What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed

Size: px
Start display at page:

Download "What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed"

Transcription

1 RNA Section 3.1

2 What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed Used to direct the production of proteins that determines an organisms characteristics

3 What are the differences between RNA and DNA? There are 3 key differences 1) sugar is Ribose rather than De-oxy ribose 2) RNA is generally single stranded 3) RNA contains Uracil rather than Thymine Chemical differences make it easier for a cell to distinguish between RNA and DNA

4 Functions of RNA Main function protein synthesis Controls assembly of amino acids into proteins 3 types of RNA Messenger RNA Carry information from the DNA to other parts of the cell Ribosomal RNA Ribosomes are made of ribosomal RNA and proteins Transfer RNA Transfers amino acids to the ribosome as/when they are needed

5 RNA synthesis Transcription Segments of DNA serve as template to produce complementary RNA molecules Prokaryotes RNA synthesis and Protein synthesis occurs in the cytoplasm Eukaryotes RNA produced in the nucleus Transcription occurs in the cytoplasm The enzyme RNA polymerase controls transcription One gene can produce hundreds or thousands of RNA molecules

6 Promoters RNA polymerase will only bind to areas of DNA where a promoter is present Promoter = region of RNA that has specific base sequences Similar signals cause transcription to stop

7 RNA editing RNA needs a bit of tweaking before it can be put into action Chunks are cut out of them and discarded introns In eukaryotes, introns are taken out of pre-mrna molecules whilst they are in the nucleus What is left exons, are spliced back together to form the final mrna

8 Why does RNA polymerase make more than it needs? Scientists still aren t sure Some pre-mrna molecules may be cut/spliced in different ways in different tissues so a single gene can produce several forms of RNA Intron and Exons may play a role in evolution Small changes in DNA sequences can have a large effect on how genes affect cellular function

9 Summary RNA is a working copy of the DNA Made from small sections of DNA (transcription) RNA polymerase Promoters indicate which part of DNA to use Three key types of RNA Messenger Ribosomal Transfer More is made than needed Introns discarded Exons kept

10 Ribosomes and protein synthesis Section 13.2

11 The genetic code Step one - copy DNA to produce RNA RNA contains instructions on how to make proteins Proteins are chains of amino acids called polypeptides Up to 20 different amino acids are commonly found in polypeptides Specific amino acids and their arrangement determine properties of different proteins Amino acid arrangement influences shape, which determines proteins function

12 The genetic code continued RNA contains four different bases Essentially a language with 4 letters Genetic code is read three letters at a time Each word is three bases long and corresponds to an amino acid In mrna, each three letter word is a codon Three consecutive bases that specify a single amino acid

13 Reading codons There are 64 possible three base combinations in RNA Due to the 4 different bases Most amino acids can be specified by more than one codon Leucine is coded by 6 different codons.. Genetic code table makes decoding codons easy

14 Start and Stop codons These are essentially punctuation marks in the genetic code Methionine codon serves as the initiation or start codon for protein synthesis After this point, the mrna is read three bases at a time There are 3 different stop codons which mark the end of polypeptide formation

15 Translation Why are ribosomes so important? mrna = instruction manual Ribosome reads the instruction manual and assembles the parts together The assembly process performed by ribosomes is called translation

16 Translation overview

17 Steps of translation Step 1: Ribosome attaches to mrna molecule in the cytoplasm Step 2: As each codon passes through the ribosome, trna brings the proper amino acids into the ribosome. The ribosome attaches amino acids together into a growing chain Each trna molecule is three unpaired bases, called the anticodon Each trna molecule anticodon is complementary to one mrna codon Step 3: Ribosomes help to form peptide bonds between amino acids and build the protein, like a production line Step 4: Polypeptide chain grows until it reaches a stop codon Here the newly formed polypeptide and mrna molecule are released.

18 Roles of trna and rrna in translation All three types of RNA come together during translation mrna carries coded message trna molecules carry the amino acids called for by each codon Ribosomes are made of about 80 proteins and 3 or 4 different rrna molecules rrna helps keep ribosomal proteins in place, and help locate start of mrna message They may also help in formation of peptide bonds

19 Molecular basis of heredity Most genes simply contain instructions for making proteins Proteins are key in controlling what traits are exhibited Many proteins are enzymes, which catalyze and regulate chemical reactions Skin colour can be controlled by a gene that codes for an enzyme to prdouce a specific pigment Proteins act as microscopic tools, each specifically designed to build or operate a component of a cell

20 Central Dogma Information is transferred from DNA to RNA to protein There are however many exceptions e.g. viruses transfer information in the opposite direction, from RNA to DNA Acts as a useful generalization to show how genes work Genetic code operates virtually the same way in all living organisms Some organisms may vary which amino acid applies to specific codons Code is always read three bases at a time Code is always read in the same direction There is remarkable unity between all living organism with the molecular biology of the gene.

21 Mutations Section 13.3

22 In today s class.. We will look at: Types of mutations Gene Point vs frameshift mutations Chromosomal Effects of mutations Positive, neutral and negative Causes of mutations Mutagens

23 What is a mutation? Mutations are heritable changes in genetic information

24 What is a mutation? There are two types of mutations Those that produce changes in a single gene Those that produce changes in entire chromosomes

25 Gene mutations Gene mutations that involve changes in one or a few nucleotides are point mutations They occur at a single point in the DNA sequence Occur during replication If a gene in one cell is altered, the alteration can be passed on to every cell

26 Point mutations Types of gene mutation Substitution One base is changed to a different base Only affect one amino acid Sometime no effect (multiple codons code for the same amino acid) Insertions and deletions Effects are more dramatic - bases are still read in groups of three everything is thrown off Also known as frameshift mutations Can alter proteins so much that they no longer can perform their function

27 Chromosomal mutations Involve changes in the number or structure of chromosomes Can change gene location, or the number of copies of some genes 4 types Deletion Duplication Inversion Translocation

28 Effects of mutations Genes can be altered naturally or artificially Resultant mutations may or may not affect an organism Many are caused by errors in the genetic process DNA replication for example An incorrect base is roughly inserted 1 in 10 million times Small changes can gradually accumulate Environmental mutations conditions can effect Can help organisms Mutations can give new traits For example ability consume a new food source, or resist a poison

29 Mutagens Some mutations arise from mutagens chemical or physical agents in the environment Examples some pesticides, tobacco smoke, environmental pollutants. Physical mutagens Electromagnetic radiation (X-rays, UV light). Some interfere with base pairing Some weaken the DNA strand, causing breaks and inversions If DNA interacts with these mutagens, mutations can be produced at a high rate Cells can sometimes repair the damage. If they can t, the DNA base sequence changes permanently

30 Harmful vs helpful mutagens Effects of mutagens can vary widely Some have no effect, some can be beneficial, some negatively disrupt gene function Most are neutral - little to no effect on expression of gene Mutations often thought of negative, but have lead to evolution The organisms' situation will determine whether a mutation is helpful or harmful

31 Harmful effects The most harmful mutations often change protein structure or gene activity Defective proteins disrupt normal biological activities Some cancers are the effect or mutations that cause the uncontrolled growth of cells Sickle Cell disease changes the shape of bloods cells Caused by point mutations in one of the polypeptides in hemoglobin Can lead to anaemia, pain, infections and stunted growth

32 Beneficial effects Some effects can be very beneficial Mutations often produce proteins with new or altered functions This can be useful to organisms in different or changing environments Examples insects and chemical pesticides Mosquitos in Africa are now resistant to many of the chemicals used to control them In humans, beneficial mutations can lead to increases in bine strength and density Breeders often make use of good mutations In plants, a mutation can cause offspring to have 3 or 4 sets of genetic information in the gametes Polyploidy These plants are often larger and stronger than diploid plant lime and bananas have been successfully produced this way.

33 Writing assignment How does the Central Dogma of molecular biology relate to processes that occur in the cell? What does the central dogma imply about the role of RNA in a cell? Are there any limitations to this principle?

34 Gene regulation and expression Section 13.4

35 Gene regulation and expression Why is gene regulation important? Why do cells regulate which genes are used at a given time?

36 Prokaryotic gene regulation Bacteria and prokaryotes do not need all of their genetic information transcribed at once They only want to use the genes necessary for the cells to function This allows bacteria to respond to changes in their environment This is done through DNA binding protein, which regulate genes by controlling transcription Some switch genes on, some turn them off

37 Operons An operon is a group of genes that are regulated together Genes will have related functions E-coli for example has 4238 genes 3 genes are clustered together, which allow the bacterium to use the sugar lactose as food These 3 lactose genes are called the lac operon.

38 Promoters and operators On one side of the operon s three genes are two regulatory regions Promoter: Site where RNA polymerase can bind Operator: When a DNA binding protein called a repressor binds to DNA

39 The lac operon in e-coli Lactose turns the operon on

40 Eukaryotic gene regulation Most of the principles of gene regulation in prokaryotes also apply to eukaryotes Most eukaryotic genes are however controlled individually, and have more complex regulatory sequences than with e-coli. TATA box helps with DNA transcription Made of base pairs containing the sequence TATATA or TATAAA Bind a protein that helps position RNA polymerase

41 Transcription factors Transcription factors bind to DNA sequences in the regulatory regions of eukaryotic genes, and control the expression of the gene Some enhance transcription by: Open up tightly packed chromatin Attract RNA polymerase Others block access to genes, much like repressor proteins Normally multiple transcription factors are required before RNA polymerase can bind to the DNA

42 Promoters in Eukaryotes Promoters have multiple binding sites for transcription factors Certain factors can activate scores of genes at once, changing patterns of gene expression Other factors only respond to chemical signals Steroid hormones are chemical messengers that enter the cell and bind to receptor proteins These receptor complexes act as transcription factors, so one single chemical signal can activate multiple genes The exit of mrna from the nucleus, the stability of mrna and the breakdown of a gene s protein s can all also act as a regulating factor

43 Cell specialization Everything is more complicated in Eukaryotes why? Our DNA contains the information for every cell in our body Would liver enzymes need to be produced in your bone marrow? Keratin, a protein in hair follicles is not produced in blood cells, or your heart, lungs Cell specialization requires genetic specialization Complex gene regulation makes this possible

44 RNA interference Cells contain a lot of small RNA molecules that are unrelated to the three major groups of RNA These small RNA molecules help regulate gene expression They interfere with mrna Interference RNA molecule produce by transcription, produces double stranded hairpin loop Dicer enzyme make small fragments of mirna mirna attaches to proteins and forms silencing complex

45 RNA interference continued RNA interference has made it possible for researchers to switch genes on and off at will All they had to do was insert double stranded RNA Can be used to study gene expression in the lab. Holds the potential to cures for cancer and viruses, allowing us to treat currently incurable diseases

46 Genetic control of development What controls the development of cells and tissues? In a multicellular organism, all of the specialized cell types came from the same fertilized egg cell How do the cells know which cell to become? Cells undergo differentiation, and become specialized in structure and function as they develop Studying genes that control development and differentiation is an exciting area of Biology

47 Homeotic genes Edward B Lewis showed that specific groups of genes control the identity of body parts in the embryo of fruit fly By mutating one of these genes, it was possible to have a fly with a leg growing out of it s head His work showed that there are a set of master control genes (Homeotic genes) that regulate organ development in specific parts of the body

48 Homeobox and Hox genes Homeotic genes share a very similar 180 base DNA sequence a homeobox Homeobox genes code for transcription factors that activate other genes important for cell development and differentiation Homeobox genes are expressed in certain regions In flies, a group of homeobox genes, called HOX genes are located side by side in a cluster These determine the identity of each segment of a flie s body Arranged in the exact order they ate expressed in the body

49 Hox genes This does not apply just to flies Nearly all animals fit this rule Master control genes are like switches that trigger particular patterns of development and differentiation in cells and tissues Evidence that genes have descended from common ancestors

50 Environmental influences Environment can play a role in cell gene expression Temperature, nutrients, salinity for example can all effect gene expression Metamorphosis of tadpoles to frogs great example Mixture of environmental and hormonal factors Speed of metamorphosis can be influenced by environmental factors, which translate into hormonal changes. Hormones function at molecular level

Name Class Date. Practice Test

Name Class Date. Practice Test Name Class Date 12 DNA Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. What do bacteriophages infect? a. mice. c. viruses.

More information

13.1 RNA. Lesson Objectives. Lesson Summary

13.1 RNA. Lesson Objectives. Lesson Summary 13.1 RNA Lesson Objectives Contrast RNA and DNA. Explain the process of transcription. Lesson Summary The Role of RNA RNA (ribonucleic acid) is a nucleic acid like DNA. It consists of a long chain of nucleotides.

More information

Helps DNA put genetic code into action RNA Structure

Helps DNA put genetic code into action RNA Structure 13.1 RNA Helps DNA put genetic code into action RNA Structure Single Stranded Nucleotides building blocks to RNA Ribose (5C sugar) Phosphate Group Nitrogenous base: Adenine, Uracil Guanine, Cytosine Disposable

More information

RNA and PROTEIN SYNTHESIS. Chapter 13

RNA and PROTEIN SYNTHESIS. Chapter 13 RNA and PROTEIN SYNTHESIS Chapter 13 DNA Double stranded Thymine Sugar is RNA Single stranded Uracil Sugar is Ribose Deoxyribose Types of RNA 1. Messenger RNA (mrna) Carries copies of instructions from

More information

Comparing RNA and DNA

Comparing RNA and DNA RNA The Role of RNA Genes contain coded DNA instructions that tell cells how to build proteins. 1 st step in decoding these genetic instructions = copy part of the base sequence from DNA into RNA. 2 nd

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ CH 12 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How many codons are needed to specify three amino acids? a. 6 c. 3 b. 12

More information

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date

Summary 12 1 DNA RNA and Protein Synthesis Chromosomes and DNA Replication. Name Class Date Chapter 12 Summary DNA and RNA 12 1 DNA To understand genetics, biologists had to learn the chemical structure of the gene. Frederick Griffith first learned that some factor from dead, disease-causing

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Nucleic acids and protein synthesis

Nucleic acids and protein synthesis THE FUNCTIONS OF DNA Nucleic acids and protein synthesis The full name of DNA is deoxyribonucleic acid. Every nucleotide has the same sugar molecule and phosphate group, but each nucleotide contains one

More information

Chapter 8: DNA and RNA

Chapter 8: DNA and RNA Chapter 8: DNA and RNA Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 8-1 DNA and the Importance of Proteins Proteins play

More information

Ch. 10 Notes DNA: Transcription and Translation

Ch. 10 Notes DNA: Transcription and Translation Ch. 10 Notes DNA: Transcription and Translation GOALS Compare the structure of RNA with that of DNA Summarize the process of transcription Relate the role of codons to the sequence of amino acids that

More information

Adv Biology: DNA and RNA Study Guide

Adv Biology: DNA and RNA Study Guide Adv Biology: DNA and RNA Study Guide Chapter 12 Vocabulary -Notes What experiments led up to the discovery of DNA being the hereditary material? o The discovery that DNA is the genetic code involved many

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

Chapter 13. From DNA to Protein

Chapter 13. From DNA to Protein Chapter 13 From DNA to Protein Proteins All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequenceof a gene The Path From Genes to

More information

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein This is also known as: The central dogma of molecular biology Protein Proteins are made

More information

Review? - What are the four macromolecules?

Review? - What are the four macromolecules? Review? - What are the four macromolecules? Lipids Carbohydrates Protein Nucleic Acids What is the monomer of nucleic acids and what do nucleic acids make up? Nucleotides; DNA and RNA 12-1 DNA DNA Stands

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 Warm Up Exercise Test Corrections Make sure to indicate your new answer and provide an explanation for why this is the correct answer. Do this with a red pen in the margins of your

More information

RNA and Protein Synthesis

RNA and Protein Synthesis RNA and Protein Synthesis CTE: Agriculture and Natural Resources: C5.3 Understand various cell actions, such as osmosis and cell division. C5.4 Compare and contrast plant and animal cells, bacteria, and

More information

DNA RNA PROTEIN SYNTHESIS -NOTES-

DNA RNA PROTEIN SYNTHESIS -NOTES- DNA RNA PROTEIN SYNTHESIS -NOTES- THE COMPONENTS AND STRUCTURE OF DNA DNA is made up of units called nucleotides. Nucleotides are made up of three basic components:, called deoxyribose in DNA In DNA, there

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

3. INHERITED MUTATIONS

3. INHERITED MUTATIONS THE CENTRAL DOGMA OF BIOLOGY 1. DNA B4.2 The genetic information encoded in DNA molecules provides instructions for assembling protein molecules. Genes are segments of DNA molecules. Inserting, deleting,

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

The Genetic Code and Transcription. Chapter 12 Honors Genetics Ms. Susan Chabot

The Genetic Code and Transcription. Chapter 12 Honors Genetics Ms. Susan Chabot The Genetic Code and Transcription Chapter 12 Honors Genetics Ms. Susan Chabot TRANSCRIPTION Copy SAME language DNA to RNA Nucleic Acid to Nucleic Acid TRANSLATION Copy DIFFERENT language RNA to Amino

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

RNA & PROTEIN SYNTHESIS

RNA & PROTEIN SYNTHESIS RNA & PROTEIN SYNTHESIS DNA & RNA Genes are coded DNA instructions that control the production of proteins within the cell. The first step in decoding these genetic messages is to copy part of the nucleotide

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

Gene Regulation & Mutation 8.6,8.7

Gene Regulation & Mutation 8.6,8.7 Gene Regulation & Mutation 8.6,8.7 Eukaryotic Gene Regulation Transcription factors: ensure proteins are made at right time and in right amounts. One type forms complexes that guide & stabilize binding

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

PROTEIN SYNTHESIS. copyright cmassengale

PROTEIN SYNTHESIS. copyright cmassengale PROTEIN SYNTHESIS 1 DNA and Genes 2 Roles of RNA and DNA DNA is the MASTER PLAN RNA is the BLUEPRINT of the Master Plan 3 RNA Differs from DNA RNA has a sugar ribose DNA has a sugar deoxyribose 4 Other

More information

TRANSCRIPTION AND TRANSLATION

TRANSCRIPTION AND TRANSLATION TRANSCRIPTION AND TRANSLATION Bell Ringer (5 MINUTES) 1. Have your homework (any missing work) out on your desk and ready to turn in 2. Draw and label a nucleotide. 3. Summarize the steps of DNA replication.

More information

DNA and RNA

DNA and RNA http://faculty.uca.edu/~johnc/mbi1440.htm DNA and RNA http://www.wappingersschools.org/rck/staff/teacherhp/johnson/visualvocab/mrna.gif GENETIC MATERIAL In the middle of the 1900 s scientists were asking

More information

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein CHAPTER 17 FROM GENE TO PROTEIN Section C: The Synthesis of Protein 1. Translation is the RNA-directed synthesis of a polypeptide: a closer look 2. Signal peptides target some eukaryotic polypeptides to

More information

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases.

DNA and RNA 2/14/2017. What is a Nucleic Acid? Parts of Nucleic Acid. DNA Structure. RNA Structure. DNA vs RNA. Nitrogen bases. DNA and RNA Nucleic Acids What is a Nucleic Acid? Nucleic Acids are organic molecules that carry information needed to make proteins Remember: proteins carry out ALL cellular activity There are two types

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

Molecular Biology of the Gene

Molecular Biology of the Gene Molecular Biology of the Gene : where the genetic information is stored, blueprint for making proteins. RNA: Always involved in protein synthesis Macromolecules (polymers!) Monomers (units): nucleotides

More information

Gene Expression Transcription/Translation Protein Synthesis

Gene Expression Transcription/Translation Protein Synthesis Gene Expression Transcription/Translation Protein Synthesis 1. Describe how genetic information is transcribed into sequences of bases in RNA molecules and is finally translated into sequences of amino

More information

DNA: The Molecule of Heredity

DNA: The Molecule of Heredity 1 DNA: The Molecule of Heredity DNA Deoxyribonucleic acid Is a type of nucleic acid What chromosomes (and genes) are made of Made up of repeating nucleotide subunits 1 nucleotide looks like: Phosphate

More information

DNA Replication and Protein Synthesis

DNA Replication and Protein Synthesis DNA Replication and Protein Synthesis DNA is Deoxyribonucleic Acid. It holds all of our genetic information which is passed down through sexual reproduction DNA has three main functions: 1. DNA Controls

More information

Prokaryotic Transcription

Prokaryotic Transcription Prokaryotic Transcription Transcription Basics DNA is the genetic material Nucleic acid Capable of self-replication and synthesis of RNA RNA is the middle man Nucleic acid Structure and base sequence are

More information

Fig Ch 17: From Gene to Protein

Fig Ch 17: From Gene to Protein Fig. 17-1 Ch 17: From Gene to Protein Basic Principles of Transcription and Translation RNA is the intermediate between genes and the proteins for which they code Transcription is the synthesis of RNA

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 History of DNA Late 1800 s scientists discovered that DNA is in the nucleus of the cell 1902 Walter Sutton proposed that hereditary material resided in the chromosomes in the nucleus

More information

Bundle 6 Test Review

Bundle 6 Test Review Bundle 6 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? Deoxyribonucleic

More information

DNA & Protein Synthesis UNIT D & E

DNA & Protein Synthesis UNIT D & E DNA & Protein Synthesis UNIT D & E How this Unit is broken down Chapter 10.1 10.3 The structure of the genetic material Chapter 10.4 & 10.5 DNA replication Chapter 10.6 10.15 The flow of genetic information

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein? Lesson 1 - RNA Do you remember What is a gene? What is RNA? How does it differ from DNA? What is protein? Gene Segment of DNA that codes for building a protein DNA code is copied into RNA form, and RNA

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Section DNA: The Molecule of Heredity

Section DNA: The Molecule of Heredity Ch 11: DNA and Genes - DNA: The Molecule of Heredity Inside This Section... What is DNA? The Structure of DNA DNA Replication What is DNA? Acid DNA is the blueprint of all living organisms. It controls

More information

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7)

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) I. General Principles (Chapter 7 introduction) a. Morse code distinct series of dots and dashes encode the 26 letters of the

More information

12-1 DNA The Structure of DNA (Pages )

12-1 DNA The Structure of DNA (Pages ) 12-1 DNA The Structure of DNA (Pages 291-294) The Components and Structure of DNA You might think that knowing genes were made of DNA would have satisfied scientists, but that was not the case at all.

More information

Review of Protein (one or more polypeptide) A polypeptide is a long chain of..

Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. Gene expression Review of Protein (one or more polypeptide) A polypeptide is a long chain of.. In a protein, the sequence of amino acid determines its which determines the protein s A protein with an enzymatic

More information

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review Enzyme that adds nucleotide subunits to an RNA primer during replication DNA polymerase III Another name for protein synthesis translation Sugar

More information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Biology Multiple Choice 016074 BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY Test Code: 016074 Directions: Each of the questions or incomplete statements below is followed by five suggested

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

Molecular Genetics Student Objectives

Molecular Genetics Student Objectives Molecular Genetics Student Objectives Exam 1: Enduring understanding 3.A: Heritable information provides for continuity of life. Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source

More information

GENETICS and the DNA code NOTES

GENETICS and the DNA code NOTES GENETICS and the DNA code NOTES BACKGROUND DNA is the hereditary material of most organisms. It is an organic compound made of two strands, twisted around one another to form a double helix. Each strand

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information

7.2 Protein Synthesis. From DNA to Protein Animation

7.2 Protein Synthesis. From DNA to Protein Animation 7.2 Protein Synthesis From DNA to Protein Animation Proteins Why are proteins so important? They break down your food They build up muscles They send signals through your brain that control your body They

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Read and take notes on pages

Read and take notes on pages Protein Synthesis Read and take notes on pages 336-340 What is protein? Proteins Polypeptide chains of amino acids Are enzymes that catalyze biochemical reactions and are vital to metabolism. They have

More information

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells?

Replication Review. 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells? Replication Review 1. What is DNA Replication? 2. Where does DNA Replication take place in eukaryotic cells? 3. Where does DNA Replication take place in the cell cycle? 4. 4. What guides DNA Replication?

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Living organisms are complex systems. Hundreds of thousands of proteins exist inside each one of us to help carry out our daily functions. These proteins are produced locally,

More information

STUDY GUIDE SECTION 10-1 Discovery of DNA

STUDY GUIDE SECTION 10-1 Discovery of DNA STUDY GUIDE SECTION 10-1 Discovery of DNA Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The virulent strain of the bacterium S. pneumoniae causes disease because it a. has

More information

Gene Expression: Transcription

Gene Expression: Transcription Gene Expression: Transcription The majority of genes are expressed as the proteins they encode. The process occurs in two steps: Transcription = DNA RNA Translation = RNA protein Taken together, they make

More information

DNA Begins the Process

DNA Begins the Process Biology I D N A DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used to build cells and do much of the work inside cells DNA Begins the Process

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

Gene Expression and Heritable Phenotype. CBS520 Eric Nabity

Gene Expression and Heritable Phenotype. CBS520 Eric Nabity Gene Expression and Heritable Phenotype CBS520 Eric Nabity DNA is Just the Beginning DNA was determined to be the genetic material, and the structure was identified as a (double stranded) double helix.

More information

Year III Pharm.D Dr. V. Chitra

Year III Pharm.D Dr. V. Chitra Year III Pharm.D Dr. V. Chitra 1 Genome entire genetic material of an individual Transcriptome set of transcribed sequences Proteome set of proteins encoded by the genome 2 Only one strand of DNA serves

More information

Transcription Eukaryotic Cells

Transcription Eukaryotic Cells Transcription Eukaryotic Cells Packet #20 1 Introduction Transcription is the process in which genetic information, stored in a strand of DNA (gene), is copied into a strand of RNA. Protein-encoding genes

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Protein Synthesis. OpenStax College

Protein Synthesis. OpenStax College OpenStax-CNX module: m46032 1 Protein Synthesis OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will

More information

Chapter 10 - Molecular Biology of the Gene

Chapter 10 - Molecular Biology of the Gene Bio 100 - Molecular Genetics 1 A. Bacterial Transformation Chapter 10 - Molecular Biology of the Gene Researchers found that they could transfer an inherited characteristic (e.g. the ability to cause pneumonia),

More information

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling Name: 2.5 Genetics Objectives At the end of this sub section students should be able to: 2.5.1 Heredity and Variation 1. Discuss the diversity of organisms 2. Define the term species 3. Distinguish between

More information

Protein Synthesis: Transcription and Translation

Protein Synthesis: Transcription and Translation Protein Synthesis: Transcription and Translation Proteins In living things, proteins are in charge of the expression of our traits (hair/eye color, ability to make insulin, predisposition for cancer, etc.)

More information

Transcription. Unit: DNA. Central Dogma. 2. Transcription converts DNA into RNA. What is a gene? What is transcription? 1/7/2016

Transcription. Unit: DNA. Central Dogma. 2. Transcription converts DNA into RNA. What is a gene? What is transcription? 1/7/2016 Warm Up Questions 1. Where is DNA located? 2. Name the 3 parts of a nucleotide. 3. Enzymes can catalyze many different reactions (T or F) 4. How many variables should you have in an experiment? 5. A red

More information

Click here to read the case study about protein synthesis.

Click here to read the case study about protein synthesis. Click here to read the case study about protein synthesis. Big Question: How do cells use the genetic information stored in DNA to make millions of different proteins the body needs? Key Concept: Genetics

More information

Chapter 14 Active Reading Guide From Gene to Protein

Chapter 14 Active Reading Guide From Gene to Protein Name: AP Biology Mr. Croft Chapter 14 Active Reading Guide From Gene to Protein This is going to be a very long journey, but it is crucial to your understanding of biology. Work on this chapter a single

More information

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation 1. DNA, RNA structure 2. DNA replication 3. Transcription, translation DNA and RNA are polymers of nucleotides DNA is a nucleic acid, made of long chains of nucleotides Nucleotide Phosphate group Nitrogenous

More information

DNA & DNA Replication

DNA & DNA Replication DNA & DNA Replication DNA Structure How did Watson and Crick contribute to our understanding of genetics? Watson and Crick developed the double helix model for DNA DNA Structure What is a double helix?

More information

DNA makes RNA makes Proteins. The Central Dogma

DNA makes RNA makes Proteins. The Central Dogma DNA makes RNA makes Proteins The Central Dogma TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-mrna) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION

More information

DNA Structure and Protein synthesis

DNA Structure and Protein synthesis DNA Structure and Protein synthesis What is DNA? DNA = deoxyribonucleic acid Chromosomes are made of DNA It carries genetic information: controls the activities of cells by providing instructions for making

More information

DNA: The Molecule of Heredity

DNA: The Molecule of Heredity DNA: The Molecule of Heredity STRUCTURE AND FUNCTION - a nucleic acid o C, H, O, N, P o Made of nucleotides = smaller subunits o Components of nucleotides: Deoxyribose (simple sugar) Phosphate group Nitrogen

More information

DNA Structure and Analysis. Chapter 4: Background

DNA Structure and Analysis. Chapter 4: Background DNA Structure and Analysis Chapter 4: Background Molecular Biology Three main disciplines of biotechnology Biochemistry Genetics Molecular Biology # Biotechnology: A Laboratory Skills Course explorer.bio-rad.com

More information

Transcription in Eukaryotes

Transcription in Eukaryotes Transcription in Eukaryotes Biology I Hayder A Giha Transcription Transcription is a DNA-directed synthesis of RNA, which is the first step in gene expression. Gene expression, is transformation of the

More information

DNA/RNA. Transcription and Translation

DNA/RNA. Transcription and Translation DNA/RNA Transcription and Translation Review DNA is responsible for controlling the production of proteins in the cell, which is essential to life DNA RNA Proteins Chromosomes contain several thousand

More information

DNA REPLICATION REVIEW

DNA REPLICATION REVIEW Biology Ms. Ye DNA REPLICATION REVIEW 1. Number the steps of DNA replication the correct order (1, 2, 3): Name Date Block Daughter strands are formed using complementary base pairing DNA unwinds The DNA

More information

DNA, RNA and Protein Synthesis

DNA, RNA and Protein Synthesis By the end of this lesson, I can Relate how Griffith s bacterial experiments showed that a hereditary factor was involved in transformation. Summarize how Avery s experiments led his group to conclude

More information

Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13

Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13 http://www.explorelearning.com Name: Period : Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13 Vocabulary: Define these terms in complete sentences on a separate piece of paper: amino

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i How do genes influence our characteristics? From Gene to Protein Transcription and Translation i A gene is a segment of DNA that provides the instructions for making a protein. Proteins have many different

More information

Protein Synthesis. Lab Exercise 12. Introduction. Contents. Objectives

Protein Synthesis. Lab Exercise 12. Introduction. Contents. Objectives Lab Exercise Protein Synthesis Contents Objectives 1 Introduction 1 Activity.1 Overview of Process 2 Activity.2 Transcription 2 Activity.3 Translation 3 Resutls Section 4 Introduction Having information

More information

From Gene to Protein. Chapter 17. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

From Gene to Protein. Chapter 17. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 17 From Gene to Protein PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

1. Mitosis = growth, repair, asexual reproduc4on

1. Mitosis = growth, repair, asexual reproduc4on Places Muta4ons get passed on: Cell Reproduc4on: 2 types of cell reproduc4on: 1. Mitosis = growth, repair, asexual reproduc4on Photocopy machine Growth/Repair Passed on in the same body 2. Meiosis = sexual

More information

From Gene to Protein Transcription and Translation

From Gene to Protein Transcription and Translation Name: Hour: From Gene to Protein Transcription and Translation Introduction: In this activity you will learn how the genes in our DNA influence our characteristics. For example, how can a gene cause albinism

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

BEADLE & TATUM EXPERIMENT

BEADLE & TATUM EXPERIMENT FROM DNA TO PROTEINS: gene expression Chapter 14 LECTURE OBJECTIVES What Is the Evidence that Genes Code for Proteins? How Does Information Flow from Genes to Proteins? How Is the Information Content in

More information