Gene Therapy

Genetics and Gene Therapy Genetics and Gene Therapy Optional Homework Instructions: Print and read this article. Answer the questions at the end to the best of your ability. Extra credit will be given based on quality of responses.

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Copyright 2014 Edmentum - All rights reserved. Biology DNA and Genes Blizzard Bag 2014-2015 1. When a cell needs a particular protein synthesized, messenger RNA (mrna) is produced from DNA through transcription.

More information

REVISION: DNA, RNA & MEIOSIS 13 MARCH 2013

REVISION: DNA, RNA & MEIOSIS 13 MARCH 2013 REVISION: DNA, RNA & MEIOSIS 13 MARCH 2013 Lesson Description In this lesson we revise The structure and functions of DNA The structure of RNA and its role in protein synthesis The process of cell division

More information

Protein Synthesis: From Gene RNA Protein Trait

Protein Synthesis: From Gene RNA Protein Trait Protein Synthesis: From Gene RNA Protein Trait Human Genome The human genome contains about genes. Each gene is a of DNA (sequence of nitrogen bases) contained within each chromosome. Each chromosome contains

More information

Name Date REVIEW FOR FINAL EXAM

Name Date REVIEW FOR FINAL EXAM Name Date REVIEW FOR FINAL EXAM 1. List the appropriate steps in planning/carrying out an experiment on the effect of heat on the function of a certain enzyme: Observe, define problem, form question, research

More information

DNA & THE GENETIC CODE DON T PANIC! THIS SECTION OF SLIDES IS AVAILABLE AT CLASS WEBSITE

DNA & THE GENETIC CODE DON T PANIC! THIS SECTION OF SLIDES IS AVAILABLE AT CLASS WEBSITE DNA & THE GENETIC CODE DON T PANIC! THIS SECTION OF SLIDES IS AVAILABLE AT CLASS WEBSITE Recommended reading: The Double Helix: A Personal Account of the Discovery of the Structure of DNA, by James D.

More information

Genetics Transcription Translation Replication

Genetics Transcription Translation Replication Genetics Transcription Translation Replication 1. Which statement best describes the relationship between an allele and a gene? A. An allele is a variation of a gene that can be expressed as a phenotype.

More information

Biology Milestone: Unit 3 Topics (Growth and Heridity)

Biology Milestone: Unit 3 Topics (Growth and Heridity) Biology Milestone: Unit 3 Topics (Growth and Heridity) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The diagram shows the DNA fingerprints from a blood

More information

E. Incorrect! The four different DNA nucleotides follow a strict base pairing arrangement:

E. Incorrect! The four different DNA nucleotides follow a strict base pairing arrangement: AP Biology - Problem Drill 10: Molecular and Human Genetics Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as 1. Which of the following

More information

Chapter 8 DNA STRUCTURE AND CHROMOSOMAL ORGANIZATION

Chapter 8 DNA STRUCTURE AND CHROMOSOMAL ORGANIZATION Chapter 8 DNA STRUCTURE AND CHROMOSOMAL ORGANIZATION Chapter Summary Even though DNA has been known as a biochemical compound for over 100 years, it was not implicated as the carrier of hereditary information

More information

DNA: The Molecule of Heredity

DNA: The Molecule of Heredity DNA: The Molecule of Heredity STRUCTURE AND FUNCTION - a nucleic acid o C, H, O, N, P o Made of nucleotides = smaller subunits o Components of nucleotides: Deoxyribose (simple sugar) Phosphate group Nitrogen

More information

Genetics BOE approved April 15, 2010

Genetics BOE approved April 15, 2010 Genetics BOE approved April 15, 2010 Learner Objective: Cells go through a natural progression of events to produce new cells. A. Cellular organelles work together to perform a specific function. B. The

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 10 DNA: The Molecule of Heredity Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 10.1 What Is The Structure Of DNA? Deoxyribonucleic acid (DNA) is

More information

DNA DNA. The molecule of heredity. of characteristics from parents to offspring. Gene

DNA DNA. The molecule of heredity. of characteristics from parents to offspring. Gene DNA The molecule of heredity 1 HEREDITY = passing on of characteristics from parents to offspring How?... DNA! 2 DNA I. DNA, Chromosomes, Chromatin and Genes DNA = blueprint of life (has the instructions

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

DNA & Protein Synthesis. Chapter 8

DNA & Protein Synthesis. Chapter 8 DNA & Protein Synthesis Chapter 8 State Standards SPI: 3210.4.1 Investigate how genetic information is encoded in nucleic acids SPI: 3210.4.2 Describe the relationship among genes, chromosomes, proteins,

More information

1-Microbial Taxonomy: classification nomenclature identification

1-Microbial Taxonomy: classification nomenclature identification Part 1 Basic Medical Microbiology 1-Microbial Taxonomy: Taxonomy is the area of biologic science comprising three distinct, but highly interrelated, disciplines that include classification, nomenclature,

More information

Guided Notes Unit 5: Molecular Genetics

Guided Notes Unit 5: Molecular Genetics Name: Date: Block: Chapter 8: From DNA to Protein I. Concept 8.4: Transcription a. Central Dogma of Molecular Biology i. Information flows in one direction: ii. How? Guided Notes Unit 5: Molecular Genetics

More information

Jay McTighe and Grant Wiggins,

Jay McTighe and Grant Wiggins, Course: Integrated Science 3/4 Unit #3: (DNA & RNA) Instructions for Life Stage 1: Identify Desired Results Enduring Understandings: Students will understand that Nearly all human traits, even many diseases,

More information

6E identify and illustrate changes in DNA and evaluate the significance of these changes

6E identify and illustrate changes in DNA and evaluate the significance of these changes 6E identify and illustrate changes in DNA and evaluate the significance of these changes 1. This illustration is an example of a normal DNA sequence. Which of the following represents a point mutation

More information

TEKS 5C describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation

TEKS 5C describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation TEKS 5C describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation 1. Unicellular organisms carry out all the necessary life processes in one cell. In multicellular

More information

Which diagram represents a DNA nucleotide? A) B) C) D)

Which diagram represents a DNA nucleotide? A) B) C) D) 3594-1 - Page 1 Name: 1) What is a definition of the term "gene"? A) a transfer-rna nucleotide sequence specific for a particular amino acid B) three messenger-rna nucleotides coded for a specific amino

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

DNA and GENETICS UNIT NOTES

DNA and GENETICS UNIT NOTES DNA and GENETICS UNIT NOTES NAME: DO NOT LOSE! DNA DNA - Deoxyribose Nucleic Acid Shape is called double helix DNA has the information for our cells to make proteins. DNA through transcription makes mrna

More information

Nucleic Acids. Nucleic Acids. Nucleotides. Types of Nucleotides. Function: Examples: Structure: 3 parts. 2 types of nucleotides.

Nucleic Acids. Nucleic Acids. Nucleotides. Types of Nucleotides. Function: Examples: Structure: 3 parts. 2 types of nucleotides. Nucleic Acids Nucleic Acids : store & transmit hereditary information : RNA (ribonucleic acid) DNA (deoxyribonucleic acid) Structure: monomers = nucleotides Nucleotides 3 parts nitrogen base (C-N ring)

More information

Allele: Chromosome DNA fingerprint: Electrophoresis: Gene:

Allele: Chromosome DNA fingerprint: Electrophoresis: Gene: Essential Vocabulary Allele: an alternate form of a gene; for example, a gene for human hair color may have alleles that cause red or brown hair Chromosome: a cell structure that contains genetic information

More information

DNA Structure Review. 1. Base your answer to the following question on the diagram below of a DNA molecule and on your knowledge of biology.

DNA Structure Review. 1. Base your answer to the following question on the diagram below of a DNA molecule and on your knowledge of biology. DNA Structure Review 1. Base your answer to the following question on the diagram below of a DNA molecule and on your knowledge of biology. Which activity occurs in the process of replication? A) Structure

More information

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics Human Biology, 12e (Mader / Windelspecht) Chapter 21 DNA Which of the following is not a component of a DNA molecule? A) a nitrogen-containing base B) deoxyribose sugar C) phosphate D) phospholipid Messenger

More information

DNA: The Hereditary Molecule

DNA: The Hereditary Molecule 1 CHAPTER DNA: The Hereditary Molecule Chapter 1 Modern Genetics for All Students S 1 CHAPTER 1 DNA: The Hereditary Molecule SECTION A What is DNA?..............................................S5 1. An

More information

Genetic Technologies.notebook March 05, Genetic Technologies

Genetic Technologies.notebook March 05, Genetic Technologies Genetic Testing Genetic Technologies Tests can be used to diagnose disorders and/or identify those individuals with an increased risk of inheriting a disorder. Prenatal Screening A fetus may be screened

More information

Unit 2: Biological basis of life, heredity, and genetics

Unit 2: Biological basis of life, heredity, and genetics Unit 2: Biological basis of life, heredity, and genetics 1 Issues with Darwin's Evolutionary Theory??? 2 Cells - General Composition Organelles - substructures in the cell which do different things involved

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

Semester 2: Unit 1: Molecular Genetics

Semester 2: Unit 1: Molecular Genetics Semester 2: Unit 1: Molecular Genetics Information Overload : Cells store information in DNA. Information is used to build molecules needed for cell growth. As cell size increases, the demands on that

More information

Studying the Human Genome. Lesson Overview. Lesson Overview Studying the Human Genome

Studying the Human Genome. Lesson Overview. Lesson Overview Studying the Human Genome Lesson Overview 14.3 Studying the Human Genome THINK ABOUT IT Just a few decades ago, computers were gigantic machines found only in laboratories and universities. Today, many of us carry small, powerful

More information

TOPIC 5: DNA & CHROMOSOMES

TOPIC 5: DNA & CHROMOSOMES TOPIC 5: DNA & CHROMOSOMES I Can Describe the role and relationship of chromosomes, genes and DNA Distinguish between mitosis and meiosis Provide examples of genetic technologies and identify questions

More information

I. Nucleic Acid Structure. I. Nucleic Acid Structure. I. Nucleic Acid Structure. DNA Deoxyribonucleic Acid. genetic material

I. Nucleic Acid Structure. I. Nucleic Acid Structure. I. Nucleic Acid Structure. DNA Deoxyribonucleic Acid. genetic material I. Nucleic Acid Structure nucleic acids are an organic (contains Deoxyribonucleic Acid genetic material C and H) polymer; remember the other CH OH organic molecules: genes blueprint for new cells blueprint

More information

Review Quizzes Chapters 11-16

Review Quizzes Chapters 11-16 Review Quizzes Chapters 11-16 1. In pea plants, the allele for smooth seeds (S) is dominant over the allele for wrinkled seeds (s). In an experiment, when two hybrids are crossed, what percent of the offspring

More information

UNIT 3: CELL REPRODUCTION

UNIT 3: CELL REPRODUCTION UNIT 3: CELL REPRODUCTION What are Chromosomes? Cell structures that contain genetic material. Where are they found? Found inside a cell, inside the nucleus. VOCABULARY Somatic cells (body cells) Sex cells

More information

GENES AND CHROMOSOMES-I. Lecture 3. Biology Department Concordia University. Dr. S. Azam BIOL 266/

GENES AND CHROMOSOMES-I. Lecture 3. Biology Department Concordia University. Dr. S. Azam BIOL 266/ GENES AND CHROMOSOMES-I Lecture 3 BIOL 266/2 2014-15 Dr. S. Azam Biology Department Concordia University GENE AND THE GENOME Terms to remember. Base pairs Genes Histones Nucleosomes DNA Chromatids Chromosomes

More information

What Are the Chemical Structures and Functions of Nucleic Acids?

What Are the Chemical Structures and Functions of Nucleic Acids? THE NUCLEIC ACIDS What Are the Chemical Structures and Functions of Nucleic Acids? Nucleic acids are polymers specialized for the storage, transmission, and use of genetic information. DNA = deoxyribonucleic

More information

Nucleic acids. AP Biology

Nucleic acids. AP Biology Nucleic acids 2006-2007 Nucleic Acids Information storage Nucleic Acids: Function: u genetic material stores information w genes w blueprint for building proteins n DNA DNA RNA proteins transfers information

More information

3.C Genetic Variation

3.C Genetic Variation 3.C Genetic Variation Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. EU 3.A: Heritable information provides for continuity of life. EU 3.B:

More information

BIOTECHNOLOGY. Understanding the Application

BIOTECHNOLOGY. Understanding the Application BIOTECHNOLOGY Understanding the Application GENETIC ENGINEERING Genetic engineering refers to any process in which man alters an organism s DNA Examples: cloning, genetically modified organisms (GMO),

More information

Chapter 14: Genes in Action

Chapter 14: Genes in Action Chapter 14: Genes in Action Section 1: Mutation and Genetic Change Mutation: Nondisjuction: a failure of homologous chromosomes to separate during meiosis I or the failure of sister chromatids to separate

More information

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions.

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. Opening Activity DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. 1. How is the structure of DNA similar to that of a ladder or spiral

More information

VCE Biology Units 3 and

VCE Biology Units 3 and VCE Biology Units 3 and 4 2015 The following is from the Biology Victorian Certificate of Education Study Design 2013 2016. Units 1 to 4: Key Skills Investigate and inquire scientifically formulate questions

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments.

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments. Fundamentals of Genetics 1. What scientist is responsible for our study of heredity? 2. Define heredity. 3. What plant did Mendel use for his hereditary experiments? 4. Name the 7 characteristics, giving

More information

DNA RNA Protein. THE DISCOVERY AND STRUCTURE OF DNA (SB2a) What is DNA? SCIENTISTS WHEN? IMPORTANT DISCOVERY

DNA RNA Protein. THE DISCOVERY AND STRUCTURE OF DNA (SB2a) What is DNA? SCIENTISTS WHEN? IMPORTANT DISCOVERY DNA RNA Protein Notes THE DISCOVERY AND STRUCTURE OF DNA (SB2a) SCIENTISTS WHEN? IMPORTANT DISCOVERY Frederick Mieshcer Discovered in the white blood cells Phoebus Levene Oswald Avery Erwin Chargaff Alfred

More information

BIOLOGY 111. CHAPTER 6: DNA: The Molecule of Life

BIOLOGY 111. CHAPTER 6: DNA: The Molecule of Life BIOLOGY 111 CHAPTER 6: DNA: The Molecule of Life Chromosomes and Inheritance Learning Outcomes 6.1 Describe the structure of the DNA molecule and how this structure allows for the storage of information,

More information

Review? - What are the four macromolecules?

Review? - What are the four macromolecules? Review? - What are the four macromolecules? Lipids Carbohydrates Protein Nucleic Acids What is the monomer of nucleic acids and what do nucleic acids make up? Nucleotides; DNA and RNA 12-1 DNA DNA Stands

More information

Genetics and Heredity Power Point Questions

Genetics and Heredity Power Point Questions Name period date assigned date due date returned Genetics and Heredity Power Point Questions 1. Heredity is the process in which pass from parent to offspring. 2. is the study of heredity. 3. A trait is

More information

The Structure and Func.on of Macromolecules Nucleic Acids

The Structure and Func.on of Macromolecules Nucleic Acids The Structure and Func.on of Macromolecules Nucleic Acids The FOUR Classes of Large Biomolecules All living things are made up of four classes of large biological molecules: Carbohydrates Lipids Protein

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Essential Functions of Life

Essential Functions of Life Essential Functions of Life You are probably well aware that your genetic material determines most of your physical traits. The DNA inherited from each of your two parents dictates your body structure,

More information

Semi-conservative replication DNA Helicases DNA polymerases Transcription Codon Messenger RNA Transfer RNA. Molecular Genetics Unit

Semi-conservative replication DNA Helicases DNA polymerases Transcription Codon Messenger RNA Transfer RNA. Molecular Genetics Unit Name: Unit 7 Molecular Genetics Students will be able to: Theme: DNA Heredity 6.1 Understand the structure and role of DNA Explain the structure of DNA (monomer and polymer) Discuss the process of DNA

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits 13.1 How Do Alleles Contribute to Traits? Blending inheritance 19th century idea Failed to explain

More information