Future implications of regenerative medicine on assisted reproductive technology. Regenerative medicine. History of Regenerative medicine

Size: px
Start display at page:

Download "Future implications of regenerative medicine on assisted reproductive technology. Regenerative medicine. History of Regenerative medicine"

Transcription

1 Gyndolomiti: 2nd Congress on Gynaecology and Obstetrics February 1 6, 2015 St. Kassian / South Tyrol Regenerative medicine Future implications of regenerative medicine on assisted reproductive technology Dolomite CaMg(CO 3 ) 2 Dr. Georg A. Feichtinger University of Leeds g.feichtinger@leeds.ac.uk Regenerative medicine 'replaces or regenerates human cells, tissues, or organs to restore or establish normal function' regenerative medicine is used to refer to methods to replace or regenerate human cells, tissues or organs in order to restore or establish normal function. This includes cell therapies, tissue engineering, gene therapy and biomedical engineering techniques, as well as more traditional treatments involving pharmaceuticals, biologics and devices. Also see: Mason & Dunhill. A brief definition of regenerative medicine Regen. Med. 3(1):1-5. Major problems with organ transplantation: Donor scarcity Expense Technical difficulty Labor-intensive and complex care Paul Russel, MD (Chief of Transplantations at Massachusetts General Hospital): New approaches to organ replacement If there was an effective way to transplant only those important functional cellular elements of an organ, there would be many conceptual advantages over organ transplantation. Russell, P.S., Selective transplantation. An emerging concept. Ann Surg, (3): p John F. Burke, MD (Chief of Trauma Services at Massachusetts General Hospital): Early excision and coverage of massive burn wounds crucial. Limited donor skin supply. Creation of neodermis graft Acellular Collagen and Glycosaminoglycans. Burke, J.F., et al., Successful use of a physiologically acceptableartificial skin in the treatment of extensive burn injury. Ann Surg, (4): p J.P. Vacanti R. S. Langer Department of Surgery, Harvard Medical School Department of Chemical Engineering, Massachusetts Institute of Technology. apply these principles of cell transplantation and artificialmatrix to three-dimensional systems. appropriate biodegradable scaffold to allow cells to remain viable and permit cellular proliferation and function. concept of the engineered creation of a new organ in situ...someday will provide replacement tissue as an alternative to organ transplantation as currently practised. Adapted from: Vacanti, J.P., Beyond transplantation. Third annual Samuel Jason Mixter lecture. Arch Surg, (5): p Regenerative medicine J.P. Vacanti C. Vacanti Y. Cao Laboratory for Tissue Engineering, Department of Anaesthesia, University of Massachusetts Medical Center EARMOUSE Cao, Y., et al., Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissueengineered cartilage in the shape of a human ear. Plast Reconstr Surg, (2): p ; discussion

2 Regenerative medicine Example of own work in Gene Therapy BONE INDUCTION IN VIVO Growth-factor encoding pdna Regenerative medicine Example of own work in Gene Therapy BONE INDUCTION IN VIVO DE NOVO FORMATION OF HAEMATOPOIETIC STEM CELL NICHE Ultrasound trigger Microbble contrast agent Plasmid DNA Intramuscular injection, quadriceps muscle group SONOPORATION Target cell Feichtinger et al. European Cells and Materials Feb 19;27: Feichtinger et al. Human Gene Therapy Methods Feb;25(1):57-71 Feichtinger et al. European Cells and Materials Feb 19;27: Feichtinger et al. Human Gene Therapy Methods Feb;25(1):57-71 Tissue Engineering Ideal biomaterial properties replicate biologic mechanical function of native ECM provide structural 3D support for cells to adhere and form new tissue functional modification with adhesion molecules and growth factors biomechanical tailored material properties biodegradable and bioresorbable without inducing inflammation material degradation rate not impairing support function and replacement with native tissue high porosity and ratio of surface to area volume controlled properties A. Natural Materials & Hydrogels B. Synthetic polymers & Hydrogels Gelatine Agarose Collagen Silk PGA PLA Fibrin Chitosan PLGA Alginate Calcium Phosphates e.g. Coral derived Synthetic (self-assembly) peptides 2

3 Tissue Engineering Approaches Donor tissue decellularisation & re-seeding Allogenic donor tissue decellularisation: physical chemical enzymatic Precursor cell/tissue isolation: Adult (mesenchymal) stem cells Amniotic fluid stem cells Primary cells (-> reprogramming ips) Tissue-specific precursor cells TE CONSTRUCT In vitro culture/expansion in 2D (static) Cell seeding onto scaffolds: 3D culture static Bioreactors (dynamic) Mechanical loading Fluid shear stress S. Badylak McGowan institute for regenerative medicinee Univeristy of Pittsburgh Engineered autologous organ replacement Reseeding with donor cells Non-immunogenic, acellular ECM scaffold with original tissue architecture Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng Aug 15;13: doi: /annurev-bioeng Cell sheet engineering Regenerative medicine global market sectors T. Okano Tokyos Womens Medical Universtiy Institute of Biomedical Engineering Multi-layered cell sheet construct for implantation Source: Report #S520, Tissue Engineering, Cell Therapy and Transplantation: Products, Technologies & Market Opportunities, Worldwide, Regenerative medicine and fertility treatment Urogenital Tissue Engineering Pioneering work in urogenital TE Development of hollow-organ replacement constructs: A. Atala Wake Forest Institute for Regenerative Medicine primary endothelial and smooth muscle cells expanded in vitro & seeding on to synthetic scaffolds In vivo implantation urethral, penile and vaginal TE Necessity of 2 cell populations (SMC, endothelial) for functional hollow organ regeneration without constriction in vivo. Alexandru Dan Corlan. Medline trend: automated yearly statistics of PubMed results for any query, Web resource at URL: Accessed: (Archived by WebCite at Kwon, T.G., J.J. Yoo, and A. Atala, Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol, (4 Pt 2): p De Filippo, R.E., J.J. Yoo, and A. Atala, Engineering of vaginal tissue in vivo. Tissue Eng, (2): p Park, H.J., et al., Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol, (3 Pt 2): p

4 1. Vaginal Tissue Engineering 2. Penile Tissue Engineering A. Atala Wake Forest Institute for Regenerative Medicine Mayer-Rokitansky-Kuster-Hauser syndrome Vaginal Aplasia 6 publications The extraordinary procedures, carried out between 2005 and 2008, have proved a long-term, functional success with all four patients. 2. Penile Tissue Engineering 6 publications

5 5. Uterine Tissue Engineering 5. Uterine Tissue Engineering 9 publications publications Testicular Tissue Engineering 6. Testicular Tissue Engineering 5 publications publications Summary Regenerative medicine aims to restore the function of damaged organs or tissues Final goal is a true functional replacement Tissue engineering is an interdisciplinary science (biomaterial science, cell biology, molecular biology, biomechanics, chemistry ) Regenerative medicine and TE is increasingly applied for reproductive biology and represents and exciting field of new research Reproductive TE offers solutions for fertility treatments aimed at: -restoration of reproductive organ function improvement of in vitro organ culture systems for gametogenesis/preservation development of novel biological devices for HRT Future developments in complex tissue/tissue interface development, rapidprototyping and multi-cell (organ) culture will certainly lead to game-changing developments in the field of reproductive medicine and assisted reproduction if issues with precursor cell heterogeneity and complex tissue architectures can be resolved. 1 slide for TERMIS Boston 5

Introduction to Cell/ Biomaterial Engineering

Introduction to Cell/ Biomaterial Engineering Introduction to Cell/ Biomaterial Engineering Module 3, Lecture 1! 20.109 Spring 2011! Topics for Lecture 1 Introduction to tissue engineering! motivation! basic principles + examples! Introduction to

More information

BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003

BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003 Lecture 6: Biodegradable Polymers for Tissue Engineering Last time: Today: enzymatic degradation of solid polymers Engineering biological recognition of polymers Designing polymers for tissue engineering

More information

Introduction to Cell and Biomaterial Engineering! Module 3, Lecture 1!! Spring 2014!

Introduction to Cell and Biomaterial Engineering! Module 3, Lecture 1!! Spring 2014! Introduction to Cell and Biomaterial Engineering! Module 3, Lecture 1!! 20.109 Spring 2014! Topics for Lecture 1! Introduction to tissue engineering! motivation! basic principles! examples! Introduction

More information

Introduction to Cell- Biomaterial Engineering!

Introduction to Cell- Biomaterial Engineering! Introduction to Cell- Biomaterial Engineering! Module 3, Lecture 1! 20.109 Spring 2010! Topics for Lecture 1!! Introduction to tissue engineerin! motivation"! basic principles + examples"! Introduction

More information

UNIT CELL PROCESSES UNDERLYING TISSUE ENGINEERING AND REGENERATIVE MEDICINE

UNIT CELL PROCESSES UNDERLYING TISSUE ENGINEERING AND REGENERATIVE MEDICINE Massachusetts Institute of Technology Harvard Medical School Brigham and Women s Hospital VA Boston Healthcare System 2.79J/3.96J/20.441/HST522J UNIT CELL PROCESSES UNDERLYING TISSUE ENGINEERING AND REGENERATIVE

More information

NEXT GENERATION ECM-BASED ALLOGRAFT TECHNOLOGY:

NEXT GENERATION ECM-BASED ALLOGRAFT TECHNOLOGY: NEXT GENERATION ECM-BASED ALLOGRAFT TECHNOLOGY: Potent biological scaffolds strategically control stem cell fate and function, allowing our allografts to harness the regenerative potential of patient s

More information

PRINCIPLES AND PRACTICE OF TISSUE ENGNEERING:

PRINCIPLES AND PRACTICE OF TISSUE ENGNEERING: Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering Instructor: Myron Spector Massachusetts Institute of Technology Harvard Medical School Brigham

More information

Tissue Engineering and Regenerative Medicine

Tissue Engineering and Regenerative Medicine Tissue Engineering and Regenerative Medicine NIH Center for Engineering Complex Tissues (CECT) June 8, 2018 Bhushan Mahadik, Ph.D. Assistant Director, CECT University of Maryland Regenerative Medicine

More information

Tissue Engineering: The art of growing body parts. Robby Bowles, Ph.D Cornell University

Tissue Engineering: The art of growing body parts. Robby Bowles, Ph.D Cornell University Tissue Engineering: The art of growing body parts Robby Bowles, Ph.D Cornell University What is Tissue Engineering? What is Tissue Engineering? TE is an interdisciplinary field that applies the principles

More information

1) Determining the best cell sources and scaffold materials for TEHV development.

1) Determining the best cell sources and scaffold materials for TEHV development. Broadly speaking, my primary research interests focus on the development and application of methodologies that can be employed in the basic understanding and optimization of tissue engineered heart valves

More information

What is the future of ACL reconstruction?

What is the future of ACL reconstruction? What is the future of ACL reconstruction? Charles J. Gatt, Jr., MD Chair, Department of Orthopaedic Surgery Rutgers Robert Wood Johnson Medical School New Brunswick, NJ Clinical question Do patients with

More information

Lecture Outline. History. Purpose? Func:on of Bioscaffolds. Extracellular Matrix (ECM) 12/08/15

Lecture Outline. History. Purpose? Func:on of Bioscaffolds. Extracellular Matrix (ECM) 12/08/15 Associate Professor Rod Dilley Dr Rob Marano Ear Sciences Centre School of Surgery Harry Perkins Research Building 4 th Floor Lecture Outline History Purpose Functions Properties Approaches to bioscaffold

More information

Stem cells and tissue engineering

Stem cells and tissue engineering Stem cells and tissue engineering S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative

More information

Lecture #8: ECM Natural Scaffold Materials

Lecture #8: ECM Natural Scaffold Materials Lecture #8: ECM Natural Scaffold Materials Extracellular Matrix (ECM) ECM is a complex structural network surrounding and supporting cells Most natural polymers used as biomaterials are constituents of

More information

Production and commercialisation of vascularized and customized bone Clinical trials, market authorisation Pre-clinical trials

Production and commercialisation of vascularized and customized bone Clinical trials, market authorisation Pre-clinical trials Production and commercialisation of vascularized and customized bone Clinical trials, market authorisation Pre-clinical trials Basic Research: scaffolds, cells/ media, in vivo imaging, modelling www.vascubone.eu

More information

Realizing the Future that Regenerative Medicine Will Open

Realizing the Future that Regenerative Medicine Will Open 470 Hitachi Review Vol. 65 (2016), No. 9 Featured Articles Realizing the Future that Regenerative Medicine Will Open Shizu Takeda, Ph.D. OVERVIEW: Regenerative medicine is an innovative approach to medicine

More information

CHALLENGES OF 3D BIOPRINTING IN CLINICAL PRACTICE

CHALLENGES OF 3D BIOPRINTING IN CLINICAL PRACTICE CENTRE DE THÉRAPIE TISSULAIRE & CELLULAIRE CHALLENGES OF 3D BIOPRINTING IN CLINICAL PRACTICE Pr. D. Dufrane MD, PhD 3D-BIOPRINTING: MYTH OR REALITY? 2 REGENERATIVE MEDICINE FOR ORGAN AND TISSUE A LARGE

More information

Tissue Engineering of the Mitral Valve Leaflets and Abdominal Aorta

Tissue Engineering of the Mitral Valve Leaflets and Abdominal Aorta Medizinische Hochschhule Hannover Dr Morticelli L Supervisor: Dr Korossis S Niedersächsischen Zentrum für Biomedizintechnik und Implantatforschung The Tissue Engineering (TE) Concept Tissue Engineering

More information

Looking Ahead: The Bio-Artificial Kidney

Looking Ahead: The Bio-Artificial Kidney Looking Ahead: The Bio-Artificial Kidney Teja Guda, PhD Assistant Professor, Department of Biomedical Engineering Assistant Director, Center for Innovation Technology and Entrepreneurship University of

More information

Introduction to Nanotechnology

Introduction to Nanotechnology Introduction to Nanotechnology Textbook: Nanophysics and Nanotechnology by: Edward L. Wolf Instructor: H. Hosseinkhani E-mail: hosseinkhani@yahoo.com Classroom: A209 Time: Thursday; 13:40-16:30 PM Office

More information

Cartilage TE: from in vitro and in vivo models to the clinic. Module 3, Lecture 6!! Spring 2014!

Cartilage TE: from in vitro and in vivo models to the clinic. Module 3, Lecture 6!! Spring 2014! Cartilage TE: from in vitro and in vivo models to the clinic Module 3, Lecture 6!! 20.109 Spring 2014! Lecture 5 review What are some advantages of ELISA as a protein assay?! Compare qpcr and end-point

More information

Cellular repair of damaged organs. Repopulating scaffoldings in kidney and liver

Cellular repair of damaged organs. Repopulating scaffoldings in kidney and liver Cellular repair of damaged organs Repopulating scaffoldings in kidney and liver Mireia Caralt, MD PhD Servei Cirurgia HBP i Trasplantaments March 29, 2017 Introduction Strategies to increase the number

More information

EMA s role & responsibility for the development of modern/advanced therapies

EMA s role & responsibility for the development of modern/advanced therapies EMA s role & responsibility for the development of modern/advanced therapies Agenda Current regulatory picture Overall Regulatory framework New Committee at EMA Current Activities & Challenges Egbert Flory

More information

Mechanical Characterization and Stimulation Solutions for Biomaterials

Mechanical Characterization and Stimulation Solutions for Biomaterials Mechanical Characterization and Stimulation Solutions for Biomaterials BioDynamic Instruments Biomaterials and Tissue Characterization Application Examples Bone Bending Creep Test Clinical Need: Understand

More information

Regenerative Medicine and Stem Cell Therapies

Regenerative Medicine and Stem Cell Therapies Regenerative Medicine and Stem Cell Therapies Regenerative Medicine Major component of successful regenerated / tissue engineered organs Scaffolds A critical element is the binding of the repopulating

More information

A NANOFIBROUS HYDROGEL FOR BONE TISSUE ENGINEERING

A NANOFIBROUS HYDROGEL FOR BONE TISSUE ENGINEERING A NANOFIBROUS HYDROGEL FOR BONE TISSUE ENGINEERING Umadevi Kandalam, PhD Assistant Professor Department of Pediatric Dentistry College of Dental Medicine Nova Southeastern University Fort Lauderdale, Florida

More information

Freshman/Sophomore Junior Senior

Freshman/Sophomore Junior Senior Freshman/Sophomore Junior Senior Course Recommendations Mathematics (6 courses) MA 1021 MA 1024 (Calculus I) (Calculus IV) MA 1022 MA 2051 (Calculus II) (Differential Equations) MA 1023 MA 2611 (Calculus

More information

Artificial blood vessels

Artificial blood vessels Artificial blood vessels S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative of

More information

Tissue Engineered Medical Products

Tissue Engineered Medical Products WORKSHOP 8 Tissue Organizer: Jeremy J. Rawlinson PhD Speakers: Jack E. Lemons, PhD Lawrence J. Bonassar, PhD Mauro R. Alini, PhD Michael J. Yaszemski, MD, PhD Standards for Tissue J. Lemons, University

More information

Bioreactors in tissue engineering

Bioreactors in tissue engineering Bioreactors in tissue engineering S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative

More information

Course Handbook MSc in Bioengineering Tissue Engineering Specialisation

Course Handbook MSc in Bioengineering Tissue Engineering Specialisation Course Handbook 2013-2014 MSc in Bioengineering Tissue Engineering Specialisation 1 Course Objectives & Learning Outcomes This programme aims to give a sound and broad basis in tissue engineering. In particular,

More information

TISSUE ENGINEERING AND REGENERATION: TECHNOLOGIES AND GLOBAL MARKETS

TISSUE ENGINEERING AND REGENERATION: TECHNOLOGIES AND GLOBAL MARKETS TISSUE ENGINEERING AND REGENERATION: TECHNOLOGIES AND GLOBAL MARKETS HLC101B August 2014 Yojana Jeevane Project Analyst ISBN: 1-56965-894-3 BCC Research 49 Walnut Park, Building 2 Wellesley, MA 02481 USA

More information

Present and future of regenerative medicine. Liver Transplantation

Present and future of regenerative medicine. Liver Transplantation Present and future of regenerative medicine Liver Transplantation Mireia Caralt, MD PhD Servei Cirurgia HBP i Trasplantaments March 19, 2015 Introduction Strategies to increase the number of organs EXPAND

More information

Mechano-dependent biosynthetic response of microintegrated cells in elastomeric scaffolds.

Mechano-dependent biosynthetic response of microintegrated cells in elastomeric scaffolds. Mechano-dependent biosynthetic response of microintegrated cells in elastomeric scaffolds. Lauren Anderson, Department of Bioengineering, The Pennsylvania State University Dr. Michael Sacks, Mentor, Department

More information

Corneal Reconstruction Using Tissue- Engineered Epithelial Cell Sheets Fabricated ex vivo From Autologous Oral Mucosal Epithelium

Corneal Reconstruction Using Tissue- Engineered Epithelial Cell Sheets Fabricated ex vivo From Autologous Oral Mucosal Epithelium Corneal Reconstruction Using Tissue- Engineered Epithelial Cell Sheets Fabricated ex vivo From Autologous Oral Mucosal Epithelium Kohji Nishida, M.D., Ph.D. Department of Ophthalmology Tohoku University

More information

Nanosystems in regenerative medicine. Jöns Hilborn Materials Chemistry The Ångström Laboratory Uppsala University Sweden

Nanosystems in regenerative medicine. Jöns Hilborn Materials Chemistry The Ångström Laboratory Uppsala University Sweden Nanosystems in regenerative medicine Jöns Hilborn Materials Chemistry The Ångström Laboratory Uppsala University Sweden Outline Motivation for tissue regeneration Cell based approaches Material based

More information

10:10-10:22. YIA-1 A study of newly established human peripheral blood monocyte-derived ips cell line used in allergy research 10:22-10:32

10:10-10:22. YIA-1 A study of newly established human peripheral blood monocyte-derived ips cell line used in allergy research 10:22-10:32 10:10-10:22 YIA-1 A study of newly established human peripheral blood monocyte-derived ips cell line used in allergy research 10:22-10:32 EPA-1 Integration of conventional cell viability assays- recruiting

More information

Characterisation of the osteogenic differentiation of human mesenchymal stem cells using Raman spectroscopy Lindsay L. McManus

Characterisation of the osteogenic differentiation of human mesenchymal stem cells using Raman spectroscopy Lindsay L. McManus Characterisation of the osteogenic differentiation of human mesenchymal stem cells using Raman spectroscopy Lindsay L. McManus IOM3 Young Persons World Lecture Competition São Paulo, Brazil 29 th September

More information

Whole Organ Bioengineering Science & Sensibility. Doris A. Taylor, PhD, FAHA, FACC Director, Regenerative Medicine Research Texas Heart Institute

Whole Organ Bioengineering Science & Sensibility. Doris A. Taylor, PhD, FAHA, FACC Director, Regenerative Medicine Research Texas Heart Institute Whole Organ Bioengineering Science & Sensibility Doris A. Taylor, PhD, FAHA, FACC Director, Regenerative Medicine Research Texas Heart Institute Disclosure Founder/Consultant/shareholder Miromatrix Medical

More information

USAMRMC STRATEGIC COMMUNICATION PLAN ARMED FORCES INSTITUTE OF REGENERATIVE MEDICINE (AFIRM)

USAMRMC STRATEGIC COMMUNICATION PLAN ARMED FORCES INSTITUTE OF REGENERATIVE MEDICINE (AFIRM) ARMED FORCES INSTITUTE OF REGENERATIVE MEDICINE (AFIRM) MISSION The Armed Forces Institute of Regenerative Medicine is dedicated to repairing battlefield injuries through the use of regenerative medicine

More information

Des cellules-souches dans le poumon : pourquoi faire?

Des cellules-souches dans le poumon : pourquoi faire? Des cellules-souches dans le poumon : pourquoi faire? Karl-Heinz Krause Dept. of Pathology and Immunology, Medical Faculty Dept. of Genetic and Laboratory Medicine, University Hospitals Geneva, Switzerland

More information

Life Valve Project (FP7)

Life Valve Project (FP7) Life Valve Project (FP7) Prof. Dr. Dr. Simon P. Hoerstrup University and University Hospital Zurich; Switzerland Cardiovascular Surgery Research / Regenerative Medicine Center 1 LifeValve - Living autologous

More information

ISTINYE UNIVERSITY INSTITUTE OF HEALTH SCIENCES DEPARTMENT OF STEM CELL AND TISSUE ENGINEERING (THESIS) COURSE DESCRIPTIONS

ISTINYE UNIVERSITY INSTITUTE OF HEALTH SCIENCES DEPARTMENT OF STEM CELL AND TISSUE ENGINEERING (THESIS) COURSE DESCRIPTIONS ISTINYE UNIVERSITY INSTITUTE OF HEALTH SCIENCES DEPARTMENT OF STEM CELL AND TISSUE ENGINEERING (THESIS) COURSE DESCRIPTIONS 1 st SEMESTER Adult Stem Cell Biology 5 ECTS In this course, the characteristics

More information

Regenovo 3D Bioprinter. Beyond imagination Print future

Regenovo 3D Bioprinter. Beyond imagination Print future Regenovo 3D Bioprinter Beyond imagination Print future Features: The introduction of : Regenovo Biotechnology Co.,Ltd. is a high-tech enterprises that provide professional integrated solutions in 3D printing

More information

Disclosure-Yaszemski

Disclosure-Yaszemski Current and Future Uses of Additive Manufacturing in Neurologic, Musculoskeletal, Spinal, and Oncologic Surgery Michael J. Yaszemski, M.D., Ph.D. John & Posy Krehbiel Endowed Professor of Orthopedic Surgery

More information

Regulation of advanced blood cell therapies

Regulation of advanced blood cell therapies Regulation of advanced blood cell therapies www.pei.de Clinical trials using cell-based products Substantially manipulated cells and cells for non-homologous use Quality, safety and non-clinical aspects

More information

European Regenerative Medicine Firms & Their Strategic Approaches. Michael Morrison University of York

European Regenerative Medicine Firms & Their Strategic Approaches. Michael Morrison University of York European Regenerative Medicine Firms & Their Strategic Approaches Michael Morrison University of York OVERVIEW Creating the European RM Universe of firms Characterizing the European RM Universe Strategic

More information

YOUR OWN LIFE

YOUR OWN LIFE YOUR OWN LIFE Stromal Tissue (ST), a Regenerative Source There is a worldwide consensus that the isolation and collection of regenerative Mesenchymal Stem Cells (MSC s) from differentiated body tissues

More information

Biomaterials in regenerative medicine. Synthetic materials. Dr. Uwe Freudenberg

Biomaterials in regenerative medicine. Synthetic materials. Dr. Uwe Freudenberg Biomaterials in regenerative medicine Synthetic materials Dr. Uwe Freudenberg freudenberg@ipfdd.de . most of the current medical devices do not cure diseases but only treat symptoms. What is missing there?

More information

Three dimensional tissue cultures and tissue engineering

Three dimensional tissue cultures and tissue engineering Dr.. Domokos Bartis, University of Pécs Medical School Dr.. Judit Pongrácz, University of Pécs Medical School technicaleditor: Zsolt Bencze, Veronika Csöngei, Szilvia Czulák by Dr.. Domokos Bartis and

More information

Cartilage TE: from in vitro and in vivo models to the clinic!

Cartilage TE: from in vitro and in vivo models to the clinic! Cartilage TE: from in vitro and in vivo models to the clinic! Module 3, Lecture 6! 20.109 Spring 2010! Lecture 5 review!! What are some advantages of ELISA as a protein assay?"! What are some pros and

More information

INUED DISCONTINUED DISCONTINUED DISCON MAKING THE IMPOSSIBLE POSSIBLE CENTER FOR REGENERATIVE MEDICINE

INUED DISCONTINUED DISCONTINUED DISCON MAKING THE IMPOSSIBLE POSSIBLE CENTER FOR REGENERATIVE MEDICINE INUED DISCONTINUED DISCONTINUED DISCON MAKING THE IMPOSSIBLE POSSIBLE CENTER FOR > SOLUTIONS AND HOPE Millions of people worldwide suffer from deadly diseases, chronic conditions and congenital disorders

More information

Fundamental properties of Stem Cells

Fundamental properties of Stem Cells Stem cells Learning Goals: Define what a stem cell is and describe its general properties, using hematopoietic stem cells as an example. Describe to a non-scientist the current progress of human stem cell

More information

Stem Cells: Introduction and Prospects in Regenerative Medicine.

Stem Cells: Introduction and Prospects in Regenerative Medicine. Stem Cells: Introduction and Prospects in Regenerative Medicine www.gothamgazette.com/.../stemcell/stem_cell.jpg Ode to a Stem Cell, Part II by VCW There once was stem cell stuck in the hood Dividing endlessly,

More information

Stem Cells and Regenerative Medicine

Stem Cells and Regenerative Medicine Q 0 Stem Cells and Regenerative Medicine Technologies and capabilities to add value to your company Differentiation HA-PPS for cartilage Parallel culture optimisation Stem Cell Therapies Fetal EPCs and

More information

Development of new polymeric biomaterials for in vitro and in vivo liver reconstruction

Development of new polymeric biomaterials for in vitro and in vivo liver reconstruction SIXTH FRAMEWORK PROGRAMME PRIORITY 3 NMP- Nanotechnology and nano sciences, knowledge-based multifunctional materials and new production processes and devices Development of new polymeric biomaterials

More information

Applications in Cardiology Hollow Fiber Membranes and Applications

Applications in Cardiology Hollow Fiber Membranes and Applications Applications in Cardiology Want is meant by the term silicones?; Describe in general terms a typical synthetic scheme for a silicone consisting of half PDMS and half polysiloxane; Describe three cross-linking

More information

GELS HANDBOOK: FUNDAMENTALS, PROPERTIES AND APPLICATIONS (IN 3 VOLUMES) BY UTKAN DEMIRCI

GELS HANDBOOK: FUNDAMENTALS, PROPERTIES AND APPLICATIONS (IN 3 VOLUMES) BY UTKAN DEMIRCI GELS HANDBOOK: FUNDAMENTALS, PROPERTIES AND APPLICATIONS (IN 3 VOLUMES) BY UTKAN DEMIRCI DOWNLOAD EBOOK : GELS HANDBOOK: FUNDAMENTALS, PROPERTIES AND APPLICATIONS (IN 3 VOLUMES) BY UTKAN DEMIRCI PDF Click

More information

Discover TruPRP. PRP the way you want it.

Discover TruPRP. PRP the way you want it. Discover TruPRP PRP the way you want it. Discover TruPRP Discover the quality of Magellan TruPRP. The Magellan technology provides an automated dual spin processing system that can deliver (PRP) Platelet

More information

Methods in Bioengineering: 3D Tissue Engineering

Methods in Bioengineering: 3D Tissue Engineering Methods in Bioengineering: 3D Tissue Engineering Berthiaume, Francois ISBN-13: 9781596934580 Table of Contents Preface Chapter 1. Chemical Modification of Porous Scaffolds Using Plasma Polymers 1.1. Introduction

More information

Importance of inflammation reaction of scaffold for the application of regenerative medicine

Importance of inflammation reaction of scaffold for the application of regenerative medicine Review ArticleInflammation reaction of scaffold for regenerative medicine 178 Review Article Importance of inflammation reaction of scaffold for the application of regenerative medicine Gilson Khang Department

More information

DESIGN, FUNCTION AND USES. R. James Christie Oct. 4, 2008 Utsunomiya Girls High School

DESIGN, FUNCTION AND USES. R. James Christie Oct. 4, 2008 Utsunomiya Girls High School BIOCOMPATIBLE POLYMERS: DESIGN, FUNCTION AND USES R. James Christie Oct. 4, 2008 Utsunomiya Girls High School Biomaterials: Materials that Function with Living Organisms Materials that imitate natural

More information

Internationally Standardized Terminology for Regenerated Tissue

Internationally Standardized Terminology for Regenerated Tissue Internationally Standardized inology for Regenerated Tissue Consultation Document March 2018 Internationally Standardized inology for Regenerated Tissue 2 Introduction There is growing recognition of the

More information

Chondrogenic Differentiation of hmscs on PCL Nanofibers

Chondrogenic Differentiation of hmscs on PCL Nanofibers Chondrogenic Differentiation of hmscs on PCL Nanofibers Winnie Kuo University of California, Berkeley Final Presentation for NSF-REU at UIC August 3, 2006 Advisors: Prof. Cho, Prof. Megaridis, Joel Wise

More information

ANAT 2341 Embryology Lecture 18 Stem Cells

ANAT 2341 Embryology Lecture 18 Stem Cells ANAT 2341 Embryology Lecture 18 Stem Cells 29 September 2010 Dr Antonio Lee Neuromuscular & Regenera

More information

Anika Therapeutics, Inc.

Anika Therapeutics, Inc. Anika Therapeutics, Inc. Jefferies Global Healthcare Conference June 4, 2015 Safe Harbor Statement The statements made in this presentation that are not statements of historical fact are forward looking

More information

Reflection paper on classification of advanced therapy medicinal products

Reflection paper on classification of advanced therapy medicinal products 13 April 2012 Committee for Advanced Therapies (CAT). Reflection paper on classification of advanced therapy medicinal products Draft Agreed by CAT March 2012 Adoption by CAT for release for consultation

More information

Regenerative medicine technologies for therapy and modeling

Regenerative medicine technologies for therapy and modeling Institute for Regenerative Medicine Regenerative medicine technologies for therapy and modeling Shay Soker PhD Professor of Regenerative Medicine Wake Forest School of Medicine InterAC Meeting November

More information

Special Issue. Mesoblast Limited

Special Issue. Mesoblast Limited Overview is an Australian biotechnology company committed to the commercialization of novel treatments for orthopedic conditions by using its unique adult stem cell technology for the regeneration and

More information

#SIS25th. 25th Annual Meeting Slides

#SIS25th. 25th Annual Meeting Slides 25th Annual Meeting Slides Stem Cell for Spine Care - From dish to disc Wenchun Qu, MD, PhD Mayo Clinic Rochester Disclosures ØConsultant, DePuy Synthes ØBoard of Directors, American Academy of Regenerative

More information

The Biomechanics of ProLayer Acellular Dermal Matrix: suture retention strength

The Biomechanics of ProLayer Acellular Dermal Matrix: suture retention strength The Biomechanics of ProLayer Acellular Dermal Matrix: suture retention strength Reginald Stilwell, B.S., C.T.B.S., Ryan Delaney, M.S. ProLayer, Centennial, CO Basic science volume 2 ProLayer Acellular

More information

White Paper: Textile Engineered Tissue Scaffolds Offer Advances in Hollow Organ Regenerations. Peter D. Gabriele Director, Emerging Technology

White Paper: Textile Engineered Tissue Scaffolds Offer Advances in Hollow Organ Regenerations. Peter D. Gabriele Director, Emerging Technology White Paper: Textile Engineered Tissue Scaffolds Offer Advances in Hollow Organ Regenerations Peter D. Gabriele Director, Emerging Technology Regenerative medicine (RM) holds the potential to address some

More information

Adipose rabbit mesenchymal stem cells for the treatment of the chronic scar tissue of the vocal cords

Adipose rabbit mesenchymal stem cells for the treatment of the chronic scar tissue of the vocal cords Adipose rabbit mesenchymal stem cells for the treatment of the chronic scar tissue of the vocal cords Dr. Vasiliki E Kalodimou, Head of Flow Cytometry-Research and Regenerative Medicine Department, IASO-Maternity

More information

Medical Engineering (Biomedical Engineering, Clinical Engineering, Bioengineering) Medical Materials Science (Biomaterials) Dental Materials Science

Medical Engineering (Biomedical Engineering, Clinical Engineering, Bioengineering) Medical Materials Science (Biomaterials) Dental Materials Science Studying Medicine & Dentistry at University Technical Alternatives to Medicine & Dentistry Dr Martin Knight School of Engineering and Materials Science Why do you want to study Dentistry or Medicine? Good

More information

Lyset BOOST YOUR CELL CULTURE TODAY FOR THE EXPERIMENTS OF TOMORROW

Lyset BOOST YOUR CELL CULTURE TODAY FOR THE EXPERIMENTS OF TOMORROW Lyset BOOST YOUR CELL CULTURE TODAY FOR THE EXPERIMENTS OF TOMORROW Lyset, the human platelet derived supplement for cell culture Among the different alternatives to animal serum, platelet derived preparations

More information

ACCEPTED MANUSCRIPT. In situ heart valve tissue engineering: Employing the innate immune response to do the

ACCEPTED MANUSCRIPT. In situ heart valve tissue engineering: Employing the innate immune response to do the Accepted Manuscript In situ heart valve tissue engineering: Employing the innate immune response to do the hard work F. Zafar, MD, D.L.S. Morales, MD PII: S0022-5223(18)30839-0 DOI: 10.1016/j.jtcvs.2018.03.059

More information

Skin Regeneration. Mark A. Carlson, MD. Department of Surgery University of Nebraska Medical Center Omaha VA Medical Center Omaha, Nebraska USA

Skin Regeneration. Mark A. Carlson, MD. Department of Surgery University of Nebraska Medical Center Omaha VA Medical Center Omaha, Nebraska USA Skin Regeneration Mark A. Carlson, MD Department of Surgery University of Nebraska Medical Center Omaha VA Medical Center Omaha, Nebraska USA Stem Cell Biology course, April 20, 2010 Disclosures: none

More information

Developing Targeted Stem Cell Therapeutics for Cancer. Shawn Hingtgen, Ph.D. Assistant Professor UNC Eshelman School of Pharmacy May 22 nd, 2013

Developing Targeted Stem Cell Therapeutics for Cancer. Shawn Hingtgen, Ph.D. Assistant Professor UNC Eshelman School of Pharmacy May 22 nd, 2013 Developing Targeted Stem Cell Therapeutics for Cancer Shawn Hingtgen, Ph.D. Assistant Professor UNC Eshelman School of Pharmacy May 22 nd, 2013 The Challenge of Drug Delivery for Brain Cancer Stem Cells

More information

Clinical translation of tissue-engineered constructs for severe leg injuries

Clinical translation of tissue-engineered constructs for severe leg injuries Editorial Page 1 of 5 Clinical translation of tissue-engineered constructs for severe leg injuries Nicolas L Heureux 1, Didier Letourneur 2,3 1 Cytograft Tissue Engineering, Inc., 3 Hamilton Landing, Suite

More information

Promises and Challenges

Promises and Challenges Vladimir Mironov & Richard Visconti Regenerative Medicine: Promises and Challenges What is Regenerative Medicine? Regeneration is a well known biological term and phenomenon. According to the popular Webster

More information

Regenerative Strategies for Vascular and Lung Tissues. Laura E Niklason MD, PhD

Regenerative Strategies for Vascular and Lung Tissues. Laura E Niklason MD, PhD Regenerative Strategies for Vascular and Lung Tissues Laura E Niklason MD, PhD Disclosure: Some of this work in this presentation is from Humacyte Inc. Niklason is a founder of Humacyte, and holds stock

More information

Welcome all. Principles of Tissue Engineering AMME4971 & AMME5971. Convenor: Professor Hala Zreiqat

Welcome all. Principles of Tissue Engineering AMME4971 & AMME5971. Convenor: Professor Hala Zreiqat Welcome all Principles of Tissue Engineering AMME4971 & AMME5971 Convenor: Professor Hala Zreiqat Email: hala.zreiqat@sydney.edu.au Office S511 AMME JO7 Tissue Engineering and Biomaterials Research Unit

More information

Stem cells in Development

Stem cells in Development ANAT 2341 Embryology Lab 10 8 Oct 2009 Therapeutic Use of Stem Cells Practical Hurdles & Ethical Issues Stem cells in Development Blastocyst Cord blood Antonio Lee PhD Neuromuscular & Regenerative Medicine

More information

The Role of Adult Stem Cells in Personalized and Regenerative Medicine

The Role of Adult Stem Cells in Personalized and Regenerative Medicine The Role of Adult Stem Cells in Personalized and Regenerative Medicine Christopher J. Neill, Director of Corporate Operations American CryoStem Corporation Objective To illustrate the potential benefits

More information

Tissue Engineering. Series Editor- Anthony Atala, MD Children's Hospital, Boston

Tissue Engineering. Series Editor- Anthony Atala, MD Children's Hospital, Boston Tissue Engineering Series Editor- Anthony Atala, MD Children's Hospital, Boston Editorial Advisory Board Jeffrey Hubbell, PhD California Institute of Technology Robert S. Langer, ScD Massachusetts Institute

More information

Chapter 8. Comparison of static vs dynamic culture

Chapter 8. Comparison of static vs dynamic culture Chapter 8 Comparison of static vs dynamic culture 8.1. Literature Review Articular cartilage is a load-bearing connective tissue in which its functions not only transmitting the compressive joint loads

More information

ANAT 3231 Cell Biology Lecture 21 Stem Cells

ANAT 3231 Cell Biology Lecture 21 Stem Cells ANAT 3231 Cell Biology Lecture 21 Stem Cells Outline What are Stem Cells? Totipotency - Pluripotency - Multipotency What are different sources of Stem Cells? Embryonic vs Adult Pros and Cons for each type

More information

Stem cells in Development

Stem cells in Development ANAT 2341 Embryology Lab 10 8 Oct 2009 Therapeutic Use of Stem Cells Practical Hurdles & Ethical Issues Stem cells in Development Blastocyst Cord blood Antonio Lee PhD Neuromuscular & Regenerative Medicine

More information

Understanding brain diseases from stem cells to clinical trials

Understanding brain diseases from stem cells to clinical trials Understanding brain diseases from stem cells to clinical trials Alan Mackay Sim Griffith Institute for Drug Discovery Griffith University Brisbane, QLD Making ES cells Fertilise an egg Put in a dish Embryonic

More information

FINAL PUBLISHABLE SUMMARY REPORT

FINAL PUBLISHABLE SUMMARY REPORT FINAL PUBLISHABLE SUMMARY REPORT Grant Agreement number: 310389 Project acronym: BIP-UPY Project title: Bioactive Implantable Polymers based on Ureido-Pyrimidinone Funding Scheme: Large-scale integrating

More information

Design of scaffolds with computer assistance

Design of scaffolds with computer assistance Modelling in Medicine and Biology VII 157 Design of scaffolds with computer assistance H. A. Almeida 1, P. J. Bártolo 1 & J. C. Ferreira 2 1 Centre for Rapid and Sustainable Product Development CDRsp,

More information

Break the 3D barrier CORNING 3D CELL CULTURE

Break the 3D barrier CORNING 3D CELL CULTURE Break the 3D barrier VESSELS SURFACES MEDIA CORNING 3D CELL CULTURE Get there fast with 3D cell culture. Whether you re just getting started in 3D cell culture, looking for proven ways to scale up, or

More information

DermaMatrix Acellular Dermis. Comparative testing.

DermaMatrix Acellular Dermis. Comparative testing. DermaMatrix Acellular Dermis. Comparative testing. Natural, like native tissue Minimally processed Strong and flexible DermaMatrix Acellular Dermis. Human dermal collagen matrix. Unique process DermaMatrix

More information

The NYSCF Research Institute

The NYSCF Research Institute Regenerative Medicine Research Update Susan L. Solomon The NYSCF Research Institute New York Pharma Forum February 25, 2016 Regenerative Medicine Research Regenerative medicine uses laboratory grown human

More information

Prof. Steven S. Saliterman. Department of Biomedical Engineering, University of Minnesota

Prof. Steven S. Saliterman. Department of Biomedical Engineering, University of Minnesota Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Mimicking the fibrillar structure of the extracellular matrix is important for scaffolds. Clinical trails to date

More information

Articular Cartilage Engineering Using Human Mesenchymal Stem Cells and Nanostructured Biomaterials

Articular Cartilage Engineering Using Human Mesenchymal Stem Cells and Nanostructured Biomaterials Articular Cartilage Engineering Using Human Mesenchymal Stem Cells and Nanostructured Biomaterials REU Participant: Nicole Green 1 Advisors: Joel Wise 2, Dr. Michael Cho 2, Dr. Constantine Megaridis 3

More information

RegenACR. autologous cellular regeneration. RegenACR A-PRP treatment. collagen fibers. 1,2 texture and elasticity. 3 volume & strength.

RegenACR. autologous cellular regeneration. RegenACR A-PRP treatment. collagen fibers. 1,2 texture and elasticity. 3 volume & strength. RegenACR autologous cellular regeneration RegenACR A-PRP treatment collagen fibers. 1,2 texture and elasticity. 3 volume & strength. 4,5 WHAT IS A-PRP Autologous Platelet Rich Plasma Plasma contains many

More information

Polymeric hydrogels are of special importance in polymeric biomaterials because of

Polymeric hydrogels are of special importance in polymeric biomaterials because of POLYMERIC HYDROGELS Polymeric hydrogels are of special importance in polymeric biomaterials because of their favorable biocompatibility. Hydrogels are cross-linked macromolecular networks formed by hydrophilic

More information

Genetics Lecture 19 Stem Cells. Stem Cells 4/10/2012

Genetics Lecture 19 Stem Cells. Stem Cells 4/10/2012 Genetics Lecture 19 Stem Cells Stem Cells Much of the excitement about stem cells in the scientific and medical communities comes from their largely untapped and unproven potential for treating human conditions)

More information

Bioengineering Research Map

Bioengineering Research Map Bioengineering Research Map Lee Makowski, Professor and Chair l.makowski@northeastern.edu Mark Niedre, Associate Professor and Associate Chair For Research m.niedre@northeastern.edu Chloe Tolman, Academic

More information