Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

Size: px
Start display at page:

Download "Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona"

Transcription

1 Structural variation Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

2 Genetic variation How much genetic variation is there between individuals? What type of variants exist and how are they generated? What is the genetic basis of phenotypic traits?

3 Overview 1. Types of structural variants (SVs) 2. Methods for detecting SVs 3. Copy number variants (CNVs) 4. Indels and transposable element (TE) insertions 5. Inversions 6. Mechanisms of generation 7. Functional effects and examples

4 INDELS Types of structural variants a b c d e f w x y z w x y c d e f a b e f DELETION a b c d e f a b c d e f a b TRANSLOCATION a b c d e f z a b c d e f INSERTION a b c d e f a e d c b f INVERSION a b c c d e f DUPLICATION

5 Pang et al. (2010) Genome Biology 11: R52 Structural variation vs SNPs Structural variants (SV) Genomic alterations that change the organization of the DNA molecule In comparison with SNPs: SVs represent a lower number of mutations SVs affect a higher number of nucleotides in the genome Comparison Venter Reference genomes structural variants 48,8 Mb (1,5%) indels 39,54 Mb (1,2%) 167 inversions 9,26 Mb (0,3%) SNPs 3,2 Mb (0,1%) Mutations 80% SNPs 20% SVs Variable bases 6,15% SNPs 93,85% SVs

6 Methods for detection of SVs Cytogenetic techniques - Comparative genomic hybridization (CGH) arrays Paired-end mapping (PEM) Sequencing and de novo assembly of complete genomes + RESOLUTION THROUGHPUT

7 Cytogenetic techniques Karyotyping FISH Deletion Duplication Deletion Chromosome painting Fiber FISH Translocation Copy number variant

8 Fluorescence in situ hybridization (FISH) Labelled probe hybridization Final result Figure Genomes 3. Brown. 3rd edition (2007)

9 Figure 3. Feuk et al. (2005) PLoS Genetics 1: e56. Inversion detection by FISH in interphase nucleus Fixed inversion between humans and chimpanzees STD INV inversion Polymorphic inversion in humans

10 Comparative genomic hybridization arrays (acgh) The ratio of fluoresecence intensity of the test and the reference DNA indicates the differences in copy number for a particular location in the genome Figure 2. Feuk et al. (2006) Nature Reviews Genetics 7: 85-97

11 Genomic DNA Fragmentation Genomic DNA library DNA digestion with restriction enzymes Cloning inside vector GENOMIC LIBRARY

12 Paired-end mapping (PEM) 1. Construction of a DNA library of fragments of a defined size from the DNA of interest (test DNA) 2. Sequencing of both ends of a large number of fragments DNA test 40 kb 3. Mapping of both ends to a reference genome and prediction of SVs Ref DNA 40 kb 30 kb 60 kb X kb Ref DNA 20 kb Punt trencament 1 Punt trencament 2 Test DNA No variant 10 kb Insertion Deletion Inversion

13 Copy number variants (CNV) CNV DNA segment present in a variable number of copies compared to a reference genome Individu 1 Individu 2 2 copies 3 copies Individu 3 5 copies 8599 validated CNVs spanning a total of Mb (3.7% of the genome) detected in 450 individuals of European, African and Asian ancestry Two genomes show different copy number in 1098 CNV regions Detected CNVs have sizes between 443 bp and 1.28 Mb (average size 2.9 kb) CNVs can include genes Some CNVs do not seem to have any influence in phenotype but others have been associated to diseases Conrad et al. (2010) Nature 464:

14 CNVs and segmental duplications CNV Ind. 1 Ind. 2 Ind. 3 DNA segment present in a variable number of copies compared to a reference genome 1 copy 2 copies 5 copies SD Ind. 1 Ind. 2 Ind. 3 Segment of DNA with very similar sequence present in more than one copy in the genome 2 copies 2 copies 2 copies Lesson 6. Structural variation 14 Mario Cáceres

15 Redon et al. (2006) Nature 444: Copy number variants (CNV) Chromosomal distribution of 1447 regions with CNVs 24% of CNVs associated with SDs 58% of CNVs overlap known genes

16 Montgomery et al. (2013) Genome Res 23: Short indels <50 bp 1.6 million indels from 179 individuals representing 3 diverse human populations Purifying selection against indels in functional regions 43-48% of indels occur 4% of the genome (indel hotspots), while in the remaining 96% their prevalence is 16 times lower than that for SNPs Polymerase slippage can explain ¾ of all indels Indel density in 6 genic regions Coding indel lengths

17 Kidd et al. (2008) Nature 453: Large indels Fosmid (40 kb) PEM in 8 humans found 747 deletions and 724 insertions >5 kb 32 kb deletions between 12-kb direct SDs with 94% identity Identification of novel sequence not included in the reference genome

18 TE insertion confirmed by PCR TE insertion polymorphisms Present in reference Absent in test Read pairs mapping into the insertion Reads containing part of the insertion Insertion in test Absent in reference Stewart et al. (2011) PLoS Genetics 7:e Read pairs with longer distance between them

19 Stewart et al. (2011) PLoS Genetics 7:e Figure 1. Li et al. (2011) Nature Biotechnology 29: Polymorphic TE insertions in humans Data from 1000 genomes project (185 individuals from 3 populations) Active elements are Alu, L1 and SVA Size distribution of structural variants <1 kb in two sequenced genomes Alu 7380 polymorphic insertions detected Polymorphisms between two individuals: 2 European African European and 1 African 2000 Polymorphic TE insertions within genes De novo insertion frequency = 1 insertion per 20 births

20 Inversions Change of orientation of a segment of DNA 2st 2j Distal Inverted regions Proximal Cen. Cen. STD INV Types of inversions Inversions have been associated to phenotypical traits Mechanisms by which inversions are able to affect phenotype remain unknown Balanced events are difficult to study They can present repeats in opposite orientation at their breakpoints

21 Effects and consequences of inversions Suppression of recombination Within the inverted sequence in STD/INV heterozygotes Alleles found together within an inversion tend to be inherited together

22 Effects and consequences of inversions Position effects Altered gene expression of adjacent genes caused by the mutational effects of inversion breakpoints BP location Consequences Between genes Change of positions Within genes Disrupted gene Between regulatory elements and genes Disrupted regulatory elements Expression Normal expression No expression Altered expression patterns

23 Mechanisms of generation of SVs SVs are typically generated during DNA break-induced repair, recombination or replication by different possible mechanisms: Non-Allelic Homologous Recombination (NAHR) (duplications, deletions, inversions, translocations) Non-Homologous End Joining (NHEJ) (deletions, inversions) Transposition of transposable elements (insertions, deletions) Fork Stalling and Template Switching (FoSTeS) (duplications, deletions, inversions, translocations)

24 Non-Allelic Homologous Recombination (NAHR) Intra or interchomosomal recombination between copies of a sequence in different genomic positions Duplications and deletions Translocations Inversions Figure 4. Bailey and Eichler (2006) Nature Reviews Genetics 7:

25 Repeated sequences in the human genome v Gaps SD Segmental duplications Intra/interchromosomal duplicated sequences with length 1 kb and identity 90% Figure 4. International Human Genome Sequencing Consortium (2004) Nature 409: Represent 5.3% of the human genome Transposable elements Almost 50% of the human genome are transposable elements High number of copies of each TE: LINEs 1.5 million SINEs LTR DNA Figure 1. Cordaux and Batzer (2009) Nature Reviews Genetics 10:

26 Non-Homologous End Joining (NHEJ) Original DNA molecules Generation of an inversion Double strand breaks Generation of a translocation Repair Repaired DNA molecules

27 FoSTeS Fork Stalling and Template Switching (FoSTeS) Replication based mechanism Could be combined with microhomology Typically generates very complex rearrangements Figure 5. Gu et al. (2008) PathoGenetics 1:4

28 Altered gene dosage and expression (CNVs) Disruption of gene or regulatory elements (insertions, deletions, inversions) Gene fusion (deletions, inversions) Change in the exon-intron structure (insertions, deletions, CNVs, inversions) Functional consequences of SVs Modification of gene regulatory regions (insertion, deletions, CNVs, inversions) Indirect effects though increased susceptibility of genomic rearrangements (CNVs, inversions)

29 SVs and disease Tuzun et al. (2007) Nature Genetics 37:

30 CNVs and complex diseases Summary of Common Disorders for Which Associations to CNVs Have Been Reported Table 3. Estivill and Armengol (2007) PLoS Genetics 3:e190

31 CNV example: the amilase gene Japanese individual High-starch diet (14 copies) The amylase protein levels in saliva are proportional to the number of the AMY1 gene copies African individual Low-starch diet (6 copies) Chimpanzee Low-starch diet (2 copies) Figures 1, 2 and 3. Perry et al. (2007) Nature Genetics 39: Individuals from populations with high-starch diets have on average more AMY1 copies than those with traditionally low-starch diets.

32 González et al. (2005) Science 307: CNV example: CCL3L1 Individuals with low copy numbers of the chemokine gene, relative to their ethnic background, are associated with markedly enhanced HIV-1 (AIDS) susceptibility.

33 Feschotte (2008) Nature Reviews Genetics 9: Effects of TEs on genes

34 Stefansson et al. (2005) Nature Genetics 37: Chromosome 17 inversion in humans 900-kb polymorphic inversion originated by NAHR between kb segmental duplications Detected mainly in European populations where it has a 20% frequency It is possible that this inversion is positively selected because it may be associated to an increased fertility in female carriers

35 It affects flowering time causing reproductive isolation Figures 1 and 2. Lowry and Willis (2010) PLoS Biology 8: e Inversion in the plant Mimmulus guttatus Mimulus guttatus ecotypes coastal perennial inland annual North-American plant Mimulus guttatus A polymorphic inversion causes the differences between the annual and perennial forms adapted to different environments

36 The 1000 genomes project Objective Experiments Identify all genetic variants with a frequency higher than 1% in the studied populations Sequencing using next-generation techniques of 2500 whole genomes from 25 world-wide populations with a 4x redundancy Pilot phase 179 individuals from 4 populations 15 million SNPs 1 million short insertions and deletions structural variants >95% of variants with frequencies >5%) Phase I 1092 individuals from 14 populations 38 million SNPs 1.4 millions short indels larger deletions 98% of SNPs with frequencies >1% The 1000 Genomes Project Consortium (2010) Nature 467: The 1000 Genomes Project Consortium (2012) Nature 491: 56-65

37

Chromosome inversions in human populations Maria Bellet Coll

Chromosome inversions in human populations Maria Bellet Coll Chromosome inversions in human populations Maria Bellet Coll Universitat Autònoma de Barcelona - Genomics Table of contents Structural variation Inversions Methods for inversions analysis Pair-end mapping

More information

Human Genetic Variation. Ricardo Lebrón Dpto. Genética UGR

Human Genetic Variation. Ricardo Lebrón Dpto. Genética UGR Human Genetic Variation Ricardo Lebrón rlebron@ugr.es Dpto. Genética UGR What is Genetic Variation? Origins of Genetic Variation Genetic Variation is the difference in DNA sequences between individuals.

More information

Analysis of structural variation. Alistair Ward USTAR Center for Genetic Discovery University of Utah

Analysis of structural variation. Alistair Ward USTAR Center for Genetic Discovery University of Utah Analysis of structural variation Alistair Ward USTAR Center for Genetic Discovery University of Utah What is structural variation? What differentiates SV from short variants? What are the major SV types?

More information

Analysis of structural variation. Alistair Ward - Boston College

Analysis of structural variation. Alistair Ward - Boston College Analysis of structural variation Alistair Ward - Boston College What is structural variation? What differentiates SV from short variants? What are the major SV types? Summary of MEI detection What is an

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

Structural(varia+on!

Structural(varia+on! Structural(varia+on! Programming)for)Biology)! CSH,!October!2012!!!! Tomas!Marques7Bonet! ICREA!Research!Professor! InsAtut!de!Biologia!EvoluAva! Nucleotide Forms!of!geneAc!variaAon.!! Single)base8pair)changes)

More information

The Human Genome and its upcoming Dynamics

The Human Genome and its upcoming Dynamics The Human Genome and its upcoming Dynamics Matthias Platzer Genome Analysis Leibniz Institute for Age Research - Fritz-Lipmann Institute (FLI) Sequencing of the Human Genome Publications 2004 2001 2001

More information

GENETICS - CLUTCH CH.15 GENOMES AND GENOMICS.

GENETICS - CLUTCH CH.15 GENOMES AND GENOMICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF GENOMICS Genomics is the study of genomes in their entirety Bioinformatics is the analysis of the information content of genomes - Genes, regulatory sequences,

More information

Research techniques in genetics. Medical genetics, 2017.

Research techniques in genetics. Medical genetics, 2017. Research techniques in genetics Medical genetics, 2017. Techniques in Genetics Cloning (genetic recombination or engineering ) Genome editing tools: - Production of Knock-out and transgenic mice - CRISPR

More information

NUCLEOTIDE RESOLUTION STRUCTURAL VARIATION DETECTION USING NEXT- GENERATION WHOLE GENOME RESEQUENCING

NUCLEOTIDE RESOLUTION STRUCTURAL VARIATION DETECTION USING NEXT- GENERATION WHOLE GENOME RESEQUENCING NUCLEOTIDE RESOLUTION STRUCTURAL VARIATION DETECTION USING NEXT- GENERATION WHOLE GENOME RESEQUENCING Ken Chen, Ph.D. kchen@genome.wustl.edu The Genome Center, Washington University in St. Louis The path

More information

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping BENG 183 Trey Ideker Genome Assembly and Physical Mapping Reasons for sequencing Complete genome sequencing!!! Resequencing (Confirmatory) E.g., short regions containing single nucleotide polymorphisms

More information

The Diploid Genome Sequence of an Individual Human

The Diploid Genome Sequence of an Individual Human The Diploid Genome Sequence of an Individual Human Maido Remm Journal Club 12.02.2008 Outline Background (history, assembling strategies) Who was sequenced in previous projects Genome variations in J.

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping Sept 2. Structure and Organization of Genomes Today: Genetic and Physical Mapping Assignments: Gibson & Muse, pp.4-10 Brown, pp. 126-160 Olson et al., Science 245: 1434 New homework:due, before class,

More information

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Reverse transcriptase Allostery: cdna library Transformation Part II Short Answer 1. Describe the reasons for

More information

POPULATION GENETICS studies the genetic. It includes the study of forces that induce evolution (the

POPULATION GENETICS studies the genetic. It includes the study of forces that induce evolution (the POPULATION GENETICS POPULATION GENETICS studies the genetic composition of populations and how it changes with time. It includes the study of forces that induce evolution (the change of the genetic constitution)

More information

Lecture 2: Biology Basics Continued

Lecture 2: Biology Basics Continued Lecture 2: Biology Basics Continued Central Dogma DNA: The Code of Life The structure and the four genomic letters code for all living organisms Adenine, Guanine, Thymine, and Cytosine which pair A-T and

More information

A. Incorrect! This statement is true. Transposable elements can cause chromosome rearrangements.

A. Incorrect! This statement is true. Transposable elements can cause chromosome rearrangements. Genetics - Problem Drill 17: Transposable Genetic Elements No. 1 of 10 1. Which of the following statements is NOT true? (A) Transposable elements can cause chromosome rearrangements. (B) Transposons can

More information

Supplementary Figures

Supplementary Figures Supplementary Figures A B Supplementary Figure 1. Examples of discrepancies in predicted and validated breakpoint coordinates. A) Most frequently, predicted breakpoints were shifted relative to those derived

More information

Chapter 14: Genes in Action

Chapter 14: Genes in Action Chapter 14: Genes in Action Section 1: Mutation and Genetic Change Mutation: Nondisjuction: a failure of homologous chromosomes to separate during meiosis I or the failure of sister chromatids to separate

More information

Exome Sequencing Exome sequencing is a technique that is used to examine all of the protein-coding regions of the genome.

Exome Sequencing Exome sequencing is a technique that is used to examine all of the protein-coding regions of the genome. Glossary of Terms Genetics is a term that refers to the study of genes and their role in inheritance the way certain traits are passed down from one generation to another. Genomics is the study of all

More information

Complementary Technologies for Precision Genetic Analysis

Complementary Technologies for Precision Genetic Analysis Complementary NGS, CGH and Workflow Featured Publication Zhu, J. et al. Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22)(q32.1;q11.2) chromosomal translocation and clinical features

More information

REVIEWS. Structural variation in the human genome

REVIEWS. Structural variation in the human genome REVIEWS Structural variation in the human genome Lars Feuk, Andrew R. Carson and Stephen W. Scherer Abstract The first wave of information from the analysis of the human genome revealed SNPs to be the

More information

Keystone Biology Remediation B2: Genetics

Keystone Biology Remediation B2: Genetics Keystone Biology Remediation B2: Genetics Assessment Anchors: to describe and/or predict observed patterns of inheritance (i.e. dominant, recessive, codominance, incomplete dominance, sex-linked, polygenic,

More information

Molecular Genetics of Disease and the Human Genome Project

Molecular Genetics of Disease and the Human Genome Project 9 Molecular Genetics of Disease and the Human Genome Project Fig. 1. The 23 chromosomes in the human genome. There are 22 autosomes (chromosomes 1 to 22) and two sex chromosomes (X and Y). Females inherit

More information

GENES AND CHROMOSOMES II

GENES AND CHROMOSOMES II 1 GENES AND CHROMOSOMES II Lecture 4 BIOL 266/2 2014-15 Dr. S. Azam Biology Department Concordia University 2 GENE AND THE GENOME The Structure of the Genome DNA fingerprinting 3 DNA fingerprinting: DNA-based

More information

Biotechnology Chapter 20

Biotechnology Chapter 20 Biotechnology Chapter 20 DNA Cloning DNA Cloning AKA Plasmid-based transformation or molecular cloning First off-let s sum up what happens. A plasmid is taken from a bacteria A gene is inserted into the

More information

MI615 Syllabus Illustrated Topics in Advanced Molecular Genetics Provisional Schedule Spring 2010: MN402 TR 9:30-10:50

MI615 Syllabus Illustrated Topics in Advanced Molecular Genetics Provisional Schedule Spring 2010: MN402 TR 9:30-10:50 MI615 Syllabus Illustrated Topics in Advanced Molecular Genetics Provisional Schedule Spring 2010: MN402 TR 9:30-10:50 DATE TITLE LECTURER Thu Jan 14 Introduction, Genomic low copy repeats Pierce Tue Jan

More information

Chapter 4 Gene Linkage and Genetic Mapping

Chapter 4 Gene Linkage and Genetic Mapping Chapter 4 Gene Linkage and Genetic Mapping 1 Important Definitions Locus = physical location of a gene on a chromosome Homologous pairs of chromosomes often contain alternative forms of a given gene =

More information

Authors: Vivek Sharma and Ram Kunwar

Authors: Vivek Sharma and Ram Kunwar Molecular markers types and applications A genetic marker is a gene or known DNA sequence on a chromosome that can be used to identify individuals or species. Why we need Molecular Markers There will be

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics Human Biology, 12e (Mader / Windelspecht) Chapter 21 DNA Which of the following is not a component of a DNA molecule? A) a nitrogen-containing base B) deoxyribose sugar C) phosphate D) phospholipid Messenger

More information

GENETICS EXAM 3 FALL a) is a technique that allows you to separate nucleic acids (DNA or RNA) by size.

GENETICS EXAM 3 FALL a) is a technique that allows you to separate nucleic acids (DNA or RNA) by size. Student Name: All questions are worth 5 pts. each. GENETICS EXAM 3 FALL 2004 1. a) is a technique that allows you to separate nucleic acids (DNA or RNA) by size. b) Name one of the materials (of the two

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Long-range gene regulation

Long-range gene regulation Long-range gene regulation Short Course in Medical Genetics Melbourne, June 2011 Question Why should long-range regulation of gene expression be of interest to Clinical Scientists and Pathologists interested

More information

DESIGNER GENES SAMPLE TOURNAMENT

DESIGNER GENES SAMPLE TOURNAMENT DESIGNER GENES SAMPLE TOURNAMENT PART ONE- GENETICS PROBLEMS In dogs, the inheritance of hair color involves a gene (B) for black hair and a gene (b) for brown hair. A dominant (C) is also involved. It

More information

Genomes summary. Bacterial genome sizes

Genomes summary. Bacterial genome sizes Genomes summary 1. >930 bacterial genomes sequenced. 2. Circular. Genes densely packed. 3. 2-10 Mbases, 470-7,000 genes 4. Genomes of >200 eukaryotes (45 higher ) sequenced. 5. Linear chromosomes 6. On

More information

Results WCP (Whole chromosome paint) FISH

Results WCP (Whole chromosome paint) FISH Results 61 3 Results The proband as well as her mother and grand mother with an inversion chromosome 3 and short stature were studied in this project to characterize the breakpoints. Cytogenetic analysis

More information

Biol 478/595 Intro to Bioinformatics

Biol 478/595 Intro to Bioinformatics Biol 478/595 Intro to Bioinformatics September M 1 Labor Day 4 W 3 MG Database Searching Ch. 6 5 F 5 MG Database Searching Hw1 6 M 8 MG Scoring Matrices Ch 3 and Ch 4 7 W 10 MG Pairwise Alignment 8 F 12

More information

14 March, 2016: Introduction to Genomics

14 March, 2016: Introduction to Genomics 14 March, 2016: Introduction to Genomics Genome Genome within Ensembl browser http://www.ensembl.org/homo_sapiens/location/view?db=core;g=ensg00000139618;r=13:3231547432400266 Genome within Ensembl browser

More information

Human Chromosomes Section 14.1

Human Chromosomes Section 14.1 Human Chromosomes Section 14.1 In Today s class. We will look at Human chromosome and karyotypes Autosomal and Sex chromosomes How human traits are transmitted How traits can be traced through entire families

More information

BIO 304 Genetics (Fall 2003) Exam #2 Name KEY SSN

BIO 304 Genetics (Fall 2003) Exam #2 Name KEY SSN BIO 304 Genetics (Fall 2003) Exam #2 Name KEY SSN transformation conditional mutation penetrance expressivity Southern blotting hybridization epistasis co-dominance nonsense mutation translocation amplification

More information

Chapter 20 DNA Technology & Genomics. If we can, should we?

Chapter 20 DNA Technology & Genomics. If we can, should we? Chapter 20 DNA Technology & Genomics If we can, should we? Biotechnology Genetic manipulation of organisms or their components to make useful products Humans have been doing this for 1,000s of years plant

More information

TEKS 5C describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation

TEKS 5C describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation TEKS 5C describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation 1. Unicellular organisms carry out all the necessary life processes in one cell. In multicellular

More information

Genetics and Biotechnology. Section 1. Applied Genetics

Genetics and Biotechnology. Section 1. Applied Genetics Section 1 Applied Genetics Selective Breeding! The process by which desired traits of certain plants and animals are selected and passed on to their future generations is called selective breeding. Section

More information

PV92 PCR Bio Informatics

PV92 PCR Bio Informatics Purpose of PCR Chromosome 16 PV92 PV92 PCR Bio Informatics Alu insert, PV92 locus, chromosome 16 Introduce the polymerase chain reaction (PCR) technique Apply PCR to population genetics Directly measure

More information

Chapter 5. Structural Genomics

Chapter 5. Structural Genomics Chapter 5. Structural Genomics Contents 5. Structural Genomics 5.1. DNA Sequencing Strategies 5.1.1. Map-based Strategies 5.1.2. Whole Genome Shotgun Sequencing 5.2. Genome Annotation 5.2.1. Using Bioinformatic

More information

Map-Based Cloning of Qualitative Plant Genes

Map-Based Cloning of Qualitative Plant Genes Map-Based Cloning of Qualitative Plant Genes Map-based cloning using the genetic relationship between a gene and a marker as the basis for beginning a search for a gene Chromosome walking moving toward

More information

Structural variation analysis using NGS sequencing

Structural variation analysis using NGS sequencing Structural variation analysis using NGS sequencing Victor Guryev NBIC NGS taskforce meeting April 15th, 2011 Scale of genomic variants Scale 1 bp 10 bp 100 bp 1 kb 10 kb 100 kb 1 Mb Variants SNPs Short

More information

SNP calling and VCF format

SNP calling and VCF format SNP calling and VCF format Laurent Falquet, Oct 12 SNP? What is this? A type of genetic variation, among others: Family of Single Nucleotide Aberrations Single Nucleotide Polymorphisms (SNPs) Single Nucleotide

More information

Mutations, Genetic Testing and Engineering

Mutations, Genetic Testing and Engineering Mutations, Genetic Testing and Engineering Objectives Describe how techniques such as DNA fingerprinting, genetic modifications, and chromosomal analysis are used to study the genomes of organisms (TEKS

More information

Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome

Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome Jan O. Korbel, 1,2 * Alexander Eckehart Urban, 3 * Jason P. Affourtit, 4 * Brian Godwin, 4 Fabian Grubert, 5 Jan Fredrik Simons,

More information

CHAPTER 5 Principle of Genetics Review

CHAPTER 5 Principle of Genetics Review CHAPTER 5 Principle of Genetics Review I. Mendel s Investigations Gregor Johann Mendel Hybridized peas 1856-1864 Formulated Principles of Heredity published in 1866 II. Chromosomal Basis of Inheritance

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 16 The Molecular Basis of Inheritance Unit 6: Molecular Genetics

More information

Recombinant DNA Technology

Recombinant DNA Technology History of recombinant DNA technology Recombinant DNA Technology (DNA cloning) Majid Mojarrad Recombinant DNA technology is one of the recent advances in biotechnology, which was developed by two scientists

More information

Capturing Complex Human Genetic Variations using the GS FLX+ System

Capturing Complex Human Genetic Variations using the GS FLX+ System SeqCap EZ Library: Technical Note August 2012 Capturing Complex Human Genetic Variations using the GS FLX+ System Sequence Capture of Structural Variants in the Human Genome Primary Authors: Lindsay Freeberg*

More information

Lecture 2: High-Throughput Biology

Lecture 2: High-Throughput Biology Lecture 2: High-Throughput Biology COMP 465 Fall 2013 Study Chapter 3.8-3.11 8/27/2013 Comp 465 Fall 2013 1 Analyzing DNA Recall DNA is the essential information determining the function of living organisms

More information

Name Class Date. a. identify similarities and

Name Class Date. a. identify similarities and Chapter 13 enetic Engineering Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Selective breeding produces a. more offspring.

More information

CHAPTER 21 GENOMES AND THEIR EVOLUTION

CHAPTER 21 GENOMES AND THEIR EVOLUTION GENETICS DATE CHAPTER 21 GENOMES AND THEIR EVOLUTION COURSE 213 AP BIOLOGY 1 Comparisons of genomes provide information about the evolutionary history of genes and taxonomic groups Genomics - study of

More information

Genetics Transcription Translation Replication

Genetics Transcription Translation Replication Genetics Transcription Translation Replication 1. Which statement best describes the relationship between an allele and a gene? A. An allele is a variation of a gene that can be expressed as a phenotype.

More information

Recombination, and haplotype structure

Recombination, and haplotype structure 2 The starting point We have a genome s worth of data on genetic variation Recombination, and haplotype structure Simon Myers, Gil McVean Department of Statistics, Oxford We wish to understand why the

More information

How does the human genome stack up? Genomic Size. Genome Size. Number of Genes. Eukaryotic genomes are generally larger.

How does the human genome stack up? Genomic Size. Genome Size. Number of Genes. Eukaryotic genomes are generally larger. How does the human genome stack up? Organism Human (Homo sapiens) Laboratory mouse (M. musculus) Mustard weed (A. thaliana) Roundworm (C. elegans) Fruit fly (D. melanogaster) Yeast (S. cerevisiae) Bacterium

More information

Genome editing. Knock-ins

Genome editing. Knock-ins Genome editing Knock-ins Experiment design? Should we even do it? In mouse or rat, the HR-mediated knock-in of homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in

More information

COURSE OUTLINE Biology 103 Molecular Biology and Genetics

COURSE OUTLINE Biology 103 Molecular Biology and Genetics Degree Applicable I. Catalog Statement COURSE OUTLINE Biology 103 Molecular Biology and Genetics Glendale Community College November 2014 Biology 103 is an extension of the study of molecular biology,

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Lecture 12. Genomics. Mapping. Definition Species sequencing ESTs. Why? Types of mapping Markers p & Types

Lecture 12. Genomics. Mapping. Definition Species sequencing ESTs. Why? Types of mapping Markers p & Types Lecture 12 Reading Lecture 12: p. 335-338, 346-353 Lecture 13: p. 358-371 Genomics Definition Species sequencing ESTs Mapping Why? Types of mapping Markers p.335-338 & 346-353 Types 222 omics Interpreting

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

Crash-course in genomics

Crash-course in genomics Crash-course in genomics Molecular biology : How does the genome code for function? Genetics: How is the genome passed on from parent to child? Genetic variation: How does the genome change when it is

More information

American Society of Cytopathology Core Curriculum in Molecular Biology

American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology Chapter 3 Molecular Techniques Fluorescence In Situ Hybridization

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Recombinant DNA recombinant DNA DNA cloning gene cloning

Recombinant DNA recombinant DNA DNA cloning gene cloning DNA Technology Recombinant DNA In recombinant DNA, DNA from two different sources, often two species, are combined into the same DNA molecule. DNA cloning permits production of multiple copies of a specific

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

Marker types. Potato Association of America Frederiction August 9, Allen Van Deynze

Marker types. Potato Association of America Frederiction August 9, Allen Van Deynze Marker types Potato Association of America Frederiction August 9, 2009 Allen Van Deynze Use of DNA Markers in Breeding Germplasm Analysis Fingerprinting of germplasm Arrangement of diversity (clustering,

More information

6E identify and illustrate changes in DNA and evaluate the significance of these changes

6E identify and illustrate changes in DNA and evaluate the significance of these changes 6E identify and illustrate changes in DNA and evaluate the significance of these changes 1. This illustration is an example of a normal DNA sequence. Which of the following represents a point mutation

More information

Supplementary Table 1. Summary of whole genome shotgun sequence used for genome assembly

Supplementary Table 1. Summary of whole genome shotgun sequence used for genome assembly Supplementary Tables Supplementary Table 1. Summary of whole genome shotgun sequence used for genome assembly Library Read length Raw data Filtered data insert size (bp) * Total Sequence depth Total Sequence

More information

Chapter 15 The Human Genome Project and Genomics. Chapter 15 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 15 The Human Genome Project and Genomics. Chapter 15 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 15 The Human Genome Project and Genomics Genomics Is the study of all genes in a genome Relies on interconnected databases and software to analyze sequenced genomes and to identify genes Impacts

More information

02 Agenda Item 03 Agenda Item

02 Agenda Item 03 Agenda Item 01 Agenda Item 02 Agenda Item 03 Agenda Item SOLiD 3 System: Applications Overview April 12th, 2010 Jennifer Stover Field Application Specialist - SOLiD Applications Workflow for SOLiD Application Application

More information

Overview of Human Genetics

Overview of Human Genetics Overview of Human Genetics 1 Structure and function of nucleic acids. 2 Structure and composition of the human genome. 3 Mendelian genetics. Lander et al. (Nature, 2001) MAT 394 (ASU) Human Genetics Spring

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8 Bi 8 Lecture 4 DNA approaches: How we know what we know Ellen Rothenberg 14 January 2016 Reading: from Alberts Ch. 8 Central concept: DNA or RNA polymer length as an identifying feature RNA has intrinsically

More information

Bootcamp: Molecular Biology Techniques and Interpretation

Bootcamp: Molecular Biology Techniques and Interpretation Bootcamp: Molecular Biology Techniques and Interpretation Bi8 Winter 2016 Today s outline Detecting and quantifying nucleic acids and proteins: Basic nucleic acid properties Hybridization PCR and Designing

More information

2 Gene Technologies in Our Lives

2 Gene Technologies in Our Lives CHAPTER 15 2 Gene Technologies in Our Lives SECTION Gene Technologies and Human Applications KEY IDEAS As you read this section, keep these questions in mind: For what purposes are genes and proteins manipulated?

More information

1

1 1 2 3 4 5 Cosmids are plasmid vectors that contain cos sites. The cos site is the only requirement for DNA to be packaged into a phage particle 6 7 8 9 10 11 12 13 14 15 16 For de novo sequencing using

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

CHAPTER 21 LECTURE SLIDES

CHAPTER 21 LECTURE SLIDES CHAPTER 21 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

The Human Genome Project has always been something of a misnomer, implying the existence of a single human genome

The Human Genome Project has always been something of a misnomer, implying the existence of a single human genome The Human Genome Project has always been something of a misnomer, implying the existence of a single human genome Of course, every person on the planet with the exception of identical twins has a unique

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

Section 14.1 Structure of ribonucleic acid

Section 14.1 Structure of ribonucleic acid Section 14.1 Structure of ribonucleic acid The genetic code Sections of DNA are transcribed onto a single stranded molecule called RNA There are two types of RNA One type copies the genetic code and transfers

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

-Is the process of manipulating genes and genomes

-Is the process of manipulating genes and genomes Genetic Engineering -Is the process of manipulating genes and genomes Biotechnology -Is the process of manipulating organisms or their components for the purpose of making useful products Restriction Enzymes

More information

Researchers use genetic engineering to manipulate DNA.

Researchers use genetic engineering to manipulate DNA. Section 2: Researchers use genetic engineering to manipulate DNA. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the different tools and processes used in genetic

More information

Human genome sequence February, 2001

Human genome sequence February, 2001 Computational Molecular Biology Symposium March 12 th, 2003 Carnegie Mellon University Organizer: Dannie Durand Sponsored by the Department of Biological Sciences and the Howard Hughes Medical Institute

More information

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA 1. DNA is a very large molecule 3. Led to many biotechnology applications- genetic engineering, DNA fingerprinting, cloning,

More information

GENE MAPPING. Genetica per Scienze Naturali a.a prof S. Presciuttini

GENE MAPPING. Genetica per Scienze Naturali a.a prof S. Presciuttini GENE MAPPING Questo documento è pubblicato sotto licenza Creative Commons Attribuzione Non commerciale Condividi allo stesso modo http://creativecommons.org/licenses/by-nc-sa/2.5/deed.it Genetic mapping

More information

Design. Construction. Characterization

Design. Construction. Characterization Design Construction Characterization DNA mrna (messenger) A C C transcription translation C A C protein His A T G C T A C G Plasmids replicon copy number incompatibility selection marker origin of replication

More information

Unit 8: Genomics Guided Reading Questions (150 pts total)

Unit 8: Genomics Guided Reading Questions (150 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 18 The Genetics of Viruses and Bacteria Unit 8: Genomics Guided

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Concepts: What are RFLPs and how do they act like genetic marker loci?

Concepts: What are RFLPs and how do they act like genetic marker loci? Restriction Fragment Length Polymorphisms (RFLPs) -1 Readings: Griffiths et al: 7th Edition: Ch. 12 pp. 384-386; Ch.13 pp404-407 8th Edition: pp. 364-366 Assigned Problems: 8th Ch. 11: 32, 34, 38-39 7th

More information

Single Molecule Variant Detection: From Heteroduplexes in a Single DNA Molecule to Whole Chromosome Rearrangements

Single Molecule Variant Detection: From Heteroduplexes in a Single DNA Molecule to Whole Chromosome Rearrangements Single Molecule Variant Detection: From Heteroduplexes in a Single DNA Molecule to Whole Chromosome Rearrangements Joris Vermeesch PacBio User meeting 10 November 2015 Barcelona Outline Polymerase Specific

More information