Cell Proliferation Assays: Improved Homogeneous Methods Used to Measure the Number of Cells in Culture

Size: px
Start display at page:

Download "Cell Proliferation Assays: Improved Homogeneous Methods Used to Measure the Number of Cells in Culture"

Transcription

1 C H A P T E R 4 Cell Proliferation Assays: Improved Homogeneous Methods Used to Measure the Number of Cells in Culture Terry L. Riss and Richard A. Moravec I. INTRODUCTION Over the last decade several improvements have been made in assay technology to enable miniaturization and more efficient measurement of the number of cells present in microwell plates. A variety of different methods have been optimized for convenient use in multiwell formats, making it easier to do large numbers of assays. The most significant improvement in efficiency has been the development of homogeneous "add, mix, and measure" assay formats compatible with robotic automation for high-throughput screening (HTS) of test compounds. Making a choice among available assay formats often depends on the preference for which marker is measured or the level of sensitivity required. Homogeneous assays are now available to measure total cell number, viable cell number, the number of dead cells present in a population, or the number of cells undergoing apoptosis. For many experimental systems the most useful information is the number of viable cells at the end of a treatment period. The parameter used most conveniently to determine the number of viable cells in culture is measurement of an indicator of active metabolism. This article describes four options for measuring cell number that are based on assaying different aspects of cellular metabolism. The example assays chosen include ATP quantitation, tetrazolium reduction using [3-(4,5-dimethylthiazol-2-yl)-5-(4- sulfophenyl)-2h-tetrazolium, inner salt (MTS), resazurin reduction, and total lactate dehydrogenase (LDH) activity measurement. The four examples are all homogeneous methods sensitive enough to detect cell numbers typically used in automated high-throughput 96- and 384-well plate formats. The methods are equally suitable for measuring just a few samples processed manually. In addition, all of these assays have been shown to be reproducible and exhibit good Z'-factor values (Zhang et al., 1999) desirable for automated HTS applications. Each assay has its own set of advantages and disadvantages that contribute to the decision of which one to choose. II. MATERIALS RPMI 1640 culture medium containing 15 mm HEPES (Cat. No. R-8005), 2-mercaptoethanol (Cat. No. M-7154), trypan blue solution (0.4% Cat. No. T-8154), and phenazine ethosulfate (PES; Cat. No. P-4544) are from Sigma. Fetal bovine serum (Cat. No. SH30070) is from Hyclone. Ninety-six-well plates with opaque white walls and clear bottoms (Cat. No. 3610) are from Corning. The CellTiter-Glo luminescent cell viability assay (Cat. No. G7571) for determining ATP content, the CytoTox-ONE homogeneous membrane integrity Cell Biology 25 Copyright 2006, Elsevier Science (USA). All rights reserved.

2 26 CELL AND TISSUE CULTURE: ASSORTED TECHNIQUES assay (Cat. No. G7891) for determining total LDH activity, the CellTiter 96 AQueous one solution cell proliferation assay (Cat. No. G3580) for measuring MTS tetrazolium reduction, the CellTiter-Blue cell viability assay (Cat. No. G8080) for measuring resazurin reduction, and recombinant human interleukin (IL)-6 (Cat. No. G5541) are from Promega. III. INSTRUMENTATION The Model MTS-4 plate shaker obtained from IKA Works, Inc. is used to mix the contents of the 96-well plates. Absorbance is recorded using a Molecular Devices Vmax plate reader spectrophotometer. Luminescence is recorded using a Dynex MLX plate-reading luminometer. Fluorescence is recorded using a Labsystems Fluoroscan Ascent fluorescence plate reader fitted with a 560 (excitation) and 590 (emission) filter pair. IV. PROCEDURES The assay plates for all four procedures are prepared in an identical manner using stock cultures of the IL-6-dependent B9 hybridoma cell line. B9 cells are cultured in RPMI 1640 containing 15 mm HEPES and 50 ~tm 2-mercaptoethanol supplemented with 10% fetal bovine serum (assay medium) and 2 ng/ml of IL- 6 (specific activity 168 U/ng protein, assigned by direct comparison to the interim reference standard #88/514 from the National Institute of Biologic Standards and Controls). Cell cultures are maintained at densities between 2 x 10 4 and 3 x 105/ml in a humidified chamber at 37~ with 5% CO2. Stock cultures of cells used to prepare the proliferation assay are seeded at 2 x 104/ml in standard T-75 flasks containing assay medium supplemented with 2ng/ml IL-6 and are allowed to expand for 3 days. Cells are harvested using centrifugation (4min at 200 g) and washed twice using assay medium without IL-6. Cells are suspended in assay medium without IL-6, treated with trypan blue solution, counted using a hemocytometer, and adjusted to 6.25 x 10 4 viable cells/ml. Eighty microliters of cell suspension (5000 cells) is dispensed into each well of multiple 96-well clear-bottom white opaque walled plates with replicates of four for each sample. Serial two-fold dilutions of IL-6 are prepared in assay medium without IL-6 so 20-~tl/well additions would contain a final concentration range of 0-2.0ng/ml. An equivalent volume of assay medium without IL-6 is added to sets of negative control wells. Assay plates are cultured for 72h at 37~ with 5% CO2 before processing with each of the cell number assays. A. MTS Tetrazolium Reduction Assay Viable cells reduce tetrazolium compounds into intensely colored formazan products that can be detected as an absorbance change with a spectrophotometer. The amount of formazan color produced is directly proportion to the number of viable cells in standard culture conditions. Cells rapidly lose the ability to reduce tetrazolium compounds shortly after death, which enables tetrazolium reduction to be used as an indicator of viable cell number. The first MTT tetrazolium reduction cell proliferation assay was described two decades ago (Mosmann, 1983). Upon cellular reduction, the MTT tetrazolium reagent results in the formation of a formazan precipitate and requires the addition of a solubilizing agent to generate a solution suitable for recording absorbance. The chemical properties of the MTS tetrazolium compound provide an improvement over the MTT assay. The formazan product resulting from bioreduction of MTS is directly soluble in cell culture medium, thus eliminating the solubilization step required for the MTT assay. The chemical properties of MTS that contribute to the formation of a soluble formazan product also restrict entry of MTS into viable cells. As a result, cell-permeable, electron-coupling agents (such as PES) are used in combination with MTS to shuttle in and out of cells to pick up reducing equivalents from molecules such as NADH. The reduced PES can move from the cytoplasm into the culture medium and reduce MTS into the soluble formazan product. The combination of MTS + PES provides an assay that requires only a single reagent addition to the cell culture wells and results in a homogeneous "add, incubate, and measure" assay format. An additional advantage of using aqueous soluble tetrazolium assays is that data can be recorded from the same plate at various intervals after the addition of MTS + PES, which simplifies the optimization of the incubation period during characterization of the effects of particular compounds on cells (Fig. 1). The sensitivity of the MTS assay is dependent on cell type, but it is usually adequate for detecting the number of cells used commonly in microwell plates. Typically, the MTS assay can detect fewer than 1000 viable cells/well in the 96- well plate format or fewer than 250 cells/well in 384- well plates. For additional background information, refer to Promega Technical Bulletin #245.

3 CELL PROLIFERATION ASSAYS = ,,~ MTS -o- -e- lhr 2hr I I I I I IIII I I IIIIIII I I IIIIIII I I IIIIIII 10 1 O O, 000 FIGURE 1 The effect of different concentrations of IL-6 on cell number was determined by measuring MTS reduction to the colored formazan product. Absorbance at 490nm was recorded after I h of incubation with the MTS + PES reagent. Plates were returned to the cell culture incubator for an additional hour before recording the 490-nm absorbance after a total of 2h of incubation. The 490-nm absorbance from control wells of cells without IL-6 (not shown on the log scale) was 0.39 for I h of incubation and 0.54 for 2 h of incubation. Values represent the mean + standard deviation from four replicate wells. 1. Warm the CellTiter 96 AQueous one solution reagent to 37~ (Note: The reagent contains 2mg/ml MTS tetrazolium and 300~tM PES electron transfer reagent in a solution of phosphate-buffered saline. This solution is photolabile and should be stored protected from light.) 2. Remove the multiwell assay plate from the cell culture incubator and transfer to a laminar flow hood. 3. Add 20~1 of CellTiter 96 AQueous one solution reagent to the culture medium in each well using a multichannel pipette and aseptic conditions. 4. Mix the contents of the culture wells using a plate shaker to ensure uniform suspension of MTS reagent in the culture medium. 5. Return assay plate to a 37~ cell culture incubator for a period of 1 to 4 h, depending on the number and metabolic activity of cells being used. 6. Transfer assay plate to a multiwell plate-reading spectrophotometer, shake plate for 10s (using the instrument's on-board plate shaking function) to ensure a uniform solution in the assay wells, and record absorbance at 490nm. 7. Plot 490nm absorbance vs cell number. B. ATP Assay The measurement of ATP has become widely accepted as a valid indicator of the number of viable cells present in culture (Ekwall et al., 2000). Under cell culture experimental conditions that do not alter metabolism drastically, the amount of ATP is directly proportional to the number of viable cells (Crouch et al., 1993). Historically, sample preparation for ATP assays has been a multistep process requiring inactivation of endogenous ATPases (known to interfere with measurement of ATP) and neutralization of the acidic extract prior to addition to a luciferasecontaining reaction mixture (Lundin et al., 1986; Stanley, 1986). Firefly luciferase purified from Photinus pyralis has been used most often as a reagent for ATP assays (Lundin et al., 1986; Crouch et al., 1993). Unfortunately, the native form of luciferase has only moderate stability in vitro and is sensitive to its chemical environment, e.g., ph and detergents, thus limiting its usefulness for developing a robust homogeneous ATP assay. A stable form of luciferase has been developed from a different firefly, Photuris pennsylvanica, using an approach of directed evolution to select for characteristics that improve performance in ATP assays. The development strategy included selection for increased thermostability and resistance to degradation products of luciferin, which inhibit luciferase activity. The unique characteristics of this mutant (LucPpe2 m) enabled design of a homogeneous single-step reagent approach for performing ATP assays on cultured cells that overcomes the problems caused by factors such as ATPases that reduce the level of ATP in cell extracts. The CellTiter-Glo reagent is physically robust and provides a sensitive and stable luminescent output that is ideal for automated HTS cell proliferation and cytotoxicity assays. The homogeneous "add, mix, and measure" format results in cell lysis, inhibition of endogenous ATPases, and generation of a luminescent signal proportional to the amount of ATP present. In addition, the CellTiter-Glo assay conditions generate a "glow-type" luminescent signal, having a half-life of greater than 5h, providing flexibility for recording data. For most situations, the ATP assay is the method of choice because it has a simple homogeneous "add-mix-measure" procedure, it provides the quickest way to collect data (i.e., it avoids the 1- to 4-h incubation step required for tetrazolium or resazurin assays), and it has the best detection sensitivity among all the available methods. The ATP-based detection of cells has been shown to be more sensitive than other methods (Petty et al., 1995). Assay sensitivity and range of responsiveness are typically between 50 and 50,000 cells/well in 96-well plates, but sensitivities of as few as 4 cells/well have been achieved using 384- well plates. For additional background information, refer to Promega Technical Bulletin #288.

4 28 CELL AND TISSUE CULTURE: ASSORTED TECHNIQUES Preparation of CellTiter-Glo Reagent 1. Allow a vial of the lyophilized substrate and a bottle of frozen assay buffer to equilibrate to ambient temperature (22~ 2. Add 10ml of assay buffer to the substrate to reconstitute the lyophilized cake and form the CellTiter-Glo reagent and mix gently to dissolve. The reagent is a buffered solution containing detergents to lyse cells, ATPase inhibitors to stabilize the ATP released from the lysed cells, luciferin as a substrate, and luciferase to generate a bioluminescent signal proportional to the amount of ATP present in the cell lysate. 1. Remove the multiwell assay plate from the cell culture incubator and equilibrate to ambient temperature for approximately 20-30min. (Note: Transferring eukaryotic cells from 37~ to ambient temperature for the length of time required for temperature equilibration has little affect on cell viability or ATP content.) 2. Add a volume of CellTiter-Glo reagent equal to the volume of cell culture medium present in each well using a multichannel pipette. (Note: For 384-well plates containing 25 ~tl of culture medium, add 25 ~tl of reagent.) 3. Mix the contents of the assay wells to ensure uniform distribution of the reagent in the culture medium and to speed cell lysis. 4. Allow the assay plate to stand at ambient temperature for 10 min. 5. Record luminescence using a multiwell platereading luminometer. 6. Plot luminescence vs cell number (Fig. 2). C. LDH Assay Lactate dehydrogenase is a cytoplasmic enzyme that has been used as a marker of cell damage in vitro because the enzymatic activity is relatively stable in cell culture medium and can be measured easily after leakage out of cells with a compromised membrane (i.e., nonviable cells). The LDH assay is performed most commonly as a cytotoxicity assay by measuring the enzymatic activity from a sample of culture medium removed from the treated population of cells. Most assay methods require transfer of an aliquot of culture medium (without cells) into a separate assay vessel because the reagent formulation would damage living cells, resulting in the release of additional LDH (Korzeniewski and Callewaert, 1983). Reactions often proceed for 30min and result in a colorimetric signal (Decker and Lohmann-Matthes, 1988) , m E = I F ATP I I I I IIIII I I I I IIIII I I I I IIIll I I I I IIIII O O, 000 FIGURE 2 The effect of different concentrations of IL-6 on cell number was determined by measuring the total amount of ATP. Luminescence was recorded 10min after addition of the CellTiter-Glo reagent. The luminescence of control wells of cells without IL-6 (not shown on the log scale) was 260 relative light units. Values represent the mean + standard deviation from four replicate wells. Recent improvements in LDH assay performance have been accomplished by using more sensitive fluorescent reporter molecules and by formulating the assay reagents in a physiologically balanced buffer that is not harmful to viable cells. These improvements enabled the development of a rapid homogeneous cytotoxicity assay format to detect the number of damaged cells directly in cell culture wells containing a mixed population of viable and nonviable cells. The reagent used to perform the coupled enzymatic assay is a buffered solution containing lactate as a substrate and NAD as a cofactor to drive the LDH reaction. The reagent also contains the enzyme diaphorase to catalyze the NADH-driven reduction of resazurin into the fluorescent resorufin product. As illustrated in the following example procedure, the total number of cells in culture (i.e., viable and nonviable) also can be estimated using an LDH assay by measuring total enzymatic activity from the entire population of cells. The cytotoxicity assay format is modified to detect total LDH in cultures by including a cell lysis step in the procedure utilizing a detergent that is compatible with the LDH assay chemistry. The detection sensitivity and linear range of the fluorescent LDH assay are typically ,000 cells/well in the 96-well plate format, with sensitivity improving to 200 cell/well in 384-well plates. For additional background information, refer to Promega Technical Bulletin #306.

5 CELL PROLIFERATION ASSAYS 29 Preparation of CytoTox-ONE Reagent 1. Allow a vial of the lyophilized substrate and a bottle of frozen assay buffer to equilibrate to ambient temperature (22~ 2. Add 11ml of assay buffer to the substrate to reconstitute the lyophilized cake and form the CytoTox-ONE reagent and mix gently to dissolve. Protect the reagent from direct light LDH 1. Remove the multiwell assay plate from the cell culture incubator. 2. Add 2btl of the lysis solution component of the kit (i.e., 9% Triton X-100) to each 100B1 of culture medium to lyse the cells and release LDH into the surrounding medium. (Note: If it is inconvenient to pipette very small volumes, a 1:5 dilution of lysis solution may be prepared using water so 10 B1 can be dispensed into each well.) 3. Shake the plate for approximately 10s to ensure uniform distribution of the contents of the wells and to ensure complete cell lysis. 4. Equilibrate the plate to ambient temperature (approximately min). 5. Add a volume of CytoTox-ONE reagent equal to the volume of cell culture medium present in each well using a multichannel pipette. (Note: For 384-well plates containing 25 B1 of culture medium, add 25 gl of reagent to each well.) 6. Mix the contents of the assay wells for 30s to ensure uniform distribution of the reagent in the culture medium. 7. Allow the assay plate to incubate at ambient temperature for 10-15min for the LDH reaction to proceed. 8. Add 50B1 to each well of the stop solution [3% (w/v) sodium dodecyl sulfate] provided as a component of the CytoTox-ONE assay kit. (Note: Add 12.5 btl stop solution for the 384-well plate format containing 25 B1 of cells in culture medium and 25 btl of CytoTox- ONE reagent.) 9. Record the fluorescence of resorufin using a multiwell plate reading fluorometer fitted with a filter set for 560-nm excitation and 590-nm emission wavelengths. (Note: The spectra of resorufin will enable a variety of filter sets to be used. Data can be collected using excitation filters in the range of nm and emission filters in the range of nm.) 10. Plot fluorescence vs cell number (Fig. 3). D. Resazurin Reduction Assay Resazurin is a redox dye that can be reduced by cultured cells to form resorufin. Resazurin is dark blue 1000 o." i i i i iiill i i i I Iiiii i i i i iiill i i i i iiill O O, 000 FIGURE 3 The effect of different concentrations of IL-6 on cell number was determined by measuring the total amount of LDH from the lysed population of cells. Cells were lysed by the addition of 2btl/well of 10% (v/v) Triton X-100 in phosphate-buffered saline prior to addition of the CytoTox-ONE reagent. The reaction was stopped by addition of the stop solution, and fluorescence (560 excitation/590 emission) was recorded. The fluorescence value of control wells of cells without IL-6 (not shown on the log scale) was 1081 relative fluorescence units. Values represent the mean + standard deviation from four replicate wells. and has little intrinsic fluorescence until it is reduced to the pink resorufin product. The spectral properties of resorufin allow the molecule to be detected using either fluorescence or absorbance; however, fluorescence is the preferred method because it provides greater sensitivity. The resazurin reduction assay is based on the ability of metabolically active living cells to convert a redox dye (resazurin) into a fluorescent end product (resorufin). Resazurin can enter living cells where it becomes reduced, and the resazurin product, which is also permeable, can be found in the cell culture medium (O'Brien et al., 2000). The specific cellular mechanisms responsible for the reduction of resazurin are unknown (Gonzales and Tarloff, 2001), but probably involve reactions generating reducing equivalents such as NADH. Nonviable cells lose metabolic capacity rapidly and do not reduce resazurin to generate a fluorescent signal. The resazurin substrate is soluble in phosphate-buffered saline compatible with preparation of a reagent for direct addition to cell cultures. The homogeneous assay procedure involves addition of a single resazurin-containing reagent directly to cells cultured in serum-supplemented medium. After an incubation step, data are recorded using either a platereading fluorometer (preferred method) or a spectrophotometer. The reagent is generally nontoxic to cells, allowing extended incubation periods in some

6 3 0 CELL AND TISSUE CULTURE: ASSORTED TECHNIQUES Resazurin o - lhr --- 2hr 6. Record the fluorescence of resorufin using a multiwell plate-reading fluorometer fitted with a filter set for 560-nm excitation and 590-nm emission wavelengths. (Note: The spectra of resorufin will enable a variety of filter sets to be used. Data can be collected using excitation filters in the range of nm and emission filters in the range of nm.) 7. Plot fluorescence vs cell number. i i i iiiiii i i i iiiiii I I I I IIIll i i i i iiill O ,000 FIGURE 4 The effect of different concentrations of IL-6 on cell number was determined by measuring the ability of viable cells to reduce resazurin into the fluorescent resorufin. Fluorescence was recorded after l h of incubation with the CellTiter-Blue reagent. Plates were returned to the cell culture incubator for an additional hour before recording fluorescence a second time after a total of 2h of incubation. The average fluorescence from control wells of cells without IL-6 (not shown on the log scale) was 814 for I h of incubation and 1017 for 2 h of incubation. Values represent the mean + standard deviation from four replicate wells. situations. Fluorescence data can be recorded at various intervals after the addition of resazurin, which simplifies optimization of the incubation period during characterization of the effects of particular compounds on cells (Fig. 4). Longer incubation periods may result in increased detection sensitivity; however, there may be a loss in the linear range of response. Assay sensitivity and range depend on cell type and metabolic capacity, but are typically between 200 and 50,000 cells/well in 96-well plates. For additional background information, refer to Promega Technical Bulletin # Thaw CellTiter-Blue reagent containing resazurin and warm to 37~ 2. Remove the multiwell assay plate from the cell culture incubator and transfer to a laminar flow hood. 3. Add 20~tl CellTiter-Blue reagent to each well containing 100~tl culture medium using a multichannel pipette and aseptic conditions. (Note: For 384- well plates containing 25~tl of culture medium, add 5~tl/well of CellTiter-Blue reagent.) 4. Mix the contents of the assay wells for 10s to ensure uniform distribution of the reagent in the culture medium. 5. Return assay plate to a 37~ cell culture incubator for a period of 1 to 4h to develop the fluorescent resorufin product. V. COMMENTS Each assay format has its own set of advantages and disadvantages. The tetrazolium assay is currently the most widely used method of estimating the number of viable cells in multiwell plates and is the most often cited in the scientific literature. The resazurin reduction assay is functionally similar to the tetrazolium assay, except it has the optional advantage of using fluorescent detection methods. In contrast to the tetrazolium and resazurin reduction assays that require 1-4h of incubation to obtain meaningful results, data from ATP and LDH assays can be obtained after a 10-min incubation. The ATP and LDH assays lyse cells and thus provide "a snapshot" of the condition of the cells at time of lysis. This advantage provides a quicker assay and avoids any toxic effects of the assay reagents that may occur during the incubation period. For many applications, the ATP assay may be the best choice. It is the most sensitive, provides results faster than any of the other assays, and is the easiest to use. However, one of the limitations of the ATP assay is that it requires a multiwell plate-reading luminometer that may not be available in all laboratories. The choice of which particular assay format to use may depend on the availability of instruments to record data, the detection sensitivity required, the number of samples to be measured, and whether total cell number, viable cell number, or nonviable cell number is chosen as an end point for measurement. Multiplexing of two assays to gather more than one type of data from the same experimental well may help eliminate the possibility of artifacts. For example, an LDH cytotoxicity assay and an ATP viability assay can be done using the same sample of cells. A small aliquot of culture supernatant can be used for estimating the number of dead cells by measuring the amount of LDH released into the culture medium. Because the sample of cells remains intact, an ATP assay (or any of the other methods) can be used to measure viable or total cell number.

7 CELL PROLIFERATION ASSAYS 3 1 VI. PITFALLS Temperature is a factor that affects the performance of the aforementioned assays because of its effect on enzymatic rates. It is critical to run the assays at a uniform temperature to ensure reproducibility across a single plate or among stacks of several plates. For assays developed at room temperature, it is important to ensure adequate equilibration of samples after the removal of assay plates from a 37~ incubator to avoid differential temperature gradients resulting in "edge effects." Stacking large numbers of assay plates together in close proximity should be avoided to ensure complete temperature equilibration. Proper negative and positive controls are required to test whether compounds being measured have an effect on the assay chemistry or result in artifacts. For example, strong reducing compounds may interfere with procedures using redox dyes such as the tetrazolium or resazurin reduction assays. Culture medium supplemented with pyruvate will slow the rate of the LDH reaction and thus will require longer incubation periods to generate an adequate fluorescent signal in the CytoTox-ONE assay. In addition, different animal sera have different amounts of LDH activity that will influence background fluorescence. To correct for many of these factors, use of a "no treatment" negative control and a positive control to show maximum effect on each multiwell plate is recommended for all assays. References CellTiter 96 AQ... One Solution Cell Proliferation Assay Technical Bulletin #TB245, Promega Corporation. CellTiter-Blue Cell Viability Assay Technical Bulletin #TB317, Promega Corporation. CellTiter-Glo Luminescent Cell Viability Assay Technical Bulletin #TB288, Promega Corporation. Cory, A. H., et al. (1991). Use of an aqueous soluble tetrazolium/ formazan assay for cell growth assays in culture. Cancer Commun. 3(7), Crouch, S. P., et al. (1993). The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 160, CytoTox-ONE Homogeneous Membrane Integrity Assay Technical Bulletin #TB306, Promega Corporation. Decker, T., and Lohmann-Matthes, M. L. (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, Ekwall, B., et al. (2000). MEIC Evaluation of acute systemic toxicity. VIII. Multivariat partial least squares evaluation, including the selection of a battery of cell line tests with a good prediction of human acute lethal peak blood concentrations for 50 chemicals. Altern. Lab. Anim. 28(Suppl. 1), Gonzales, R. J., and Tarloff, J. B. (2001). Evaluation of hepatic subcellular fractions for Alamar Blue and MTT reductase activity. Toxicol In Vitro 15, Korzeniewski, C., and Callewaert, D. M. (1983). An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 64, Lundin, A., et al. (1986). Estimation of biomass in growing cell lines by ATP assay. Methods Enzymol. 133, Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assay. J. Immunol. Methods 65, O'Brien, J., et al. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267, Petty, R. D., et al. (1995). Comparison of MTT and ATP-based assays for measurement of viable cell number. J. Biolumin. Chemilumin. 10, Stanley, P. E. (1986).Extraction of adenosine triphosphate from microbial and somatic cells. Methods Enzymol. 133, Zhang, H.-U., et al. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4,

CellTiter-Glo Luminescent Cell Viability Assay INSTRUCTIONS FOR USE OF PRODUCTS G7570, G7571, G7572 AND G7573.

CellTiter-Glo Luminescent Cell Viability Assay INSTRUCTIONS FOR USE OF PRODUCTS G7570, G7571, G7572 AND G7573. Technical Bulletin CellTiter-Glo Luminescent Cell Viability Assay INSTRUCTIONS FOR USE OF PRODUCTS G7570, G7571, G7572 AND G7573. PRINTED IN USA. Revised 6/09 CellTiter-Glo Luminescent Cell Viability Assay

More information

LDH-Cytox Assay Kit. A Colorimetric Cytotoxicity Measuring Kit. Cat. No LDH-Cytox Assay Kit can be used to measure cytotoxicity in vitro

LDH-Cytox Assay Kit. A Colorimetric Cytotoxicity Measuring Kit. Cat. No LDH-Cytox Assay Kit can be used to measure cytotoxicity in vitro A Colorimetric Cytotoxicity Measuring Kit Cat. No. 426401 LDH-Cytox Assay Kit can be used to measure cytotoxicity in vitro BioLegend, Inc Biolegend.com It is highly recommended that this manual be read

More information

CytoScan Fluoro Assay

CytoScan Fluoro Assay 089PR G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name CytoScan Fluoro Assay (Cat. # 786 211) think proteins! think G-Biosciences www.gbiosciences.com

More information

CytoTox-Fluor Cytotoxicity Assay INSTRUCTIONS FOR USE OF PRODUCTS G9260, G9261 AND G9262.

CytoTox-Fluor Cytotoxicity Assay INSTRUCTIONS FOR USE OF PRODUCTS G9260, G9261 AND G9262. Technical Bulletin CytoTox-Fluor Cytotoxicity Assay INSTRUCTIONS FOR USE OF PRODUCTS G9260, G9261 AND G9262. PRINTED IN USA. Revised 12/12 CytoTox-Fluor Cytotoxicity Assay All technical literature is available

More information

CellTiter-Glo 2.0 Assay

CellTiter-Glo 2.0 Assay TECHNICAL MANUAL CellTiter-Glo 2.0 Assay Instructions for Use of Products G9241, G9242 and G9243 Revised 9/17 TM403 CellTiter-Glo 2.0 Assay All technical literature is available at: www.promega.com/protocols/

More information

Table of contents. 1. Description Principle Features Kit component Storage... 3

Table of contents. 1. Description Principle Features Kit component Storage... 3 Table of contents 1. Description... 2 2. Principle... 2 3. Features... 3 4. Kit component... 3 5. Storage... 3 6. Protocol 6-1. Reagent and instrument required other than this kit... 3 6-2. Protocol...

More information

CellTiter-Glo Luminescent Cell Viability Assay INSTRUCTIONS FOR USE OF PRODUCTS G7570, G7571, G7572 AND G7573.

CellTiter-Glo Luminescent Cell Viability Assay INSTRUCTIONS FOR USE OF PRODUCTS G7570, G7571, G7572 AND G7573. Technical Bulletin CellTiter-Glo Luminescent Cell Viability Assay INSTRUCTIONS FOR USE OF PRODUCTS G7570, G7571, G7572 AND G7573. INTEGRATED SOLUTIONS use me with GLOMAX INSTRUMENTS INTEGRATED SOLUTIONS

More information

CellTiter-Glo 2.0 Assay

CellTiter-Glo 2.0 Assay TECHNICAL MANUAL CellTiter-Glo 2.0 Assay Instruc ons for use of Products G9241, G9242 AND G9243. TM403 Printed 11/13 CellTiter-Glo 2.0 Assay All technical literature is available on the Internet at: www.promega.com/protocols/

More information

LDH-Glo Cytotoxicity Assay Instructions for use of Products J2380 AND J2381

LDH-Glo Cytotoxicity Assay Instructions for use of Products J2380 AND J2381 TECHNICAL MANUAL LDH-Glo Cytotoxicity Assay Instructions for use of Products J238 AND J2381 7/18 TM548 LDH-Glo Cytotoxicity Assay All technical literature is available at: www.promega.com/protocols/ Visit

More information

WST-1 CTLL-2 cell proliferation Kit (ready-to-use)

WST-1 CTLL-2 cell proliferation Kit (ready-to-use) Immunservice WST-1 CTLL-2 cell proliferation Kit (ready-to-use) Optimized for applications with CTLL-2 cells USER MANUAL For research use only. Not intended for diagnostic or therapeutic procedures 1.

More information

TECHNICAL MANUAL. NAD/NADH-Glo Assay. Instructions for Use of Products G9071 and G9072. Revised 8/17 TM399

TECHNICAL MANUAL. NAD/NADH-Glo Assay. Instructions for Use of Products G9071 and G9072. Revised 8/17 TM399 TECHNICAL MANUAL NAD/NADH-Glo Assay Instructions for Use of Products G9071 and G9072 Revised 8/17 TM399 NAD/NADH-Glo Assay All technical literature is available at: www.promega.com/protocols/ Visit the

More information

RayBio LDH-Cytotoxicity Assay Kit

RayBio LDH-Cytotoxicity Assay Kit RayBio LDH-Cytotoxicity Assay Kit User Manual Version 1.0 September 11, 2014 RayBio LDH-Cytotoxicity Assay (Cat#: 68CX-LDH-S400) RayBiotech, Inc. We Provide You With Excellent Support And Service Tel:(Toll

More information

CELL HEALTH. reliable cell viability data. instant time savings. PrestoBlue Cell Viability Reagent

CELL HEALTH. reliable cell viability data. instant time savings. PrestoBlue Cell Viability Reagent CELL HEALTH reliable cell viability data instant time savings PrestoBlue Cell Viability Reagent PrestoBlue Cell Viability Reagent Why should I use the PrestoBlue Cell Viability Reagent? PrestoBlue reagent

More information

CytoScan WST 1 Cell Cytotoxicity Assay

CytoScan WST 1 Cell Cytotoxicity Assay 087PR G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name CytoScan WST 1 Cell Cytotoxicity Assay Colorimetric Assay for Quantitation of Cellular

More information

CellTiter 96 AQ ueous One Solution Cell Proliferation Assay INSTRUCTIONS FOR USE OF PRODUCTS G3580, G3581 AND G3582.

CellTiter 96 AQ ueous One Solution Cell Proliferation Assay INSTRUCTIONS FOR USE OF PRODUCTS G3580, G3581 AND G3582. Technical Bulletin CellTiter 96 AQ ueous One Solution Cell Proliferation Assay ISTRUCTIOS FOR USE OF PRODUCTS G3580, G3581 AD G3582. PRITED I USA. Revised 4/05 AF9TB245 0405TB245 CellTiter 96 AQ ueous

More information

Xpert TM MTT Cell Assay Teaching Kit

Xpert TM MTT Cell Assay Teaching Kit Xpert TM MTT Cell Assay Teaching Kit Product Code: CCK020 Contents 1. Introduction 2. Applications 3. Kit contents and storage condition 4. Materials required but not provided in the kit 5. General guidelines

More information

RealTime-Glo MT Cell Viability Assay

RealTime-Glo MT Cell Viability Assay TECHNICAL MANUAL RealTime-Glo MT Cell Viability Assay Instructions for Use of Products G9711, G9712 and G9713 Revised 3/16 TM431 RealTime-Glo MT Cell Viability Assay All technical literature is available

More information

ChromaDazzle Lactate Dehydrogenase Kit

ChromaDazzle Lactate Dehydrogenase Kit Technical Manual ChromaDazzle Lactate Dehydrogenase Kit Catalogue Code: BA0006 Pack Size: 100 assays Research Use Only DESCRIPTION LACTATE DEHYDROGENASE (LDH) is an oxidoreductase which catalyzes the interconversion

More information

Cytotoxicity LDH Assay Kit-WST

Cytotoxicity LDH Assay Kit-WST Cytotoxicity LDH Assay Kit-WST Supplementary Information Notice to Users Preparation of Reagent This instruction complements the Technical Manual in the product. Please use this instruction as supplements

More information

CytoTox-Glo Cytotoxicity Assay All technical literature is available on the Internet at: Please visit the web site to verify that

CytoTox-Glo Cytotoxicity Assay All technical literature is available on the Internet at:  Please visit the web site to verify that Technical Bulletin CytoTox-Glo Cytotoxicity Assay INSTRUCTIONS FOR USE OF PRODUCTS G929, G9291 AND G9292 PRINTED IN USA. Revised 5/9 CytoTox-Glo Cytotoxicity Assay All technical literature is available

More information

TECHNICAL MANUAL. NADP/NADPH-Glo Assay. Instructions for Use of Products G9081 and G9082. Revised 8/17 TM400

TECHNICAL MANUAL. NADP/NADPH-Glo Assay. Instructions for Use of Products G9081 and G9082. Revised 8/17 TM400 TECHNICAL MANUAL NADP/NADPH-Glo Assay Instructions for Use of Products G9081 and G9082 Revised 8/17 TM400 NADP/NADPH-Glo Assay All technical literature is available at: www.promega.com/protocols/ Visit

More information

ATPlite Assay Performance in Human Primary Cells

ATPlite Assay Performance in Human Primary Cells A P P L I C AT I O N N O T E Cell Viability Assays Author: Verena Brucklacher-Waldert Crescendo Biologics Cambridge, UK Assay Performance in Human Primary Cells Introduction In vitro assays using primary

More information

LDH Cytotoxicity Assay Kit. Item No

LDH Cytotoxicity Assay Kit. Item No LDH Cytotoxicity Assay Kit Item No. 10008882 TABLE OF CONTENTS GENERAL INFORMATION 3 Materials Supplied 4 Precautions 4 If You Have Problems 4 Storage and Stability 4 Materials Needed but Not Supplied

More information

TACS MTT Assays. Cell Proliferation and Viability Assays. Catalog Number: TA tests. Catalog Number: TA tests

TACS MTT Assays. Cell Proliferation and Viability Assays. Catalog Number: TA tests. Catalog Number: TA tests TACS MTT Assays Cell Proliferation and Viability Assays Catalog Number: TA5355-2500 tests Catalog Number: TA5412-5000 tests This package insert must be read in its entirety before using this product. FOR

More information

Luminescence ATP Detection Assay System

Luminescence ATP Detection Assay System UFOR RESEARCH SE ONLY Luminescence ATP Detection Assay System For best results, see page 15 for product use recommendations. Contents Page 1. Introduction 3 2. Principle 5 3. Advantages of ATPlite TM

More information

TECHNICAL MANUAL. HDAC-Glo 2 Assay. Instructions for Use of Product G9590. Revised 11/17 TM406

TECHNICAL MANUAL. HDAC-Glo 2 Assay. Instructions for Use of Product G9590. Revised 11/17 TM406 TECHNICAL MANUAL HDAC-Glo 2 Assay Instructions for Use of Product G959 Revised 11/17 TM46 HDAC-Glo 2 Assay All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify

More information

DHL Cell Cytotoxicity Assay Kit

DHL Cell Cytotoxicity Assay Kit DHL Cell Cytotoxicity Assay Kit *Fluorimetric* Catalog # 71303 Unit Size Kit Size 1 kit 5,000 assays (96-well) or 10,000 assays (384-well) This kit provides a convenient fluorescent method to detect lactate

More information

Cytotoxicity LDH Assay Kit-WST

Cytotoxicity LDH Assay Kit-WST Cytotoxicity LDH Assay Kit-WST Supplementary Information Notice to Users This instruction complements the Technical Manual in the product. Please use this instruction as supplements of the Technical Manual.

More information

Cell Viability and Senescence Detection Kits

Cell Viability and Senescence Detection Kits Cell Viability and Senescence Detection Kits Cell viability and proliferation assays Growth factor/cytokine assays Cell culture condition optimization Cell number determination Multiwell and automation

More information

LDH-Cytotoxicity Assay Kit II

LDH-Cytotoxicity Assay Kit II LDH-Cytotoxicity Assay Kit II Catalog Number KA0786 500 assays Version: 08 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

LDH Cytotoxicity Assay Kit

LDH Cytotoxicity Assay Kit LDH Cytotoxicity Assay Kit Item No. 601170 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd Ann Arbor, MI USA TABLE OF CONTENTS GENERAL INFORMATION 3

More information

ToxiLight bioassay kit

ToxiLight bioassay kit ToxiLight bioassay kit Non destructive cytotoxicity assay www.lonza.com U.S. Scientific Support: 800-521-0390 scientific.support@lonza.com EU/ROW Scientific Support: +49-221-99199-400 scientific.support.eu@lonza.com

More information

RubyGlow TM Luminescent Cell Proliferation Assay Kit RubyGlow TM Luminescent Cell Viability Assay Kit RubyGlow TM Luminescent Cytotoxicity Assay Kit

RubyGlow TM Luminescent Cell Proliferation Assay Kit RubyGlow TM Luminescent Cell Viability Assay Kit RubyGlow TM Luminescent Cytotoxicity Assay Kit Product Information Sheet Luminescent Cell Proliferation Assay Kit Product M1574 Luminescent Cell Viability Assay Kit Product M1575 Luminescent Cytotoxicity Assay Kit Product M1576 Marker Gene Technologies,

More information

ToxiLight BioAssay Kit

ToxiLight BioAssay Kit Lonza Rockland, Inc. www.lonza.com biotechserv@lonza.com Tech Service: 800-521-0390 Customer Service: 800-638-8174 Document # 18882-1007-02 Rockland, ME 04841 USA ToxiLight BioAssay Kit Non Destructive

More information

CytoTox-Glo Cytotoxicity Assay

CytoTox-Glo Cytotoxicity Assay TECHNICAL BULLETIN CytoTox-Glo Cytotoxicity Assay Instruc ons for Use of Products G929, G9291 and G9292 Revised 9/17 TB359 CytoTox-Glo Cytotoxicity Assay All technical literature is available at: www.promega.com/protocols/

More information

ab MTT Cell Proliferation Assay Kit

ab MTT Cell Proliferation Assay Kit Version 1 Last updated 22 March 2018 ab211091 MTT Cell Proliferation Assay Kit For the measurement of cell proliferation in cultured cells. This product is for research use only and is not intended for

More information

Instructions For Research Use Only. Not For Use In Diagnostic Procedures

Instructions For Research Use Only. Not For Use In Diagnostic Procedures Instructions For Research Use Only. Not For Use In Diagnostic Procedures TACS TM MTT Cell Proliferation Assays TACS TM MTT Cell Proliferation Assays Cat# 4890-025-K, 2500 Tests Cat# 4890-050-K, 5000 Tests

More information

Instructions For Research Use Only. Not For Use In Diagnostic Procedures

Instructions For Research Use Only. Not For Use In Diagnostic Procedures Instructions For Research Use Only. Not For Use In Diagnostic Procedures TACS MTT Cell Proliferation Assays Cat# 4890-25-K, 2500 Tests Cat# 4890-50-K, 5000 Tests i E8/9/07v1 TACS MTT Cell Proliferation

More information

EZ-TITER Cell Proliferation Reagent Cat# EZ-TITER

EZ-TITER Cell Proliferation Reagent Cat# EZ-TITER EZ-TITER Cell Proliferation Reagent Cat# EZ-TITER INSTRUCTION MANUAL ZBM0070.00 STORAGE CONDITIONS EZ-TITER Reagent: 4 C All Zen-Bio Inc. products are for research use only. Not approved for human or veterinary

More information

ATP Luminometric Assay Kit

ATP Luminometric Assay Kit ATP Luminometric Assay Kit Catalog No. KM0029 Detection and Quantification of ATP Concentrations in Biological Samples. Research Purposes Only. Not Intended for Diagnostic or Clinical Procedures. INTRODUCTION

More information

LDH Cytotoxicity Assay Kit

LDH Cytotoxicity Assay Kit LDH Cytotoxicity Assay Kit Item No. 601170 Customer Service 800.364.9897 * Technical Support 888.526.5351 www.caymanchem.com TABLE OF CONTENTS GENERAL INFORMATION 3 Materials Supplied 4 Precautions 4 If

More information

RayBio ApoSENSOR TM ATP Cell Viability Assay Kit

RayBio ApoSENSOR TM ATP Cell Viability Assay Kit RayBio ApoSENSOR TM ATP Cell Viability Assay Kit User Manual Version 1.0 October 1 st, 2015 Cat#: 68CV-ATP-S200 Cat#: 68CV-ATP-S1000 RayBiotech, Inc. We Provide You With Excellent Support And Service Tel:(Toll

More information

AlamarBlue Cell Viability Assay Reagent

AlamarBlue Cell Viability Assay Reagent 668PR A Geno Technology, Inc. (USA) brand name G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com AlamarBlue Cell Viability Assay Reagent (Cat.# 786-921, 786-922 & 786-923) think proteins!

More information

MTT-Cell Based Proliferation/Toxicity Assay

MTT-Cell Based Proliferation/Toxicity Assay MTT-Cell Based Proliferation/Toxicity Assay Catalog Code: K017 Storage: -20 C dark MTT is carcinogenic. Avoid direct contact. Use gloves and eye protection. For research use only. Not for human or diagnostic

More information

Single Addition Luminescence ATP Detection Assay System

Single Addition Luminescence ATP Detection Assay System UFOR RESEARCH SE ONLY Single Addition Luminescence ATP Detection Assay System For best results, see page 18 for product use recommendations. Contents Page 1. Introduction 3 2. Principle 5 3. Advantages

More information

GenWay. LDH Cytotoxicity Detection Kit Manual. Catalog Number:

GenWay. LDH Cytotoxicity Detection Kit Manual. Catalog Number: Table of contents 1. Description... 2 2. Principle... 2 3. Features... 4 4. Kit components... 4 5. Storage... 4 6. Preparation of solutions 6-1. Precautions... 4 6-2. Required equipments and reagents not

More information

Viability/Cytotoxicity Multiplex Assay Kit

Viability/Cytotoxicity Multiplex Assay Kit Viability/Cytotoxicity Multiplex Assay Kit Technical Manual General information A method for measuring the number of viable cells or that of dead cells is widely used as a cytotoxicity evaluation. In order

More information

CellTiter-Glo 3D Cell Viability Assay

CellTiter-Glo 3D Cell Viability Assay TECHNICAL MANUAL CellTiter-Glo 3D Cell Viability Assay Instructions for Use of Products G9681, G9682 and G9683 Revised 11/15 TM412 CellTiter-Glo 3D Cell Viability Assay All technical literature is available

More information

IDTox Lactate Dehydrogenase (LDH) Enzyme Cytotoxicity Kit For Cell Culture Supernatant Samples

IDTox Lactate Dehydrogenase (LDH) Enzyme Cytotoxicity Kit For Cell Culture Supernatant Samples Rev Date: Mar 26 2015 Rev: 1 1 of 1 IDTox Lactate Dehydrogenase (LDH) Enzyme Cytotoxicity Kit For Cell Culture Supernatant Samples 192 Wells Enzyme Immunoassay for the determination of the Lactate Dehydrogenase

More information

RayBio LDH-Cytotoxicity Assay Kit II

RayBio LDH-Cytotoxicity Assay Kit II RayBio LDH-Cytotoxicity Assay Kit II User Manual Version 1.0 August 1, 2014 RayBio LDH-Cytotoxicity Assay (Cat#: 68CX-LDH-S500) RayBiotech, Inc. We Provide You With Excellent Support And Service Tel:(Toll

More information

CellTox Green Cytotoxicity Assay

CellTox Green Cytotoxicity Assay TECHNICAL MANUAL CellTox Green Cytotoxicity Assay Instruc ons for Use of Products G8741, G8742, G8743 and G8731 Revised 5/15 TM375 CellTox Green Cytotoxicity Assay All technical literature is available

More information

Luminescence ATP Detection Assay System

Luminescence ATP Detection Assay System UFOR RESEARCH SE ONLY Luminescence ATP Detection Assay System For best results, see page 14 for product use recommendations. Contents Page 1. Introduction 3 2. Principle 5 3. Advantages of ATPLite TM 7

More information

Firefly Luciferase Assay Kit

Firefly Luciferase Assay Kit Firefly Luciferase Assay Kit Catalog Number: 30003-1 (150 assays) 30003-2 (1000 assays) Contact Information Address: Biotium, Inc. 3159 Corporate Place Hayward, CA 94545 USA Telephone: (510) 265-1027 Fax:

More information

LDH Cytotoxicity Detection Kit

LDH Cytotoxicity Detection Kit Cat. # MK401 For Research Use LDH Cytotoxicity Detection Kit Product Manual Table of Contents I. Description...3 II. Principle...3 III. Features...5 IV. Components...5 V. Storage...5 VI. Preparation of

More information

MULTITOX-FLUOR MULTIPLEX CYTOTOXICITY ASSAY TECHNOLOGY

MULTITOX-FLUOR MULTIPLEX CYTOTOXICITY ASSAY TECHNOLOGY MULTITOX-FLUOR MULTIPLEX ASSAY TECHNOLOGY ANDREW L. NILES, M.S. 1, RICHARD A. MORAVEC, B.S. 1, MICHAEL SCURRIA, B.S. 2, WILLIAM DAILY, PH.D. 2, LAURENT BERNAD, PH.D. 2, BRIAN MCNAMARA, PH.D. 1, ANISSA

More information

CHAPTER 4 IN VITRO CYTOTOXICITY ASSAY ON GOLD NANOPARTICLES WITH DIFFERENT STABILIZING AGENT

CHAPTER 4 IN VITRO CYTOTOXICITY ASSAY ON GOLD NANOPARTICLES WITH DIFFERENT STABILIZING AGENT 81 CHAPTER 4 IN VITRO CYTOTOXICITY ASSAY ON GOLD NANOPARTICLES WITH DIFFERENT STABILIZING AGENT 4.1 INTRODUCTION The nanoparticles have been shown to adhere to cell membranes (Ghitescu and Fixman 1984)

More information

ab MTS Cell Proliferation Assay Kit (Colorimetric)

ab MTS Cell Proliferation Assay Kit (Colorimetric) ab197010 MTS Cell Proliferation Assay Kit (Colorimetric) Instructions for Use For the rapid, sensitive and accurate measurement of cell proliferation. View kit datasheet: www.abcam.com/ab197010 (use www.abcam.cn/ab197010

More information

Calpain-Glo Protease Assay

Calpain-Glo Protease Assay TECHNICAL BULLETIN Calpain-Glo Protease Assay Instructions for Use of Products G8501 and G8502 Revised 12/15 TB344 Calpain-Glo Protease Assay All technical literature is available at: www.promega.com/protocols/

More information

Lactate Assay Kit. Catalog Number KA assays Version: 08. Intended for research use only.

Lactate Assay Kit. Catalog Number KA assays Version: 08. Intended for research use only. Lactate Assay Kit Catalog Number KA0833 100 assays Version: 08 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background... 3 General Information...

More information

SensoLyte Homogeneous AFC Caspase-8 Assay Kit *Fluorimetric*

SensoLyte Homogeneous AFC Caspase-8 Assay Kit *Fluorimetric* SensoLyte Homogeneous AFC Caspase-8 Assay Kit *Fluorimetric* Catalog # 72088-100 Kit Size 100 Assays (96-well plate) Optimized Performance: This kit is optimized to detect caspase-8 activity. Enhanced

More information

Multiplexing Cell-Based Assays: Get More Biologically Relevant Data

Multiplexing Cell-Based Assays: Get More Biologically Relevant Data Multiplexing Cell-Based Assays: Get More Biologically Relevant Data Kyle Hooper, PhD December 2011 Promega Webinar Multiplexing assays for more informative data Introduction Plate-based assays for viability,

More information

Optimizing Dual-Glo Luciferase Assays with the Synergy HT Multi-Detection Microplate Reader

Optimizing Dual-Glo Luciferase Assays with the Synergy HT Multi-Detection Microplate Reader Optimizing Dual-Glo Luciferase Assays with the Synergy HT Multi-Detection Microplate Reader Introduction Today s biological science and drug discovery research often involves the measurement of large numbers

More information

LDH-Cytotoxicity Assay Kit II

LDH-Cytotoxicity Assay Kit II ab65393 LDH-Cytotoxicity Assay Kit II Instructions for Use For the rapid, sensitive and accurate measurement of LDH-Cytotoxicity in cell culture samples. This product is for research use only and is not

More information

Pyruvate dehydrogenase (PDH) Combo (Activity + Profiling) Microplate Assay Kit

Pyruvate dehydrogenase (PDH) Combo (Activity + Profiling) Microplate Assay Kit ab110671 Pyruvate dehydrogenase (PDH) Combo (Activity + Profiling) Microplate Assay Kit Instructions for Use For the activity and relative quantity of PDH in a Human, Bovine, Mouse or Rat sample This product

More information

CytoSelect LDH Cytotoxicity Assay Kit

CytoSelect LDH Cytotoxicity Assay Kit Product Manual CytoSelect LDH Cytotoxicity Assay Kit Catalog Number CBA- 241 960 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction The measurement and monitoring of cell cytotoxicity

More information

Luc-Pair Renilla Luciferase HS Assay Kit

Luc-Pair Renilla Luciferase HS Assay Kit G e n e C o p o eia TM Expressway to Discovery Luc-Pair Renilla Luciferase HS Assay Kit For Renilla luciferase assays Cat. No. LF010 (100 reactions) Cat. No. LF011 (300 reactions) Cat. No. LF012 (1000

More information

IncuCyte phrodo Red Phagocytosis Assay

IncuCyte phrodo Red Phagocytosis Assay IncuCyte phrodo Red Phagocytosis Assay For quantification of phagocytosis of apoptotic and non-apoptotic cell This protocol is intended for the measurement of both apoptotic (efferocytosis) and non-apoptotic

More information

IncuCyte Phagocytosis Assay

IncuCyte Phagocytosis Assay IncuCyte Phagocytosis Assay For quantification of phagocytosis of apoptotic and non-apoptotic cell This protocol is intended for the measurement of both apoptotic (efferocytosis) and non-apoptotc phagocytosis

More information

ab65354 Superoxide Dismutase Activity Assay kit (Colorimetric)

ab65354 Superoxide Dismutase Activity Assay kit (Colorimetric) Version 9 Last updated 11 January 2018 ab65354 Superoxide Dismutase Activity Assay kit (Colorimetric) For the measurement of Superoxide Dismutase Activity in various samples. This product is for research

More information

Luciferase Reporter Assay Kit III (Firefly & Renilla Single-tube Assay)

Luciferase Reporter Assay Kit III (Firefly & Renilla Single-tube Assay) Luciferase Reporter Assay Kit III (Firefly & Renilla Single-tube Assay) 2 3 Contents Introduction 3 Kit Contents 5 Storage and Stability 5 Assay Protocol 6 References 9 Ordering Information 10 Introduction

More information

IncuCyte Phagocytosis Assay

IncuCyte Phagocytosis Assay IncuCyte Phagocytosis Assay For quantification of phagocytosis of apoptotic and non-apoptotic cell This protocol is intended for the measurement of both apoptotic (efferocytosis) and non-apoptotc phagocytosis

More information

ApoTox-Glo Triplex Assay

ApoTox-Glo Triplex Assay TECHNICAL MANUAL ApoTox-Glo Triplex Assay Instructions for Use of Products G6320 and G6321 Revised 4/15 TM322 ApoTox-Glo Triplex Assay All technical literature is available at: www.promega.com/protocols/

More information

Proteasome-Glo Assay Systems INSTRUCTIONS FOR USE OF PRODUCTS G8531, G8532, G8621, G8622, G8631, G8632, G8641, AND G8642.

Proteasome-Glo Assay Systems INSTRUCTIONS FOR USE OF PRODUCTS G8531, G8532, G8621, G8622, G8631, G8632, G8641, AND G8642. Technical Bulletin Proteasome-Glo Assay Systems INSTRUCTIONS FOR USE OF PRODUCTS G8531, G8532, G8621, G8622, G8631, G8632, G8641, AND G8642. PRINTED IN USA. Revised 5/09 Proteasome-Glo Assay Systems All

More information

Table of contents Required equipments and reagents not supplied in the kit Preparation of reaction mixtures...5

Table of contents Required equipments and reagents not supplied in the kit Preparation of reaction mixtures...5 Table of contents 1. Description...2 2. Principle...2 3. Features...4 4. Kit components...4 5. Storage...4 6. Preparation of solutions 6-1. Precautions...4 6-2. Required equipments and reagents not supplied

More information

ONE-Glo + Tox Luciferase Reporter and Cell Viability Assay

ONE-Glo + Tox Luciferase Reporter and Cell Viability Assay TECHNICAL MANUAL ONE-Glo + Tox Luciferase Reporter and Cell Viability Assay Instructions for Use of Products E7110 and E7120 Revised 2/16 TM356 ONE-Glo + Tox Luciferase Reporter and Cell Viability Assay

More information

Multiplexing Cell-Based Assays:

Multiplexing Cell-Based Assays: Multiplexing Cell-Based Assays: Get More Biologically Relevant Data Fall 2010 Click this icon to view speakers notes for each slide. 2010, Promega Corporation. Multiplexing assays for more informative

More information

Pgp-Glo Assay Systems

Pgp-Glo Assay Systems TECHNICAL BULLETIN Pgp-Glo Assay Systems Instructions for Use of Products V3591 and V3601 Revised 11/15 TB341 Pgp-Glo Assay Systems All technical literature is available at: www.promega.com/protocols/

More information

TREVIGEN Instructions For Research Use Only. Not For Use In Diagnostic Procedures.

TREVIGEN Instructions For Research Use Only. Not For Use In Diagnostic Procedures. TREVIGEN Instructions For Research Use Only. Not For Use In Diagnostic Procedures. TACS TM XTT Cell Proliferation Assay Catalog # 4891-025-K, 2500 Tests The product accompanying this document is intended

More information

High Sensitivity Luminescence Reporter Gene Assay System

High Sensitivity Luminescence Reporter Gene Assay System High Sensitivity Luminescence Reporter Gene Assay System FOR IN VITRO RESEARCH USE ONLY Contents Page 1. Introduction 3 2. neolite description 4 3. Contents and storage of neolite 12 4. Additional requirements

More information

LAB 1: CYTOTOXICITY SCREENING

LAB 1: CYTOTOXICITY SCREENING LAB 1: CYTOTOXICITY SCREENING Materials testing is an important phase of modern biomanufacturing in everything from cell culture to joint replacement or cosmetics development [1-3]. A basic cytotoxicity

More information

Cell Health and Mechanistic Toxicity Assays

Cell Health and Mechanistic Toxicity Assays Cell Health and Mechanistic Toxicity Assays Zhong Yu, PhD Product Manager BeNeLux & Nordic Zhong.yu@promeg.com March 2015 Outline Bioluminescent assays Live and Dead Cell Assays Apoptosis Stress Events

More information

Luc-Pair Duo-Luciferase Assay Kit 2.0

Luc-Pair Duo-Luciferase Assay Kit 2.0 G e n e C o p o eia TM Expressway to Discovery Luc-Pair Duo-Luciferase Assay Kit 2.0 For luciferase assays Cat. No. LF001 (Old Cat. No. LPFR-P010, 100 reactions) Cat. No. LF002 (Old Cat. No. LPFR-P030,

More information

Bright Light, No Lysis

Bright Light, No Lysis Bright Light, o Lysis Measuring Renilla Luciferase Luminescence in Living Cells By Erika Hawkins 1, M.S., James Unch 2, Ph.D., ancy Murphy 1, B.S., Jolanta Vidugiriene 1, Ph.D., Mike Scurria 2, Dieter

More information

WST-8 Cell Proliferation Assay Kit. Item No

WST-8 Cell Proliferation Assay Kit. Item No WST-8 Cell Proliferation Assay Kit Item No. 10010199 TABLE OF CONTENTS GENERAL INFORMATION 3 Materials Supplied 4 Precautions 4 If You Have Problems 4 Storage and Stability 4 Materials Needed but Not Supplied

More information

Cell Viability Assay Kit (Bioluminescent)

Cell Viability Assay Kit (Bioluminescent) ab65314 Cell Viability Assay Kit (Bioluminescent) Instructions for Use For the rapid, sensitive and accurate detection of apoptosis and cell proliferation in various samples. This product is for research

More information

Data Sheet. TCR activator / PD-L1 - CHO Recombinant Cell line Cat. #: 60536

Data Sheet. TCR activator / PD-L1 - CHO Recombinant Cell line Cat. #: 60536 Data Sheet TCR activator / PD-L1 - CHO Recombinant Cell line Cat. #: 60536 Product Description Recombinant CHO-K1 cells constitutively expressing human PD-L1 (Programmed Cell Death 1 Ligand 1, CD274, B7

More information

Proteasome Activity Fluorometric Assay Kit II (Cat. # J4120)

Proteasome Activity Fluorometric Assay Kit II (Cat. # J4120) Proteasome Activity Fluorometric Assay Kit II (Cat. # J4120) Each supplied substrate is sufficient for use in 250 X 100 µl reactions to monitor the chymotrypsin-like (Suc-LLVY- AMC), trypsin-like (Boc-LRR-AMC)

More information

Ultra-High Sensitivity Luminescence Reporter Gene Assay System

Ultra-High Sensitivity Luminescence Reporter Gene Assay System UFOR RESEARCH SE ONLY Ultra-High Sensitivity Luminescence Reporter Gene Assay System FOR IN VITRO RESEARCH USE ONLY Contents Page 1. Introduction 3 2. britelite plus description 4 3. Contents and storage

More information

Energy Metabolism Assays

Energy Metabolism Assays Energy Metabolism Assays Glucose-Uptake Glucose Lactate Glutamate Glutamine NAD(P)H Oxidative Stress Highly sensitive, plate-based bioluminescent methods Simple Add-mix-measure protocols Measurement of

More information

SensoLyte Homogeneous AFC Caspase-3/7 Assay Kit

SensoLyte Homogeneous AFC Caspase-3/7 Assay Kit SensoLyte Homogeneous AFC Caspase-3/7 Assay Kit Revision Number:1.1 Last Revised: October 2014 Catalog # Kit Size AS-71114 500 Assays (96-well) or 1250 Assays (384-well) Convenient Format: All essential

More information

User Manual. Cat. No

User Manual. Cat. No User Manual ELISA Amplification System Cat. No. 19589-019 Table of Contents 1. Notices to Customer... 1 1.1 Important Information... 1 1.2 Precautions... 1 2. Overview... 2 3. Methods... 4 3.1 Components...

More information

Calcein AM Cell Viability Kit

Calcein AM Cell Viability Kit Instructions For Research Use Only. Not For Use In Diagnostic Procedures Calcein AM Cell Viability Kit Catalog# 4892-010-K 1000 Tests* * Calculated based on using 1 μm final concentration of Calcein AM;

More information

COLORIMETRIC GAPDH ASSAY KIT

COLORIMETRIC GAPDH ASSAY KIT REF: P40116 CELL-BASED ASSAY KITS COLORIMETRIC GAPDH ASSAY KIT Product Type: Catalog Number: Assay Type: Format: GAPDH Assay Kit P40116 Colorimetric 100 Tests Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)

More information

Factors to Consider for Designing and Optimizing Assays Applied to 3D Cultures

Factors to Consider for Designing and Optimizing Assays Applied to 3D Cultures Factors to Consider for Designing and Optimizing Assays Applied to 3D Cultures Terry Riss 2016. Background and Justification for Using 3D Cell Culture Models Growing awareness of advantages of 3D cell

More information

NAD/NADH Cell-Based Assay Kit

NAD/NADH Cell-Based Assay Kit NAD/NADH Cell-Based Assay Kit Item No. 600480 Customer Service 800.364.9897 * Technical Support 888.526.5351 www.caymanchem.com TABLE OF CONTENTS GENERAL INFORMATION 3 Materials Supplied 3 Safety Data

More information

ViaLight plus sample kit

ViaLight plus sample kit ViaLight plus sample kit High sensitivity cell proliferation/cytotoxicity kit with extended signal stability www.lonza.com U.S. Scientific Support: 800-521-0390 scientific.support@lonza.com EU/ROW Scientific

More information

The Challenge The existing assay was based upon the ability of the client s therapeutic molecule to support the growth/ proliferation of a responder c

The Challenge The existing assay was based upon the ability of the client s therapeutic molecule to support the growth/ proliferation of a responder c A Executive Summary client sought Aptuit s expertise to improve an existing bioassay for assessing the potency of the client s biopharmaceutical therapeutic molecule. The existing bioassay was not as precise,

More information

Human Alanine Aminotransferase (ALT) ELISA Kit. For Reference Only

Human Alanine Aminotransferase (ALT) ELISA Kit. For Reference Only Human Alanine Aminotransferase (ALT) ELISA Kit Catalog No.: abx572210 Size: 96T Range: 0.312 ng/ml - 20 ng/ml Sensitivity: < 0.132 ng/ml Storage: Store standard, detection reagent A, detection reagent

More information

D-Lactate Dehydrogenase Fluorometric Assay Kit

D-Lactate Dehydrogenase Fluorometric Assay Kit D-Lactate Dehydrogenase Fluorometric Assay Kit Catalog No. KM0094 Detection and Quantification of D-Lactate Dehydrogenase Concentrations in Biological Samples. Research Purposes Only. Not Intended for

More information

ViaLight Plus Kit. High Sensitivity Cell Proliferation/Cytotoxicity Kit With Extended Signal Stability

ViaLight Plus Kit. High Sensitivity Cell Proliferation/Cytotoxicity Kit With Extended Signal Stability Lonza Rockland, Inc. www.lonza.com biotechserv@lonza.com Tech Service: 800-521-0390 Customer Service: 800-638-8174 Document # 18880-1007-03 Rockland, ME 04841 USA ViaLight Plus Kit High Sensitivity Cell

More information