The Structure and Genetic Map of Lambda phage

Size: px
Start display at page:

Download "The Structure and Genetic Map of Lambda phage"

Transcription

1 NPTEL Biotechnology - Systems Biology The Structure and Genetic Map of Lambda phage Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8

2 NPTEL Biotechnology - Systems Biology Table of Contents 1 FLUCTUATIONS IN GENE EXPRESSION... ERROR! BOOKMARK NOT DEFINED. 1.1IS NOISE AN ADVANTAGE TO BIOLOGICAL SYSTEMS?... ERROR! BOOKMARK NOT DEFINED. 1.2 MEASUREMENT OF EXPRESSION NOISE... ERROR! BOOKMARK NOT DEFINED. 2 REFERENCE... ERROR! BOOKMARK NOT DEFINED. 2.1 LITERATURE REFERENCES... ERROR! BOOKMARK NOT DEFINED. 1.2 VIDEO LINK... ERROR! BOOKMARK NOT DEFINED. Joint Initiative of IITs and IISc Funded by MHRD Page 2 of 8

3 1 Introduction Viruses are obligate intracellular parasites. Bacteriophages are viruses infecting bacteria. They multiply inside the host system through partial or complete utilization of the host biosynthetic machinery. Bacteriophages may be RNA phages such as Q-beta Filamentous with single stranded DNA such as M13 T- even phages including T2,T4,T6 infecting E.coli Temperate phages like lambda and mu Spherical phages with single stranded DNA like PhiX174 The genetic material in bacteriophage may either be RNA or DNA but not both. The nucleic acids of phages contain unusual or modified bases which enable to circumvent the degradation of the host nuclease. Further, the number of genes in bacteriophage varies with the complexity of the genome. Complex phages have more than 100 genes while simple phages have only 3-5 genes. 1.1 Structure of the Lambda Phage Lambda phage is a temperate phage. The genes of the lambda phage make a single DNA molecule-the chromosome wrapped within a protein coat, composed of different proteins all of which are encoded by the lambda chromosome. The coat is structurally composed of an icosahedral head with a diameter of 64nm and a tail, 150 nm in length as shown in Fig 1. The head is composed of double stranded linear DNA surrounded by a capsid made up of protein capsomers. At the 5 end of each strand are 12 nucleotide long sequences complementary to each other. Thus on circularization, the bacteriophage DNA has 48,514 base pairs. The 5 ends are called cos sites and the opposite of cos site is att site meant for attachment. The lambda phage attaches to the cell surface of E.coli through its tail, making a hole in the cell wall. It thus pushes its chromosome into the bacterium E.coli, leaving behind the protein coat. Joint Initiative of IITs and IISc Funded by MHRD Page 3 of 8

4 Fig 1 (a) Structure of a Lambda phage, (b) measurement of different parts of a Lambda phage First stage of infection involves a process called adsorption. Adsorption involves landing and attachment. Tail fibres play a critical role in this stage. Tail less phages use analogous structures for adsorption. Specific receptors on the bacterial cell like proteins, lipopolysaccharides, pili apart from lipoproteins are exploited by phages for attachment. This is reversible condition. Base plate components mediate permanent binding. Second stage in infection process is penetration. The sheath of phages contracts resulting in insertion of hollow tail fiber through bacterial envelope. Some phages utilize their enzymes to digest components of bacterial envelope. Nucleic acid is inserted inside bacterial cell via hollow tail. Remaining part of the phage outside bacteria is called ghost. Thus in nutshell penetration involves contraction of sheath till DNA insertion. Some phages upon infecting bacteria lyse the bacterial cell after forming their progeny. Such phages are called virulent. Some phages integrate their genome into bacterial genome and can remain inside host without harming them but under drastic conditions can become virulent and can causes host cell lysis. Such phages which normally follow lysogeny but under drastic conditions become lytic are called temperate phages. Joint Initiative of IITs and IISc Funded by MHRD Page 4 of 8

5 1.2 Receptor targeting λ- phage The λ - phage uses the maltose pore LamB for delivering its genetic material into the host cell. The phage binds to the cells of the target E.coli and the J-protein in the tip of its tail interacts with the LamB, gene product of E.coli (LamB is a porin molecule and is a part of the maltose operon). Most of the E.coli K-12 mutations resistant to λ phage are located in two genetic regions mala and malb. LamB is composed of three identical subunits, each of which is formed by an 18-stranded antiparallel β-barrel, which forms a wide channel with a diameter of about 2.5 nm. The phage consists of a hollow tube composed of 32 stacked discs, each of which has a 3nm central hole to eject its genetic material into the host. Lambda phage uses this channel for ejecting its genetic material. After injecting the DNA into bacteria, the double stranded linear DNA circularizes due to the presence of cos sites and site specific nucleases cut DNA at the att site of the phage DNA. Fig 2. Genetic mapping of lambda phage Joint Initiative of IITs and IISc Funded by MHRD Page 5 of 8

6 Table 1 The genes involved in the switching mechanism of the lambda phage Name of gene/promotor/operator Function Att ci Provides site of attachment for phage to host chromosome Repressor protein cii Coding for promotor establishment activator protein ciii OR PR OL PL Cro Codes for stabilizing protein Operator right Promotor right Operator left Promotor left Gene for second repressor N Positive regulator counteracting rho dependent termination J through U Z through A Int Xis O and P Q Genes encoding tail proteins Genes encoding head proteins Gene encoding integrase Encodes excisionase Encode proteins involved in replication of Lambda DNA Encodes anti terminator protein Joint Initiative of IITs and IISc Funded by MHRD Page 6 of 8

7 Bacteriophage lambda is episomic and consequently its genome exists in at least two states within which genetic recombination is possible. This allows the construction of two genetic maps termed vegetative and prophage after these states. In the vegetative state, the replication of the lambda genome is independent of the replication of the host genome. Such replica are finally packaged into the head of the mature phage as single duplex DNA molecules, 15 to 17 microns in length. These molecules contain ~ 47,000 base pairs, to accommodate 40 to 45 structural genes. In the prophage state the viral genome integrates into the host genome replicating in synchrony with the host genome. Lambda genes are organized into operons. The Left operon genes are meant for recombination and integration resulting in lysogeny, while right operon and the late operon genes are meant for lysis. The genetic map of the lambda phage is shown in Fig2. The lambda phage infects the bacterium directing it to two different fates. In some of the cells, as the infection happens the different set of phage genes are turned ON and OFF in a precisely regulated manner. The lambda chromosome is replicated, newer head and tail proteins are synthesized, forming new phage particles within the bacterium. As the phage chromosome begins to replicate, the phage gene ci, is expressed. The product of ci is the bacteriophage lambda repressor which keeps the other phage genes in the OFF state. When exposed to ultraviolet light, the inert phage genes (lytic genes) are switched ON and the repressor gene is switched OFF. Nearly 45 minutes after the infection the bacterial cell lyses releasing around 100 new progeny phage. In the other population of cells, the injected phage chromosome turns OFF all the phage genes except one. The single phage chromosome called the prophage now becomes a part of the host chromosome. The bacterium carrying the dormant phage chromosome is called the lysogen. As the lysogen grows, the prophage is passively replicated with the host genome and distributed to the progeny bacteria. Thus, we understand that the phage genes upon exposure of a lysogen to a signal such as UV, switch from their stable lysogenic state to a lytic growth state. The switch from the lysogeny to the lytic growth is termed induction. We shall discuss the classic switch of a lambda phage in the next class. Joint Initiative of IITs and IISc Funded by MHRD Page 7 of 8

8 2 References 2.1 Text Book 1. A Genetic switch: Phage lambda revisited, 3/e, CSHL Press, New York, (2004). 2.2 Literature References 1. DAVID S. HOGNESS et al., The Structure and Function of the DNA from Bacteriophage Lambda. The Journal of General Physiology,(1966), 49, Oppenheim A B, Oren Kobiler, Joel Stavans, Donald L. Court, and Sankar Adhya. Switches in bacteriophage Lambda development, Annu. Rev. Genet., (2005), 39, Fogg P C M, Allison H E eta al, Bacteriophage lambda: A paradigm revisited, J.Virol, (2010), 84, Video Link Joint Initiative of IITs and IISc Funded by MHRD Page 8 of 8

BACTERIOPHAGES: STRUCTURE AND PROPERTIES OF BACTERIAL VIRUSES

BACTERIOPHAGES: STRUCTURE AND PROPERTIES OF BACTERIAL VIRUSES BACTERIOPHAGES: STRUCTURE AND PROPERTIES OF BACTERIAL VIRUSES Bacteriophage (phage) are obligate intracellular parasites that multiply inside bacteria by making use of some or all of the host biosynthetic

More information

Very Short Answers Questions:

Very Short Answers Questions: Chapter-8 Viruses Very Short Answers Questions: 1. What is the shape of T 4 phage? What is its genetic material? A: Tadpole shape distinguished with head and tail regions joined by collar. Genetic material

More information

Chapter 13A: Viral Basics

Chapter 13A: Viral Basics Chapter 13A: Viral Basics 1. Viral Structure 2. The Viral Life Cycle 3. Bacteriophages 1. Viral Structure What exactly is a Virus? Viruses are extremely small entities that are obligate intracellular parasites

More information

Viruses, Viroids, and Prions

Viruses, Viroids, and Prions 11/21/2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 13 Viruses, Viroids, and Prions General Characteristics of Viruses Learning Objective Differentiate

More information

The Zombies of the Scientific Community Viruses

The Zombies of the Scientific Community Viruses The Zombies of the Scientific Community Viruses What are viruses and what do they look like? Viruses do not satisfy all of the characteristics of life. Often, viruses are called parasites because they

More information

Gene regulation II Biochemistry 302. Bob Kelm March 1, 2004

Gene regulation II Biochemistry 302. Bob Kelm March 1, 2004 Gene regulation II Biochemistry 302 Bob Kelm March 1, 2004 Lessons to learn from bacteriophage λ in terms of transcriptional regulation Similarities to E. coli Cis-elements (operator elements) are adjacent

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics AP Biology What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron microscope size smaller than ribosomes ~20 50 nm

More information

Lecture Series 10 The Genetics of Viruses and Prokaryotes

Lecture Series 10 The Genetics of Viruses and Prokaryotes Lecture Series 10 The Genetics of Viruses and Prokaryotes The Genetics of Viruses and Prokaryotes A. Using Prokaryotes and Viruses for Genetic Experiments B. Viruses: Reproduction and Recombination C.

More information

2054, Chap. 13, page 1

2054, Chap. 13, page 1 2054, Chap. 13, page 1 I. Microbial Recombination and Plasmids (Chapter 13) A. recombination = process of combining genetic material from 2 organisms to produce a genotype different from either parent

More information

Molecular Biology: Gene cloning

Molecular Biology: Gene cloning Molecular Biology: Gene cloning Author: Prof Marinda Oosthuizen Licensed under a Creative Commons Attribution license. CLONING VECTORS The central component of a gene cloning experiment is the vector or

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Big Idea 3C Basic Review

Big Idea 3C Basic Review Big Idea 3C Basic Review 1. A gene is a. A sequence of DNA that codes for a protein. b. A sequence of amino acids that codes for a protein. c. A sequence of codons that code for nucleic acids. d. The end

More information

Genetics - Problem Drill 13: The Control of Gene Expression in Prokaryotes

Genetics - Problem Drill 13: The Control of Gene Expression in Prokaryotes Genetics - Problem Drill 13: The Control of Gene Expression in Prokaryotes No. 1 of 10 1. You have a cell where the lac repressor has a mutation that doesn t bind lactose. The cells are cultured in a low-glucose,

More information

Biotechnology. Cloning. Transformation 2/4/ glue DNA

Biotechnology. Cloning. Transformation 2/4/ glue DNA Biotechnology Cloning The production of multiple copies of a single gene (gene cloning) For basic research on genes and their protein products To make a protein product (insulin, human growth hormone)

More information

5. the transformation of the host cell. 2. reject the virus. 4. initiate an attack on the virus.

5. the transformation of the host cell. 2. reject the virus. 4. initiate an attack on the virus. Version 001 Bacterial/Viral Genetics mahon (26) 1 This print-out should have 28 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt Bio

More information

MMG 301, Lec. 25 Mutations and Bacteriophage

MMG 301, Lec. 25 Mutations and Bacteriophage MMG 301, Lec. 25 Mutations and Bacteriophage Questions for today: 1. What are mutations and how do they form? 2. How are mutant bacteria used in research? 3. What are the general properties of bacteriophage

More information

Bacteria Reproduce Asexually via BINARY FISSION

Bacteria Reproduce Asexually via BINARY FISSION An Introduction to Microbial Genetics Today: Intro to Microbial Genetics Lunch pglo! Bacteria Reproduce Asexually via BINARY FISSION But, Bacteria still undergo GENETIC RECOMBINATION (combining DNA from

More information

2 nd year Medical Students - JU Bacterial genetics. Dr. Hamed Al Zoubi Associate Professor of Medical Microbiology. MBBS / J.U.S.

2 nd year Medical Students - JU Bacterial genetics. Dr. Hamed Al Zoubi Associate Professor of Medical Microbiology. MBBS / J.U.S. 2 nd year Medical Students - JU Bacterial genetics Dr. Hamed Al Zoubi Associate Professor of Medical Microbiology. MBBS / J.U.S.T MSc, PhD/ UK Bacterial genetics ILOs: bacterial genome and replication

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19 Chapter 19 Viruses Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 19 1. A virus consists of a nucleic acid surrounded by a protein coat. 2. Viruses replicate only in host

More information

7.1 The lac Operon 7-1

7.1 The lac Operon 7-1 7.1 The lac Operon The lac operon was the first operon discovered It contains 3 genes coding for E. coli proteins that permit the bacteria to use the sugar lactose Galactoside permease (lacy) which transports

More information

Chapter 26 : Viruses

Chapter 26 : Viruses Chapter 26 : Viruses Note : In this chapter the important points are in bold font and the less important are in normal font. so if you don t have an enough time ; study only important points. Concept 26.1:

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage)

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage) Name Student ID# Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Final Exam 1.) Different bacteriophage utilize different mechanisms to ensure that their own genes (and not host s genes) are transcribed

More information

Chapter 18 Review Page 1

Chapter 18 Review Page 1 hapter 18 Review Page 1 1 In this diagram of a virus, the pointer is indicating the virus's capsid. genome. envelope. mitochondria. microfilaments. 2 Viral N makes mrn by the process of lysis. infection.

More information

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell.

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell. Regulation of gene expression a. Expression of most genes can be turned off and on, usually by controlling the initiation of transcription. b. Lactose degradation in E. coli (Negative Control) Lac Operon

More information

Viral Genomes. Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA

Viral Genomes. Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA Chapter 19 Viral Genomes Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA Genome is usually organized as a single linear or circular molecule

More information

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs 1. Helix-turn-helix proteins 2. Zinc finger proteins 3. Leucine zipper proteins 4. Beta-scaffold factors 5. Others λ-repressor AND CRO

More information

AP Biology Reading Guide BI #3 Chapter 19: Viruses

AP Biology Reading Guide BI #3 Chapter 19: Viruses AP Biology Reading Guide BI #3 Chapter 19: Viruses Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat 1. What was some early evidence of the existence of viruses? Why were they

More information

March 15, Genetics_of_Viruses_and_Bacteria_p5.notebook. smallest viruses are smaller than ribosomes. A virulent phage (Lytic)

March 15, Genetics_of_Viruses_and_Bacteria_p5.notebook. smallest viruses are smaller than ribosomes. A virulent phage (Lytic) Genetics_of_Viruses_and_Bacteria_p5.notebook smallest viruses are smaller than ribosomes Adenovirus Tobacco mosaic virus Bacteriophage Influenza virus envelope is derived from the host cell The capsids

More information

Viruses CAMPBELL BIOLOGY IN FOCUS SECOND EDITION URRY CAIN WASSERMAN MINORSKY REECE

Viruses CAMPBELL BIOLOGY IN FOCUS SECOND EDITION URRY CAIN WASSERMAN MINORSKY REECE CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 17 Viruses Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION Overview: A Borrowed Life

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Biotechnology Unit: Viruses

Biotechnology Unit: Viruses Biotechnology Unit: Viruses What do you see here? What is the cause: bacteria or virus? In the late 1800 s Martinus Beijerinck performed this experiment and saw that something smaller than bacteria was

More information

GENETICS - CLUTCH CH.5 GENETICS OF BACTERIA AND VIRUSES.

GENETICS - CLUTCH CH.5 GENETICS OF BACTERIA AND VIRUSES. !! www.clutchprep.com CONCEPT: WORKING WITH MICROORGANISMS Bacteria are easy to with in a laboratory setting They are fast dividing, take up little space, and are easily grown in a lab - Plating is when

More information

number Done by Corrected by Doctor Hamed Al Zoubi

number Done by Corrected by Doctor Hamed Al Zoubi number 3 Done by Neda a Baniata Corrected by Waseem Abu Obeida Doctor Hamed Al Zoubi Note: it is important to refer to slides. Bacterial genetics *The main concepts we will talk about in this lecture:

More information

General Biology. Structure of Viruses. Viral Genomes

General Biology. Structure of Viruses. Viral Genomes Course No: BNG2003 Credits: 3.00 General Biology 12. Viruses and Bacteria Bacteria, Viruses and Biomedical Engineering: - Medicine ---> Biofilms etc - Energy: Biofuel Cells - Environment/Industries: Bioremediation

More information

Viruses and Bacteria Section 18.1 Viruses

Viruses and Bacteria Section 18.1 Viruses Viruses and Bacteria Section 18.1 Viruses Research List three vaccines and the disease that each vaccine prevents. New Vocabulary Use your book to define the following terms. bacteriophage capsid host

More information

Rawan Almujaibel Anas Abu-Humaidan

Rawan Almujaibel Anas Abu-Humaidan 8 Rawan Almujaibel...... Anas Abu-Humaidan In the previous lecture the Dr. talked about DNA structure and their 4 types of nitrogen bases. Then he talked about bacterial DNA (chromosomes) and their replication

More information

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 19 Viruses Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick A Borrowed Life A virus is an infectious particle

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 19 Viruses Lectures by Erin Barley

More information

Biological consequences of site specific recombination: integration, excision, deletion

Biological consequences of site specific recombination: integration, excision, deletion Biological consequences of site specific recombination: integration, excision, deletion The types of DNA rearrangements promoted by a large number of site specific recombination systems and their physiological

More information

Viruses and Bacteria

Viruses and Bacteria Viruses and Bacteria Structure of Viruses Viruses are not cells Virus -very small infectious particle, nucleic acid enclosed in a protein coat and, in some cases, a membranous envelope Virus -consists

More information

Please sign below if you wish to have your grades posted by the last five digits of your SSN

Please sign below if you wish to have your grades posted by the last five digits of your SSN BIO 226R EXAM III (Sample) PRINT YOUR NAME Please sign below if you wish to have your grades posted by the last five digits of your Signature BIO 226R Exam III has 8 pages, and 26 questions. There are

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 19 Viruses Lectures by Erin Barley

More information

Vectors for Gene Cloning: Plasmids and Bacteriophages

Vectors for Gene Cloning: Plasmids and Bacteriophages Vectors for Gene Cloning: Plasmids and Bacteriophages DNA molecule must be able to replicate within the host cell to be able to act as a vector for gene cloning, so that numerous copies of the recombinant

More information

Genetic Adaptation II. Microbial Physiology Module 3

Genetic Adaptation II. Microbial Physiology Module 3 Genetic Adaptation II Microbial Physiology Module 3 Topics Topic 4: Topic 5: Transposable Elements Exchange of Genetic Material Between Organisms Topic 5a: Protection Against Foreign DNA Aims and Objectives

More information

Virus- infectious particle consisting of nucleic acid packaged in a protein coat.

Virus- infectious particle consisting of nucleic acid packaged in a protein coat. Chapter 19 Virus- infectious particle consisting of nucleic acid packaged in a protein coat. Most scientists consider viruses non-living because they cannot reproduce or carry out metabolic activities

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

Section B: The Genetics of Bacteria

Section B: The Genetics of Bacteria CHAPTER 18 MICROBIAL MODELS: THE GENETICS OF VIRUSES AND BACTERIA Section B: The Genetics of Bacteria 1. The short generation span of bacteria helps them adapt to changing environments 2. Genetic recombination

More information

Biology Test Review Microorganisms

Biology Test Review Microorganisms Name: Period: Biology Test Review Microorganisms Use your booklet, notes, & quizzes to complete this review. 1. Define the following terms using a few key words: a. Host cell - victim of the virus b. Retrovirus

More information

Essential Question. What is the structure of DNA, and how does it function in genetic inheritance?

Essential Question. What is the structure of DNA, and how does it function in genetic inheritance? DNA Dr. Bertolotti Essential Question What is the structure of DNA, and how does it function in genetic inheritance? What is the role of DNA in hereditary? Transformation Transformation is the process

More information

Warm-Up. Describe how the Hershey-Chase experiment proved that DNA is the heritable molecule of genes.

Warm-Up. Describe how the Hershey-Chase experiment proved that DNA is the heritable molecule of genes. Warm-Up Describe how the Hershey-Chase experiment proved that DNA is the heritable molecule of genes. Yesterday s Pictures 3D χ " = $ (o e)" e DNA protein protein protein protein protein Host Cell DNA

More information

Fig Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Fig Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Bacteria are prokaryotic organisms. Their cells are much smaller and more simply organized that those of eukaryotes, such as plants and animals. Note the size differences. Viruses are smaller and simpler

More information

Unit 8: Genomics Guided Reading Questions (150 pts total)

Unit 8: Genomics Guided Reading Questions (150 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 18 The Genetics of Viruses and Bacteria Unit 8: Genomics Guided

More information

B3206 Microbial Genetics

B3206 Microbial Genetics Prof. Fahd M. Nasr Faculty of Sciences Lebanese University Beirut, Lebanon https://yeastwonderfulworld.wordpress.com/ B3206 Microbial Genetics 1 "Genetics of Microorganisms" Prokaryotic M.G. Genetic switches

More information

Tues 1/21. Today: Virus movie clip, ek paragraph for ch 20. Next class: collect Ch. 20 Guided Reading

Tues 1/21. Today: Virus movie clip, ek paragraph for ch 20. Next class: collect Ch. 20 Guided Reading Tues 1/21 Today: Virus movie clip, ek paragraph for ch 20. Next class: collect Ch. 20 Guided Reading Pg. 104 Ch. 20 Guided Reading Pg. 105 EK Paragraph 3C3 Wed. 1/22 Collect-Ch 20 Guided Reading Today:

More information

λ s Cro Molecule CI 2 Bound to O R 3 Turns Off P RM Basal Versus Activated Rate CI 2 Bound to O R 2 Turns On P RM P R Active When O R Sites Are Empty

λ s Cro Molecule CI 2 Bound to O R 3 Turns Off P RM Basal Versus Activated Rate CI 2 Bound to O R 2 Turns On P RM P R Active When O R Sites Are Empty Phage λ ECE/CS/BioEn 6760 Modeling and Analysis of Biological etworks Chris J. Myers Lecture 4: Phage λ: A Simple Genetic Circuit In 1953, Lwoff et al. discovered that a strain of E. Coli when exposed

More information

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information

Version A. AP* Biology: Biotechnology. Name: Period

Version A. AP* Biology: Biotechnology. Name: Period Name: Period Version A AP* Biology: Biotechnology Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the one that is best in each

More information

Regulation of enzyme synthesis

Regulation of enzyme synthesis Regulation of enzyme synthesis The lac operon is an example of an inducible operon - it is normally off, but when a molecule called an inducer is present, the operon turns on. The trp operon is an example

More information

Molecular Cell Biology - Problem Drill 09: Gene Expression in Prokaryotes

Molecular Cell Biology - Problem Drill 09: Gene Expression in Prokaryotes Molecular Cell Biology - Problem Drill 09: Gene Expression in Prokaryotes Question No. 1 of 10 1. Which of the following statements about gene expression in prokaryotes is correct? Question #1 (A) In prokaryotes,

More information

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics Lectures of Dr.Mohammad Alfaham The Bacterial Genetics is the total collection of genes carried by a bacterium both on its chromosome and on its extrachromosomal genetic elements (plasmids) A Gene A gene

More information

4/3/2013. DNA Synthesis Replication of Bacterial DNA Replication of Bacterial DNA

4/3/2013. DNA Synthesis Replication of Bacterial DNA Replication of Bacterial DNA 4/3/03 3 4 5 6 7 8 9 0 Chapter 8 Microbial Genetics Terminology Genetics: The study of what genes are, how they carry information, how information is expressed, and how genes are replicated Gene: A segment

More information

Name Biol Group Number. ALE 11. The Genetics of Viruses, Control of Gene Expression, and Recombinant DNA Technology

Name Biol Group Number. ALE 11. The Genetics of Viruses, Control of Gene Expression, and Recombinant DNA Technology Name Biol 211 - Group Number ALE 11. The Genetics of Viruses, Control of Gene Expression, and Recombinant DNA Technology Chapter 19: The Genetics of Viruses (pp. 381-395, Biology by Campbell/Reece, 8 th

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

By two mechanisms: Mutation Genetic Recombination

By two mechanisms: Mutation Genetic Recombination Genetics (see text pages 257-259, 267-298) Remember what it is we want to address: How is it that prokaryotes gain new genetic ability? The cells are haploid and reproduce by fission...so how does an genetic

More information

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1 الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء 222Cell Biolgy 1 Lecture 13 222Cell Biolgy 2 Nucleosome Nucleosomes form the fundamental repeating

More information

Immune System. Viruses vs. Bacteria

Immune System. Viruses vs. Bacteria Immune System Viruses vs. Bacteria Concept Map Section 19-1 Bacteria are classified into the kingdoms of Eubacteria Archaebacteria include a variety of lifestyles such as live in harsh environments such

More information

Bi 8 Lecture 10. Ellen Rothenberg 4 February 2016

Bi 8 Lecture 10. Ellen Rothenberg 4 February 2016 Bi 8 Lecture 10 Bacterial regulation, II Ellen Rothenberg 4 February 2016 Not all bacterial promoters use the same σ factors, and this provides added regulation capability Most sigma factors are related

More information

The Genetics of Viruses and Bacteria

The Genetics of Viruses and Bacteria The Genetics of Viruses and Bacteria Molecular biology was born in the laboratories of microbiologists studying viruses and bacteria Neil Campbell and Jane Reece Biology, Seventh Edition Overview: Microbial

More information

Microbial Genetics. UNIT 02: MICROBES AND HEALTH Life science Ramesh Kumar. Image: Prokaryotic Replication, U.S.

Microbial Genetics. UNIT 02: MICROBES AND HEALTH Life science Ramesh Kumar. Image: Prokaryotic Replication, U.S. Microbial Genetics UNIT 02: MICROBES AND HEALTH Life science Ramesh Kumar From the Virtual Microbiology Classroom on ScienceProfOnline.com Image: Prokaryotic Replication, U.S. National Library of Medicine

More information

DNA: The Genetic Material. Chapter 14. Genetic Material

DNA: The Genetic Material. Chapter 14. Genetic Material DNA: The Genetic Material Chapter 14 Genetic Material Frederick Griffith, 1928 Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia 2 strains of Streptococcus: - S strain virulent - R strain

More information

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization Overview & Recap of Molecular Biology before the last two sections MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription Gene Organization Joy Winuthayanon, PhD School of Molecular Biosciences

More information

Why do we care about homologous recombination?

Why do we care about homologous recombination? Why do we care about homologous recombination? Universal biological mechanism Bacteria can pick up new genes Biotechnology Gene knockouts in mice via homologous recombination 1 DNA of interest in mouse

More information

Topic 10 Molecular Biology of the Gene

Topic 10 Molecular Biology of the Gene Topic 10 Molecular Biology of the Gene Sabotage Inside Our Cells Viruses are invaders that sabotage our cells Viruses have genetic material surrounded by a protein coat and, in some cases, a membranous

More information

Bacterial Viruses. Week of 2/28-3/4/05. Hour 1: Watch Lambda bacteriophage video.

Bacterial Viruses. Week of 2/28-3/4/05. Hour 1: Watch Lambda bacteriophage video. Module 2 Lab 2 Bacterial Viruses Week of 2/28-3/4/05 Learning objectives Objectives Explain how bacteriophage infect their hosts and multiply Recognize the bacteriophage infection of bacteria Use PCR to

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Module 6 Microbial Genetics. Chapter 8

Module 6 Microbial Genetics. Chapter 8 Module 6 Microbial Genetics Chapter 8 Structure and function of the genetic material Genetics science of o Study of what genes are, how they determine the characteristics of an organism, how they carry

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Question No. 1 of 10 1. Which of the following statements about genes is correct? Question #1 (A) Genes carry the information for protein

More information

Mechanisms of Genetic Variation. Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display.

Mechanisms of Genetic Variation. Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 16 Mechanisms of Genetic Variation Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 Mutations: Their Chemical Basis and Effects Stable, heritable

More information

Genomics and Biotechnology

Genomics and Biotechnology Genomics and Biotechnology Expansion of the Central Dogma DNA-Directed-DNA-Polymerase RNA-Directed- DNA-Polymerase DNA-Directed-RNA-Polymerase RNA-Directed-RNA-Polymerase RETROVIRUSES Cell Free Protein

More information

The Genetics of Viruses and Bacteria

The Genetics of Viruses and Bacteria The Genetics of Viruses and Bacteria I. A virus is a genome enclosed in a protective coat. A. Viruses are not cells. They are infectious particles consisting of nucleic acid encased in a protein coat and,

More information

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element Gene Transfer Fredrick Griffith in the 1920s did an experiment. Not until 19 was DN shown to be the moveable element Dead pathogen cells able to make a capsule were able to pass this ability to the live

More information

Lesson Overview Identifying the Substance of Genes

Lesson Overview Identifying the Substance of Genes 12.1 Identifying the Substance of Genes Griffith s Experiments The discovery of the chemical nature of the gene began in 1928 with British scientist Frederick Griffith, who was trying to figure out how

More information

Microbial Genetics. Chapter 8

Microbial Genetics. Chapter 8 Microbial Genetics Chapter 8 Structure and Function of Genetic Material Genome A cell s genetic information Chromosome Structures containing DNA that physically carry hereditary information Gene Segments

More information

DNA. Empty protein shell Phage. Radioactivity in liquid. Pellet. 3 Centrifuge the mixture so bacteria form a pellet at the bottom of the test tube.

DNA. Empty protein shell Phage. Radioactivity in liquid. Pellet. 3 Centrifuge the mixture so bacteria form a pellet at the bottom of the test tube. MOLECULAR BIOLOGY: RELICATION, TRANSCITION, AND TRANSLATION Honors Biology 0 IMORTANT EXERIMENTS Frederick Griffith Described a transforming factor that could be transferred into a bacterial cell rocess

More information

Chapter 27A: Bacteria and Archaea. 1. Extracellular Prokaryotic Structures 2. Intracellular Prokaryotic Structures 3. Genetic Diversity Prokaryotes

Chapter 27A: Bacteria and Archaea. 1. Extracellular Prokaryotic Structures 2. Intracellular Prokaryotic Structures 3. Genetic Diversity Prokaryotes Chapter 27A: Bacteria and Archaea 1. Extracellular Prokaryotic Structures 2. Intracellular Prokaryotic Structures 3. Genetic Diversity Prokaryotes 1. Extracellular Prokaryotic Structures 1 µm 1 µm 3 µm

More information

1. Extracellular Prokaryotic Structures

1. Extracellular Prokaryotic Structures 1 µm 1 µm 3 µm 2/11/2015 Chapter 27A: Bacteria and Archaea 1. Extracellular Prokaryotic Structures 2. Intracellular Prokaryotic Structures 3. Genetic Diversity Prokaryotes 1. Extracellular Prokaryotic

More information

Motivation From Protein to Gene

Motivation From Protein to Gene MOLECULAR BIOLOGY 2003-4 Topic B Recombinant DNA -principles and tools Construct a library - what for, how Major techniques +principles Bioinformatics - in brief Chapter 7 (MCB) 1 Motivation From Protein

More information

Viruses and Bacteria Notes

Viruses and Bacteria Notes Viruses and Bacteria Notes A. Virus Structure: Viruses are in contrast to bacteria. Viruses are (DNA or RNA) enclosed in a coat called a. Also some viruses have a that helps them infect their host. These

More information

DNA: the thread of life

DNA: the thread of life DNA: the thread of life Lectured by Chompunuch Virunanon This presentation Partial Fulfillment of the Requirements for the 2303107 General Biology teaching, Department of Biology Chulalongkorn University

More information

Genetics Lecture Notes Lectures 17 19

Genetics Lecture Notes Lectures 17 19 Genetics Lecture Notes 7.03 2005 Lectures 17 19 Lecture 17 Gene Regulation We are now going to look at ways that genetics can be used to study gene regulation. The issue is how cells adjust the expression

More information

Bacterial Genetics. Stijn van der Veen

Bacterial Genetics. Stijn van der Veen Bacterial Genetics Stijn van der Veen Differentiating bacterial species Morphology (shape) Composition (cell envelope and other structures) Metabolism & growth characteristics Genetics Differentiating

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 16 The Molecular Basis of Inheritance Unit 6: Molecular Genetics

More information

Regulation of metabolic pathways

Regulation of metabolic pathways Regulation of metabolic pathways Bacterial control of gene expression Operon: cluster of related genes with on/off switch Three Parts: 1. Promoter where RNA polymerase attaches 2. Operator on/off, controls

More information

Molecular Genetics Techniques. BIT 220 Chapter 20

Molecular Genetics Techniques. BIT 220 Chapter 20 Molecular Genetics Techniques BIT 220 Chapter 20 What is Cloning? Recombinant DNA technologies 1. Producing Recombinant DNA molecule Incorporate gene of interest into plasmid (cloning vector) 2. Recombinant

More information

بسم هللا الرحمن الرحيم` Gene transferring in bacteria

بسم هللا الرحمن الرحيم` Gene transferring in bacteria بسم هللا الرحمن الرحيم` Gene transferring in bacteria Bacterial genes (whether the bacteria are inside or outside our body) are exposed to changes. All types of commensal pathogenic bacteria are in steady

More information