Genetic Engineering Challenge How can scientists develop a type of rice that could prevent vitamin A deficiency? 1

Size: px
Start display at page:

Download "Genetic Engineering Challenge How can scientists develop a type of rice that could prevent vitamin A deficiency? 1"

Transcription

1 Genetic Engineering Challenge How can scientists develop a type of rice that could prevent vitamin A deficiency? 1 Vitamin A deficiency can result in blindness, severe infectious diseases, and even death, especially for children in poor countries. Vitamin A deficiency results when people do not have enough vitamin A or pro-vitamin A in their diets. Pro-vitamin A is a molecule that our bodies can easily convert to vitamin A. Some plant foods (e.g. carrots and sweet potatoes) are good sources of pro-vitamin A. Some animal foods (e.g. liver and eggs) are good sources of vitamin A. White rice is part of the rice seed. Brown rice includes white rice, the germ (which is the embryo that can grow into a new rice plant), and the surrounding bran layers. Rice is a good source of starch for energy and also provides some protein. However, neither white rice nor brown rice has pro-vitamin A. Therefore, many poor people in developing countries who eat mainly rice do not get enough pro-vitamin A or vitamin A in their diet. This results in many cases of blindness, severe infectious disease and/or death. 1. Why do rice plants include starch and protein in their seeds? What is the benefit for the rice plants? The germ is the embryo inside the seed. The bulk of the rice seed is the white rice which contains starch and storage proteins. For the rest of this activity, we will use the term rice grains to refer to white rice. No type of rice plant has been discovered that has pro-vitamin A in the rice grains; therefore, conventional breeding techniques cannot be used to develop a type of rice plant that has pro-vitamin A in the rice grains. So, some scientists who want to prevent vitamin A deficiency have used genetic engineering to develop rice plants that have rice grains with substantial pro-vitamin A. Genetic engineering is the process of manipulating genes in order to produce desired characteristics. In this activity we will discuss the type of genetic engineering that produces recombinant DNA (DNA which contains genes from two different organisms). We will learn how genetic engineering has been used to produce rice plants that have two additional genes inserted in their DNA, so these rice plants make substantial quantities of pro-vitamin A in their rice grains. 1 By Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, Teachers are encouraged to copy this Student Handout for classroom use. A Word file (which can be used to prepare a modified version if desired), Teacher Preparation Notes, comments, and related activities are available at 1

2 2. Vitamin A and pro-vitamin A are molecules that contain only carbon and hydrogen atoms and do not have any amino acids. If scientists want to genetically engineer a plant to make provitamin A, what type of gene or genes would the scientists need to insert in the plant cells? Would they insert a gene that codes for pro-vitamin A? If not, what type of molecule would the gene or genes have to code for? 3. Scientists have identified genes for two enzymes needed to make pro-vitamin A. One of these genes comes from corn. If this gene from a corn plant is inserted in the DNA of a rice plant, will the sequence of amino acids in the protein produced by the rice plant be the same as the sequence of amino acids in the protein produced by the corn plant? In other words, will rice plants that have this gene produce the same enzyme as corn plants produce? Explain why or why not. You will learn about how scientists have genetically engineered rice plants to make pro-vitamin A in rice grains, but first answer question 4 to develop your own ideas about how this could be accomplished. 4a. Once scientists have identified the genes for enzymes to produce provitamin A, how could they insert these genes in the DNA of rice plant cells? Suggest one possibility. Be inventive! 4b. Would you recommend that scientists try to insert the genes for enzymes to produce provitamin A into: all the cells in a rice plant the thousands of cells in each rice grain or a small group of embryonic rice plant cells that can divide and develop into a rice plant? 2

3 Inserting the Desired Genes in the DNA of Rice Plants To insert genes from one organism into a different organism, scientists often take advantage of the natural genetic engineering capabilities of bacteria or viruses. One type of bacteria genetically engineers plant cells by inserting part of its bacterial DNA into the plant cell DNA, thus producing recombinant DNA. The inserted bacterial genes code for proteins that: stimulate the genetically engineered plant cells to produce food molecules that only the bacteria can use stimulate these genetically engineered plant cells to divide and form a growth that bulges out from the stem or root. 5. Explain how this type of genetic engineering is useful for the bacterium. This figure shows how the bacterium inserts some of its genes into the plant cell DNA. The plasmid is a small circle of DNA in the bacterium, separate from the chromosome. Only the T-DNA from the plasmid is inserted in the DNA in the nucleus of the plant cell. The genes in the T-DNA code for the proteins that result in the production of the food molecules for the bacteria and the proteins that result in increased cell division. The bacterial chromosome is shown at the bottom of the bacterium (A. tumifaciens). As in many diagrams, the relative dimensions are distorted; e.g., the bacterium appears much larger than it actually is relative to the plant cell and the plasmid appears much larger than it is relative to the bacterium. The plasmid is called the Ti or tumor inducing plasmid because the infected plant cells multiply and produce a bulging growth. The vir genes in the plasmid code for the proteins that carry out the transfer of the T-DNA from the bacteria into the plant cell DNA. (Figure from 6. In this example of genetic engineering in nature, where is the recombinant DNA found? This recombinant DNA contains DNA from the and the. 3

4 7. If a scientist wants to use the genetic engineering capabilities of these bacteria to carry the genes for the enzymes to make pro-vitamin A into a plant cell nucleus, where should she insert the genes for these enzymes? Use an arrow to indicate specifically where these genes should be inserted in the bacterium. The basic sequence of steps to use genetic engineering to produce rice plants that make provitamin A in rice grains is as follows: Scientists insert the genes for the enzymes to make pro-vitamin A in the bacterial plasmid. Bacteria with this modified plasmid are grown together with tissue culture rice plant cells, so the bacteria insert the genes for the enzymes to make pro-vitamin A in the DNA of the tissue culture rice plant cells. After the rice plant tissue culture cells have the genes for the enzymes to make pro-vitamin in their DNA, these genes are replicated together with the rest of the DNA before each cell division. These cells multiply and develop into a rice plant with the genes to make provitamin A in the DNA of each cell in the rice plant, including the thousands of cells in each rice grain. Ensuring that the Genes for the Enzymes to Make Pro-Vitamin A are Active in Rice Grain Cells 8. Almost all the cells in an animal or plant have exactly the same genes, but different types of cells make different types of proteins. This allows each type of cell to carry out its particular specialized function. Example 1: In humans, red blood cells have lots of, while muscle cells (contractile proteins or hemoglobin = O 2-carrying protein) have lots of. (contractile proteins or hemoglobin) Example 2: Almost all the cells in a rice plant have exactly the same, (genes or proteins) but cells in the rice grains make storage proteins which provide nutrition for the developing embryo, whereas cells in the leaves make enzymes that make chlorophyll. 9. What is transcription? Why do cells need to carry out transcription of genes in order to make proteins? 4

5 10. Match each type of gene in the top list with the best match from the bottom list. Genes for enzymes to make chlorophyll Genes for storage proteins a. rate of transcription is higher in cells in rice grains b. rate of transcription is the same in cells in rice grains and cells in rice plant leaves c. rate of transcription is higher in cells in rice plant leaves For genetic engineering to be successful, scientists need to ensure that the genes they have inserted are transcribed, so the desired proteins are produced. Specifically, the scientists need to ensure that the genes for the enzymes to make pro-vitamin A are transcribed in the rice grain cells. Plant cells have a rather complex molecular mechanism to ensure the appropriate rate of transcription for each gene in each type of cell. A crucial part of this molecular mechanism is the promoter segment of DNA (located at the beginning of the gene). For example, the promoters for the genes for storage proteins promote high rates of transcription in the cells in rice grains. 11. Which promoter do you think would be a better promoter to insert at the beginning of the genes that code for the enzymes to produce pro-vitamin A? the promoter for a gene for an enzyme to make chlorophyll the promoter for a gene for a storage protein 12. The promoter is inserted in the bacterial plasmid at the beginning of the genes for the enzymes to produce provitamin A. Explain how the promoter and genes get from the plasmid in a bacterium into the DNA of a rice plant cell and then into the DNA of every cell in a rice plant. Plasmid Promoter + genes for enzymes 5

13-1 Changing the Living World

13-1 Changing the Living World 13-1 Changing the Living World In the past, variation was limited to the variations already in nature or random variations that resulted from mutations. Now, scientists can change DNA and swap genes from

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

Virus- infectious particle consisting of nucleic acid packaged in a protein coat.

Virus- infectious particle consisting of nucleic acid packaged in a protein coat. Chapter 19 Virus- infectious particle consisting of nucleic acid packaged in a protein coat. Most scientists consider viruses non-living because they cannot reproduce or carry out metabolic activities

More information

Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Here s one thing genetic engineers do: Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Cloning means to make copies, in this case, copies

More information

Basic Concepts and History of Genetic Engineering. Mitesh Shrestha

Basic Concepts and History of Genetic Engineering. Mitesh Shrestha Basic Concepts and History of Genetic Engineering Mitesh Shrestha Genetic Engineering AKA gene manipulation, gene cloning, recombinant DNA technology, genetic modification, and the new genetics. A technique

More information

Biotechnology DNA technology

Biotechnology DNA technology Biotechnology Biotechnology is the manipulation of organisms or their components to make useful products The applications of DNA technology affect everything from agriculture, to criminal law, to medical

More information

BIOTECHNOLOGY. Unit 8

BIOTECHNOLOGY. Unit 8 BIOTECHNOLOGY Unit 8 PART 1 BASIC/FUNDAMENTAL SCIENCE VS. APPLIED SCIENCE! Basic/Fundamental Science the development and establishment of information to aid our understanding of the world.! Applied Science

More information

Cell Biology. Sub-Topic (1.5) Genetic Engineering. On completion of this subtopic I will be able to state that

Cell Biology. Sub-Topic (1.5) Genetic Engineering. On completion of this subtopic I will be able to state that Cell Biology Sub-Topic (1.5) Genetic Engineering On completion of this subtopic I will be able to state that Genetic information can be transferred from one cell to another by genetic engineering. Bacteria

More information

15.3 Applications of Genetic Engineering

15.3 Applications of Genetic Engineering 15.3 Applications of Genetic Engineering Agriculture and Industry Almost everything we eat and much of what we wear come from living organisms. Researchers have used genetic engineering to try to improve

More information

Hybridization - the act or process of mating organisms of varieties or species to create a hybrid. Insecticide crops

Hybridization - the act or process of mating organisms of varieties or species to create a hybrid. Insecticide crops Genetic Engineering Genetic engineering is the alteration of genetic code by means, and is therefore different from traditional selective breeding. Only allowing desired characteristics to reproduce. Scorpion

More information

-Is the process of manipulating genes and genomes

-Is the process of manipulating genes and genomes Genetic Engineering -Is the process of manipulating genes and genomes Biotechnology -Is the process of manipulating organisms or their components for the purpose of making useful products Restriction Enzymes

More information

Chapter 11: Applications of Biotechnology

Chapter 11: Applications of Biotechnology Chapter 11: Applications of Biotechnology Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 11-1 Why Biotechnology Works 11-2 Biotechnology

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

From Gene to Protein via Transcription and Translation i

From Gene to Protein via Transcription and Translation i How do genes influence our characteristics? From Gene to Protein via Transcription and Translation i A gene is a segment of DNA that provides the instructions for making a protein. Proteins have many different

More information

13-3 Cell Transformation

13-3 Cell Transformation Recombinant DNA Host Cell DNA Target gene Modified Host Cell DNA 1 of 21 Transforming Bacteria Transforming Bacteria During transformation, a cell takes in DNA from outside the cell. The external DNA becomes

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i How do genes influence our characteristics? From Gene to Protein Transcription and Translation i A gene is a segment of DNA that provides the instructions for making a protein. Proteins have many different

More information

BIOTECHNOLOGY. Understanding the Application

BIOTECHNOLOGY. Understanding the Application BIOTECHNOLOGY Understanding the Application GENETIC ENGINEERING Genetic engineering refers to any process in which man alters an organism s DNA Examples: cloning, genetically modified organisms (GMO),

More information

At the end of this lesson you should be able to

At the end of this lesson you should be able to At the end of this lesson you should be able to 1. Define Genetic Engineering 2. Outline the process of genetic engineering involving some or all of the following: isolation, cutting, transformation, introduction

More information

Overview: The DNA Toolbox

Overview: The DNA Toolbox Overview: The DNA Toolbox Sequencing of the genomes of more than 7,000 species was under way in 2010 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant

More information

BIOTECHNOLOGY. Understanding the Application

BIOTECHNOLOGY. Understanding the Application BELLRINGER-5/4/15 1. What method would you guess forensic scientists use to identify criminals at crime scenes? 2. What do you think we mean by the term biotechnology? BIOTECHNOLOGY Understanding the Application

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i From Gene to Protein Transcription and Translation i How do the genes in our DNA influence our characteristics? A gene is a segment of DNA that provides the instructions for making a protein. Proteins

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009 MULTIPLE CHOICE QUESTIONS 1. Inducible genes are usually actively transcribed when: A. the molecule degraded by the enzyme(s) is present in the cell. B. repressor molecules bind to the promoter. C. lactose

More information

Learning Intentions. I will practice taking measurements and calculating averages. I can describe the uses of enzymes in biological detergents.

Learning Intentions. I will practice taking measurements and calculating averages. I can describe the uses of enzymes in biological detergents. Learning Intentions I can name the cell structures and their functions. I can describe the process of diffusion. I can state the equation of aerobic respiration. I understand that food contains chemical

More information

1 (a) Define the term genetic engineering [2]

1 (a) Define the term genetic engineering [2] 1 (a) Define the term genetic engineering....[2] (b) Fig. 6.1 is a flow diagram that shows how insulin can be produced using genetic engineering. R Q L M N O P Fig. 6.1 Table 6.1 shows stages in the production

More information

MCDB /15/13 Working with DNA and Biotechnology

MCDB /15/13 Working with DNA and Biotechnology Part I: Working with DNA MCDB 1041 3/15/13 Working with DNA and Biotechnology You work in a clinic doing prenatal testing and genetic counseling. You use PCR analysis combined with restriction enzyme digests

More information

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology. Name: 1117 1 Page 1 1) A small amount of DNA was taken from a fossil of a mammoth found frozen in glacial ice. Genetic technology can be used to produce a large quantity of identical DNA from this mammoth's

More information

Iowa State FFA Biotechnology CDE Comprehensive Knowledge Test

Iowa State FFA Biotechnology CDE Comprehensive Knowledge Test Iowa State FFA Biotechnology CDE Comprehensive Knowledge Test - 2017 - Name Chapter 1. What is the name of the technique that allows geneticists to observe DNA fragments from a DNA sample and compare them

More information

Name: Date: Living Environment Period:

Name: Date: Living Environment Period: Name: Living Environment Date: Period: Heredity & DNA 1. Arrange the following structures from largest to smallest. a chromosome a nucleus a gene 2. The diagram below represents a portion of a molecule

More information

Recombinant DNA recombinant DNA DNA cloning gene cloning

Recombinant DNA recombinant DNA DNA cloning gene cloning DNA Technology Recombinant DNA In recombinant DNA, DNA from two different sources, often two species, are combined into the same DNA molecule. DNA cloning permits production of multiple copies of a specific

More information

Guided Notes Unit 5: Molecular Genetics

Guided Notes Unit 5: Molecular Genetics Name: Date: Block: Chapter 8: From DNA to Protein I. Concept 8.4: Transcription a. Central Dogma of Molecular Biology i. Information flows in one direction: ii. How? Guided Notes Unit 5: Molecular Genetics

More information

Genetics 2 star. 1. Two different types of cells from an organism are shown. A. cause mutations to occur

Genetics 2 star. 1. Two different types of cells from an organism are shown. A. cause mutations to occur Name: Date: 1. Two different types of cells from an organism are shown. 3. Plants inherit genes that enable them to produce chlorophyll, but this pigment is not produced unless the plants are exposed to

More information

Unit 8.3: Biotechnology

Unit 8.3: Biotechnology Unit 8.3: Biotechnology Lesson Objectives Describe gene cloning and the polymerase chain reaction. Explain how DNA technology is applied in medicine and agriculture. Identify some of the ethical, legal,

More information

Overview: The DNA Toolbox

Overview: The DNA Toolbox Overview: The DNA Toolbox Sequencing of the genomes of more than 7,000 species was under way in 2010 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant

More information

Advances in Genetics Lesson 5

Advances in Genetics Lesson 5 Advances in Genetics Lesson 5 May 16 6:43 PM How can organisms be produced with desired traits? May 16 6:44 PM 1 I. How can organisms be produced with desired traits A. With advance in genetics, DNA evidence

More information

Regents Biology REVIEW 5: GENETICS

Regents Biology REVIEW 5: GENETICS Period Date REVIEW 5: GENETICS 1. Chromosomes: a. Humans have chromosomes, or homologous pairs. Homologous: b. Chromosome pairs carry genes for the same traits. Most organisms have two copies of the gene

More information

Genetic Engineering in Agriculture

Genetic Engineering in Agriculture Details Utah State University Engineering in This is a project resulting from the Engineering Workshop for Teachers to provide teaching materials for genetic engineering topics. Please direct any feedback

More information

Chapter 13: Biotechnology

Chapter 13: Biotechnology Chapter Review 1. Explain why the brewing of beer is considered to be biotechnology. The United Nations defines biotechnology as any technological application that uses biological system, living organism,

More information

Researchers use genetic engineering to manipulate DNA.

Researchers use genetic engineering to manipulate DNA. Section 2: Researchers use genetic engineering to manipulate DNA. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the different tools and processes used in genetic

More information

Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms

Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms Duncanrig Secondary JHM&MHC 2015 Page 1 of 18 On completion of this

More information

From DNA to Protein Structure and Function

From DNA to Protein Structure and Function STO-106 From DNA to Protein Structure and Function The nucleus of every cell contains chromosomes. These chromosomes are made of DNA molecules. Each DNA molecule consists of many genes. Each gene carries

More information

Genetics review. 3. The chart below shows relationships between genes, the environment, and coloration of tomato plants.

Genetics review. 3. The chart below shows relationships between genes, the environment, and coloration of tomato plants. Name: Date: 1. When the bacterium Serratia marcescens is grown on a sterile culture medium in a petri dish at 30, the bacterial colonies are cream colored. When this same bacterium is cultured under identical

More information

DNA Technology. B. Using Bacteria to Clone Genes: Overview:

DNA Technology. B. Using Bacteria to Clone Genes: Overview: DNA Technology A. Basic Vocabulary: is DNA from 2 different sources that is combined. is the direct manipulation of genes for practical purposes. literally means or in a test tube or flask. is the manipulation

More information

Name: Period: Date: DNA Structure MCAS Questions

Name: Period: Date: DNA Structure MCAS Questions Name: Period: Date: DNA Structure MCAS Questions 1. In a molecule of double-stranded DNA, the amount of adenine present is always equal to the amount of A. cytosine. B. guanine. C. thymine. D. uracil.

More information

Page 70 Monday December 8, 2014

Page 70 Monday December 8, 2014 replication and Monday December 8, 0 Notebook check 8: Page 69, DNA Technology Introduction Worksheet. The process by which a foreign gene is replicated by insertion into a bacterium is called genetic

More information

Genetics 1 Star Test

Genetics 1 Star Test Name: ate: 1. The accompanying data table summarizes the results of an investigation in which seeds from the same plant were grown under different conditions of temperature and relative humidity. 2. The

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10 INTERNATIONAL TURKISH HOPE SCHOOL 2014 2015 ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10 Name :... Date:... Selective Breeding Selective breeding

More information

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology How Are Large DNA Molecules Analyzed? Naturally occurring enzymes that cleave and repair DNA are used in the laboratory to manipulate

More information

(1) recombination (2) fertilization (3) replication (4) mutation

(1) recombination (2) fertilization (3) replication (4) mutation Date: Pd. Regents Review Assignment #9 Living Environment 2 Part A Questions 1. The chart below contains both autotrophic and heterotrophic organisms. Organisms that carry out only heterotrophic nutrition

More information

How have humans genetically manipulated other organisms in the past?

How have humans genetically manipulated other organisms in the past? Genetic Engineering Have you eaten genetically modified food? Frito-Lay Corn Chips Cap n Crunch Cereal Kellogg s Corn Flakes General Mills Total Corn Flakes Cereal Quaker Chewy Granola Bars Nabisco Snackwell

More information

Genetically Modified Foods

Genetically Modified Foods Activity E Genetically Modified Foods Developed by Holly Cook Introduction The lesson explores pupils ideas about the use of genetic modification (GM) in the food industry. It opens with a quick attention-grabbing

More information

Assessment Builder - Printer Friendly Version. Name: Date:

Assessment Builder - Printer Friendly Version. Name: Date: Assessment Builder - Printer Friendly Version 1 Name: Date: 2 3 4 5 6 7 8 9 10 11 12 13 14 Which statement best describes the relationship between cells, DNA, and proteins? (1) Cells contain DNA that controls

More information

Recombinant DNA. Lesson Overview. Lesson Overview Recombinant DNA

Recombinant DNA. Lesson Overview. Lesson Overview Recombinant DNA Lesson Overview 15.2 Finding Genes In 1987, Douglas Prasher, a biologist at Woods Hole Oceanographic Institute in Massachusetts, wanted to find a specific gene in a jellyfish that codes for a molecule

More information

Unit 6: Genetics & Molecular Genetics Assessment

Unit 6: Genetics & Molecular Genetics Assessment Unit 6: Genetics & Molecular Genetics Assessment 1. NA replication takes place in the nucleus of eukaryotic cells during interphase. An enzyme called NA helicase relaxes the helix in certain places and

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

UNIT III: Genetics Chapter 9 Frontiers of Biotechnology

UNIT III: Genetics Chapter 9 Frontiers of Biotechnology UNIT III: Genetics Chapter 9 Frontiers of Biotechnology I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA 1. DNA is a very large molecule 2. Still to small to see or work

More information

Genomics and Biotechnology

Genomics and Biotechnology Genomics and Biotechnology Expansion of the Central Dogma DNA-Directed-DNA-Polymerase RNA-Directed- DNA-Polymerase DNA-Directed-RNA-Polymerase RNA-Directed-RNA-Polymerase RETROVIRUSES Cell Free Protein

More information

TOPIC 5: DNA & CHROMOSOMES

TOPIC 5: DNA & CHROMOSOMES TOPIC 5: DNA & CHROMOSOMES I Can Describe the role and relationship of chromosomes, genes and DNA Distinguish between mitosis and meiosis Provide examples of genetic technologies and identify questions

More information

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA 21 DNA and Biotechnology DNA and Biotechnology OUTLINE: Replication of DNA Gene Expression Mutations Regulating Gene Activity Genetic Engineering Genomics DNA (deoxyribonucleic acid) Double-stranded molecule

More information

Passing on characteristics

Passing on characteristics 1 of 50 Boardworks Ltd 2006 2 of 50 Boardworks Ltd 2006 Passing on characteristics 3 of 50 Boardworks Ltd 2006 What makes this baby human? What determines its gender? In all living things, characteristics

More information

UNIT MOLECULAR GENETICS AND BIOTECHNOLOGY

UNIT MOLECULAR GENETICS AND BIOTECHNOLOGY UNIT MOLECULAR GENETICS AND BIOTECHNOLOGY Standard B-4: The student will demonstrate an understanding of the molecular basis of heredity. B-4.1-4,8,9 Effective June 2008 All Indicators in Standard B-4

More information

National 5 Unit 1: Cell Biology Topic 1.1 Cell Structure. Which part of the cell is composed of cellulose? 1

National 5 Unit 1: Cell Biology Topic 1.1 Cell Structure. Which part of the cell is composed of cellulose? 1 National 5 Unit 1: Cell Biology Topic 1.1 Cell Structure 1. The diagram below shows parts of a plant cell. Which part of the cell is composed of cellulose? 1 2. Which structural feature is found in a plant

More information

National 4 Biology. Unit 1 Cell Biology. Summary Notes

National 4 Biology. Unit 1 Cell Biology. Summary Notes National 4 Biology Unit 1 Cell Biology Summary Notes 1. Cell division and it s role in growth and repair. Cell division The process of cell division is called mitosis. Each cell must divide to ensure the

More information

Daily Agenda. Make Checklist: Think Time Replication, Transcription, and Translation Quiz Mutation Notes Download Gene Screen for ipad

Daily Agenda. Make Checklist: Think Time Replication, Transcription, and Translation Quiz Mutation Notes Download Gene Screen for ipad Daily Agenda Make Checklist: Think Time Replication, Transcription, and Translation Quiz Mutation Notes Download Gene Screen for ipad Genetic Engineering Students will be able to exemplify ways that introduce

More information

Perth Academy N5 Biology Cellular Biology Homework

Perth Academy N5 Biology Cellular Biology Homework Perth Academy N5 Biology Cellular Biology Homework Homework 1 1. Euglena is a single celled organism. It is a specialised cell. The diagram below shows some of the structures within Euglena. (a) Euglena

More information

Chapter 12. DNA Technology. Lectures by Edward J. Zalisko

Chapter 12. DNA Technology. Lectures by Edward J. Zalisko Chapter 12 DNA Technology PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B. Reece

More information

A cross between dissimilar individuals to bring together their best characteristics is called

A cross between dissimilar individuals to bring together their best characteristics is called Ch 13 Game review A cross between dissimilar individuals to bring together their best characteristics is called A Genetic engineering B Inbreeding C Hybridization D Sequencing Ans: C Used to insert new

More information

4. Base your answer to the following question on A product of genetic engineering technology is represented below.

4. Base your answer to the following question on A product of genetic engineering technology is represented below. name 1. When humans first domesticated dogs, there was relatively little diversity in the species. Today, there are many variations such as the German shepherd and the dalmatian. This increase in diversity

More information

Course: Integrated Science 3/4 Unit #5: Genetic Engineering (GMOs)

Course: Integrated Science 3/4 Unit #5: Genetic Engineering (GMOs) Course: Integrated Science 3/4 Unit #5: Genetic Engineering (GMOs) Stage 1: Identify Desired Results Enduring Understandings: Students will understand that 1. Mathematical modeling (e.g. statistics) can

More information

Gene Expression. Chapters 11 & 12: Gene Conrtrol and DNA Technology. Cloning. Honors Biology Fig

Gene Expression. Chapters 11 & 12: Gene Conrtrol and DNA Technology. Cloning. Honors Biology Fig Chapters & : Conrtrol and Technology Honors Biology 0 Cloning Produced by asexual reproduction and so it is genetically identical to the parent st large cloned mammal: Dolly the sheep Animals that are

More information

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Lecture Series 10 The Genetics of Viruses and Prokaryotes

Lecture Series 10 The Genetics of Viruses and Prokaryotes Lecture Series 10 The Genetics of Viruses and Prokaryotes The Genetics of Viruses and Prokaryotes A. Using Prokaryotes and Viruses for Genetic Experiments B. Viruses: Reproduction and Recombination C.

More information

DNA Function. DNA Heredity and Protein Synthesis

DNA Function. DNA Heredity and Protein Synthesis DNA Function DNA Heredity and Protein Synthesis 1 Review DNA made of Nucleotide bases Proteins made of Amino acids Describe how DNA is involved in protein synthesis DNA base sequence codes for amino acid

More information

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Name: Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Part A: Multiple Choice (15 marks) Circle the letter of choice that best completes the statement or answers the question. One mark for each correct

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

Living Environment. Directions: Use Aim # (Unit 4) to complete this study guide.

Living Environment. Directions: Use Aim # (Unit 4) to complete this study guide. Name: Date: Period: Living Environment Living Environment Unit 4 Genetics Study Guide Due Date: Test Date: Unit 5 Important Topics: I. Aim # 20 DNA Structure and Function II. Aim # 21 DNA Replication III.

More information

CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI

CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI CHAPTER 9: GENETIC ENGINEERING DR. BERTOLOTTI Essential Question How and why do scientists manipulate DNA in living cells? 1 What is selective breeding used for? Application of Genetic Engineering Video:

More information

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329. Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, 240-245; 286-87; 330 PCR, 270-274; 329. Take Home Lesson(s) from Lecture 2: 1. DNA is a double helix of complementary

More information

3. Protein(s)or polypeptide(s): a. are a chain of amino acids b. is a rare molecule in an organism

3. Protein(s)or polypeptide(s): a. are a chain of amino acids b. is a rare molecule in an organism 2018 Iowa FFA Ag Biotechnology CDE General Knowledge Exam 1. A plant breeder makes a cross between two plants that are both the genotype Aa (Aa X Aa). How many different genotypes with respect to the A,a

More information

Chapter 7 Agricultural Biotechnology

Chapter 7 Agricultural Biotechnology Chapter 7 Agricultural Biotechnology Outline: 7.1 Introduction 7.2 Plant tissue culture 7.3 Genetically Modified Plant 7.4 Animal cloning 7.5 Genetically modified animal 2 Learning outcomes: Describe the

More information

Genetics and Biotechnology 13.2 DNA Technology

Genetics and Biotechnology 13.2 DNA Technology Biotechnology Genetic Engineering Technology that involves manipulating the DNA of one organism in order to insert the DNA of another organism An electric current is used to separate DNA fragments according

More information

Interest Grabber Notebook #1

Interest Grabber Notebook #1 Chapter 13 Interest Grabber Notebook #1 A New Breed The tomatoes in your salad and the dog in your backyard are a result of selective breeding. Over thousands of years, humans have developed breeds of

More information

9.4. Genetic Engineering. Entire organisms can be cloned. Web

9.4. Genetic Engineering. Entire organisms can be cloned. Web 9.4 Genetic Engineering VOCABULARY clone genetic engineering recombinant DNA plasmid transgenic gene knockout 3D, 3D evaluate the impact of scientific research on society and the environment and 6H describe

More information

Advances in Genetics #101

Advances in Genetics #101 Questions: Five study Questions EQ1: What are 3 ways of producing organisms with desired traits? EQ2: What are 2 applications of DNA technology in human genetics? Like your fingerprints, your DNA is different

More information

Genetic Engineering: Way to Grow

Genetic Engineering: Way to Grow STO-134 Genetic Engineering: Way to Grow Part 1: Jose s Story Jose is a healthy and active six-year old. The doctor at the health clinic determined that Jose is 35 inches tall. She showed Jose s parents

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Unit 5 - Genetics. Page 1

Unit 5 - Genetics. Page 1 Living Environment Practice Exam- Parts A and B-1 1. Many years ago, a scientist grew pea plants that produced wrinkled peas. The peas from these plants produced new plants that also produced wrinkled

More information

Genome 261, Spring 2007 ****** MIDTERM KEY ******

Genome 261, Spring 2007 ****** MIDTERM KEY ****** (16 pts) Multiple True/False CIRCLE ALL ANSWERS THAT ARE TRUE!!!! 1. A gene is a sequence of deoxyribonucleotides. can be transcribed into RNA. typically codes for a protein. can have a slightly different

More information

2. The instructions for making a protein are provided by a gene, which is a specific segment of a molecule.

2. The instructions for making a protein are provided by a gene, which is a specific segment of a molecule. From Gene to Protein Transcription and Translation By Dr. Ingrid Waldron and Dr. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 1 In this activity you will learn how

More information

Higher Biology. Unit 2: Homework Booklet Metabolism and Survival

Higher Biology. Unit 2: Homework Booklet Metabolism and Survival Higher Biology Unit 2: Homework Booklet Metabolism and Survival 0 1 Sub Topic 2.1: Regulation of Metabolism 1. Membranes can form small compartments within cells. Small compartments have: A high surface

More information

Recombinant DNA, Biotechnology, and Microbes. Microbiology 221

Recombinant DNA, Biotechnology, and Microbes. Microbiology 221 Recombinant DNA, Biotechnology, and Microbes Microbiology 221 Overview Putting microbes to Work Molecular Cloning Recombinant DNA technology utilizes the power of microbiological selection and screening

More information

Chapter 6: Plant Biotechnology

Chapter 6: Plant Biotechnology Chapter 6: Plant Biotechnology Chapter Contents 6.1 The Future of Agriculture: Plant Transgenics 6.2 Methods Used in Plant Transgenesis 6.3 Practical Applications 6.4 Health and Environmental Concerns

More information

Food Webs, Energy Flow, Carbon Cycle, and Trophic Pyramids 1

Food Webs, Energy Flow, Carbon Cycle, and Trophic Pyramids 1 Food Webs, Energy Flow, Carbon Cycle, and Trophic Pyramids 1 I. Introduction Organic molecules are complex, carbon-containing molecules found in living organisms. In this activity we will analyze the production

More information

From DNA to Protein Structure and Function

From DNA to Protein Structure and Function STO-106 From DNA to Protein Structure and Function Teacher information Summary: Students model how information in the DNA base sequences is transcribed and translated to produce a protein molecule. They

More information

Unit 3c. Microbial Gene0cs

Unit 3c. Microbial Gene0cs Unit 3c Microbial Gene0cs Microbial Genetics! Gene0cs: the science of heredity Genome: the gene0c informa0on in the cell Genomics: the sequencing and molecular characteriza0on of genomes Gregor Mendel

More information

GENE EXPRESSSION. Promoter sequence where RNA polymerase binds. Operator sequence that acts as a switch (yellow) OPERON

GENE EXPRESSSION. Promoter sequence where RNA polymerase binds. Operator sequence that acts as a switch (yellow) OPERON GENE EXPRESSSION 1 GENE REGULATION IN PROKARYOTES Bacteria can turn genes on or off depending on their environment Prokaryotes have operons clusters of related genes and regulatory sequences Promoter sequence

More information

Pre-AP Biology DNA and Biotechnology Study Guide #1

Pre-AP Biology DNA and Biotechnology Study Guide #1 Last Name: First Name: Per. Pre-AP Biology DNA and Biotechnology Study Guide #1 Structure of DNA: Number of strands. Parallel or antiparallel?. Rosalind Franklin s x-ray crystallography image indicated

More information

Genetics Transcription Translation Replication

Genetics Transcription Translation Replication Genetics Transcription Translation Replication 1. Which statement best describes the relationship between an allele and a gene? A. An allele is a variation of a gene that can be expressed as a phenotype.

More information

National 5 Biology. Unit 1 Homework. Cell Biology

National 5 Biology. Unit 1 Homework. Cell Biology National 5 Biology Unit 1 Homework Cell Biology Sub-topic 1.1 Cell Structure 1. Identify the organelles labelled A - E in the following diagrams of an animal and a plant cell. 5 2. The following diagram

More information