Nanotechnology Principles, Applications, Careers, and Education. Copyright 2011 The Pennsylvania State University

Size: px
Start display at page:

Download "Nanotechnology Principles, Applications, Careers, and Education. Copyright 2011 The Pennsylvania State University"

Transcription

1 Nanotechnology Principles, Applications, Careers, and Education Copyright 2011 The Pennsylvania State University

2 Outline What are the principles of nanotechnology? What are some applications? What kind of career can I have? What are the pathways for education?

3 Outline What are the principles of nanotechnology? What are some applications? What kind of career can I have? What are the pathways for education?

4 What is Nano? Nano is a factor of 10 prefix 1 billionth 1/1,000,000,000 or or 1x10-9 Frequently used as a measurement of length in meters (m) 1 nm is one billionth of 1 m Prefix Symbol Amount Factor giga G 1 billion 10 9 = 1,000,000,000 mega M 1 million 10 6 = 1,000,000 kilo k 1 thousand 10 3 = 1,000 centi c 1 hundredth 10-2 = 0.01 milli m 1 thousandth 10-3 = micro μ 1 millionth 10-6 = nano n 1 billionth 10-9 = So just how small is one billionth of a meter?

5 Try This on for Size. DNA Double Helix Width ~2.5 nm Red Blood Cell Diameter ~7 μm = 7000 nm *Images from Hair Strand Diameter ~0.1 mm = 100,000 nm Common House Fly Length ~1 cm = 10,000,000 nm

6 What is Nanotechnology? Nanotechnology is manipulating matter at the atomic and molecular scale. Nanotechnology is seeing matter at the atomic and molecular scale. Nanotechnology is exploitation of the unique capabilities/properties of structures fabricated at the atomic and molecular scale.

7 The History of Nanotechnology Before nanotechnology, microfabrication was known as the term used to describe how microchips and other components were made. As resolution capabilities improved into the sub micron range along came the term Nanofabrication. Both are still used today and similar equipment is used to deposit or grow thin layers of material that can be patterned and layered on substrates. We ll look at some of these fabrication steps later in the presentation.

8 Common Examples of MEMS devices Airbag sensors Digital projectors Helmet sensors Pressure sensors Wii controllers DLP screens Ink jet printer heads Gene chips

9 In the News Dartmouth researches have invented a robot that is so small that an army of 200 could march across an M&M in a single line. The robot is 60 microns wide, 250 microns long It contains two micro actuators movie

10 How small is a Nanometer? Nano is a prefix meaning 1x10-9 or 1 billionth The nanoscale is between nanometers. There are? Centimeters in a meter? There are? Millimeters in a meter? There are?micrometers in a meter? There are? Nanometers in a meter?

11 How do we see a Nanometer? Atomic Force Microscopes are one example and are used to get physical surface information by using a sharp probe tip to scan over the surface. The tip can also be used to move atoms on a surface

12 How can we see a Nanometer? The link below takes you to an animation that discusses some different tools for looking at samples.

13 Nanofabrication Some of the fabrication steps include: Deposition Etch Patterning Surface Modification Characterization Let s take a look at some of these processes in the next slide

14 An Example of a Top-Down Nanofabrication Processing Sequence THIN SURFACE FILM LITHOGRAPHY GROWTH ETCHING MODIFICATION OR DEPOSITION Film Grown Remove Pattern Dissolve by Chemical Transfer the Exposed Photoresist Bonds and Reaction Spin Photoresist Align Expose Thermal Ion are Substrate (Etch/Ion Implantation Altered Photomask of Photoresist with Ambient Anneal Modification in in Light Implantation) Liquid Exposed species Developer Areas Complete with Barrier the Substrate WET ETCH UV transparent glass with UV opaque chrome mask (Light Stencil) Photoresist Thin Film + Substrate +

15 Nanofabrication We can also use chemical reactions to cause atoms to come together to form different nanomaterials that are structures, clusters, or coatings

16 Nanomaterials A nanomaterial can be defined as a particle having one or more dimensions less than 100 nm, that cause their properties to be different from that of the bulk material Sphere Rod Sheet

17 Nanomaterials C60, carbon nano-onions, particles, single and multi walled nanotubes ~1 nm ~3 nm nm nm

18 Material Properties at the Nanoscale Material Properties change The materials that we thought we knew all about act much differently at the nanoscale. An Example: Carbon We know carbon can form coal and diamonds, a fuel source and a precious gemstone and the graphite in pencils is made of graphene, allowing us to write. Buckminsterfullerene 60 carbon atoms forming a hollow cage

19 Material Properties at the Nanoscale Macroscale Gold: Material properties don t change with size. - reactivity - melting point - optical absorption - etc. Nanoscale Gold: Material properties change with the size of the gold nanoparticle. - reactivity - melting point - optical absorption - etc.

20 Material Properties at the Nanoscale We only really discussed two elements...but there are plenty more that have new properties at the nanoscale Image from

21 Outline What are the principles of nanotechnology? What are some applications? What kind of career can I have? What are the pathways for education?

22 Some Applications The Project on Emerging Nanotechnologies is a funded organization that keeps track of the impact nanotechnology has in the marketplace. There is an inventory of products that you can easily browse by name, category, company, or country Over 500 products are currently listed

23 Nano, Nano, Nano store.apple.co m bd.com hexbug.com/nano yonex.com

24 The Consumer Products Activity We put together an activity to introduce you to some of the products that are currently available that have been influenced by nanotechnology. Check it out!

25 Why Use Nanotechnology How do we get more and more transistors onto the chip? Keep shrinking the size! As they shrink they get faster. The electrons don t have to travel as far to get from one side of the device to the other.

26 Why Use Nanotechnology Exfoliated nano clay used as a filler in plastic composites act as an air barrier in sporting goods and food packaging The larger the aspect ratio of the clay plate the more effective the barrier

27 Why Use Nanotechnology? Gold nanoshell near-infrared thermal therapy The particles have a tunable plasmon resonance based on the thickness of the thin film of gold.

28 Why Use Nanotechnology? Cancer cells Healthy cells Nanoshells Near-infrared light Nanoshells Cancer cells Healthy cells Dead cancer cells Credit: Nanoshells as Cancer Therapy National Cancer Institute Intact healthy cells

29 Why Use Nanotechnology? When ionic mercury solution is introduced to the nanowire sensor at 100mV we see a decrease in the measured current Au nanowires show improvements over thin film sensor applications increasing the response of the sensor by 4 times

30 Why Use Nanotechnology? Self cleaning windows Longer lasting siding Stain resistant textiles Antibacterial appliances Efficient lighting Improved insulation Solar cell roofing Sensors in walls

31 Outline What are the principles of nanotechnology? What are some applications? What kind of career can I have? What are the pathways for education?

32 What fields are impacted? Electronics Optics/Photonics Energy Chemistry Materials Environmental Impact Manufacturing Engineering Medical Advancements Biomimetics Sensors Metrology Forensics Water Purification

33 Where do you work? Some jobs in nanotechnology require you to work in a cleanroom, while others may not.

34 What is a Cleanroom? A cleanroom is where scientists and engineers build structures at the nano scale. We wear suits to protect the cleanroom from the dirt we may carry in on our clothes, our bodies, and our shoes.

35 What is a Cleanroom?

36

37 Estimated Starting Salaries Salaries can vary based on the state, the type of industry, and ones experience. These figures are based on statistics gathered from graduates of the PA NMT program. Associate s Degree $30,000-$50,000 Bachelor s Degree $35,000-$60,000 Master s Degree $40,000-$80,000 Doctoral Degree $75,000-$100,000

38 Outline What are the principles of nanotechnology? What are some applications? What kind of career can I have? What are the pathways for education?

39 Educational Pathways Science and technology majors will benefit from have an understanding of nanotechnology There are programs that incorporate nanotechnology training into: Associate Degrees Bachelors Degrees Masters Degrees Doctoral Degrees

40 Educational Opportunities A key challenge for nanotechnology development is the education and training of a new generation of skilled workers in the multidisciplinary perspectives necessary for rapid progress of the new technology Source: Mihail C Roco, Senior Advisor for Nanotechnology at the National Science Foundation

41 Nanotech Job Projections It is estimated that about 2 million nanotechnology workers will be needed worldwide by an approximate distribution of nanotechnology workers needed in various areas by 2015 would be: million in the US, million in Japan, million in Europe, about 0.2 million in the Asia-Pacific region excluding Japan and 0.1 million in other regions. nanotechnology has the potential to create 5 million additional related jobs overall by 2015 in the global market. Source: Mihail C Roco, Senior Advisor for Nanotechnology at the National Science Foundation

42 What Should I do Now to Prepare for a Nanotechnology Career Develop your Technical Foundation Science and / or Tech Courses Depends on your Goal Do Personal Web Research on Nanotechnology and it s Applications

43 Summary Training in nanotechnology will supplement your traditional course of study and give you competitive skills for the job market. An understanding of nanotechnology will help you to make informed decisions as a consumer and as a voting citizen. Will you be ready?

44

How small is a nanometer?

How small is a nanometer? How small is a nanometer? Purpose: The purpose of this activity is to learn about the size of a nanometer. Questions to think about: Could you see an object that measures 10 nanometers across with your

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Welcome to Nanotechnology Spin-a-Prize, a game show about nanoscale science, engineering, and technology! My name is and I ll be your host.

Welcome to Nanotechnology Spin-a-Prize, a game show about nanoscale science, engineering, and technology! My name is and I ll be your host. Welcome to Nanotechnology Spin-a-Prize, a game show about nanoscale science, engineering, and technology! My name is and I ll be your host. Nanotechnology Spin-a-Prize consists of two rounds. Before each

More information

Dr. Priyabrat Dash Office: BM-406, Mob: Webpage: MB: 205

Dr. Priyabrat Dash   Office: BM-406, Mob: Webpage:  MB: 205 Email: dashp@nitrkl.ac.in Office: BM-406, Mob: 8895121141 Webpage: http://homepage.usask.ca/~prd822/ MB: 205 Nonmanufacturing In continuation from last class... 2 Top-Down methods Mechanical-energy methods

More information

So What Is Nanotechnology

So What Is Nanotechnology So What Is Nanotechnology Science of Technology 2011 Project Lead The Way, Inc. What Is Nanotechnology? Nanotechnology allows the manipulation of atoms or molecules to create or modify materials at the

More information

See the small world Subject Area(s) Associated Unit: Associated Lesson: Activity Title: Image 1 ADA Description: Image file name: Source/Rights:

See the small world Subject Area(s) Associated Unit: Associated Lesson: Activity Title:  Image 1 ADA Description: Image file name: Source/Rights: See the small world Subject Area(s) Chemistry, Life science, Physical Science, Science & Technology, measurements Associated Unit: None Associated Lesson: Activity Title: See the small world Image 1 ADA

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Photonic Drying Pulsed Light as a low Temperature Sintering Process

Photonic Drying Pulsed Light as a low Temperature Sintering Process Photonic Drying Pulsed Light as a low Temperature Sintering Process Lou Panico Xenon Corporation W E S T E R N M I C H I G A N U N I V E R S I T Y PRESENTATION OVERVIEW What is Printed Electronics Materials

More information

Micro and Nanotech Works: Alumni Success Stories. NACK, SCME and Nano-Link are NSF-funded ATE Resource Centers supporting Nanotechnology Education

Micro and Nanotech Works: Alumni Success Stories. NACK, SCME and Nano-Link are NSF-funded ATE Resource Centers supporting Nanotechnology Education Micro and Nanotech Works: Alumni Success Stories NACK, SCME and Nano-Link are NSF-funded ATE Resource Centers supporting Nanotechnology Education Micro and Nanotech Works: Student Success Stories Outline

More information

Nanosensors. Rachel Heil 12/7/07 Wentworth Institute of Technology Department of Electronics and Mechanical Professor Khabari Ph.D.

Nanosensors. Rachel Heil 12/7/07 Wentworth Institute of Technology Department of Electronics and Mechanical Professor Khabari Ph.D. Nanosensors Rachel Heil 12/7/07 Wentworth Institute of Technology Department of Electronics and Mechanical Professor Khabari Ph.D. There are many advances in nanotechnology that if perfected could help

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther EECS 40 Spring 2003 Lecture 19 Microfabrication 4/1/03 Prof. ndy Neureuther How are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other films Pattern transfer by lithography

More information

NANOTECHNOLOGY. I. Basic concept of Nanotechnology

NANOTECHNOLOGY. I. Basic concept of Nanotechnology NANOTECHNOLOGY Girish N. Chaple Tushar P.Upalanchiwar 6 th Semister B.E 6 th SemisterB.E Department Of Electronics Engineering Department Of Electronics Engineering B.D.C.O.E Sevagram,Wardha B.D.C.O.E

More information

Nanotechnology: the Nexus of Science Education

Nanotechnology: the Nexus of Science Education Nanotechnology: the Nexus of Science Education Dr. Stephen J. Fonash April 4, 2008 illustration by Court Patton (From an article by Robert Poe) -- Electronic Business, 11/1/2002 Outline Introduction to

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Learning about the nanoscale and the SI system of measurement

Learning about the nanoscale and the SI system of measurement NNIN Nanotechnology Education Learning about the nanoscale and the SI system of measurement Student Worksheet Materials candy assorted sizes coins assorted sizes Metric ruler NanoRuler Paper pencil, construction

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices

Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices Hitachi Review Vol. 65 (2016), No. 7 233 Featured Articles Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices Ion-beam-based Photomask Defect Repair

More information

Learning about the nanoscale and the SI system of measurement

Learning about the nanoscale and the SI system of measurement NNIN Nanotechnology Education Teacher s Preparatory Guide Learning about the nanoscale and the SI system of measurement Purpose: To help students understand the size of the nanoscale. To relate the size

More information

You do remember that everything is made of atoms, don t you? A stone, a pen, a video game, a TV, a dog and you too are formed by atoms.

You do remember that everything is made of atoms, don t you? A stone, a pen, a video game, a TV, a dog and you too are formed by atoms. You do remember that everything is made of atoms, don t you? A stone, a pen, a video game, a TV, a dog and you too are formed by atoms. Atoms Stone You too Video game TV Dog Atoms build molecules or form

More information

Lab #2 Wafer Cleaning (RCA cleaning)

Lab #2 Wafer Cleaning (RCA cleaning) Lab #2 Wafer Cleaning (RCA cleaning) RCA Cleaning System Used: Wet Bench 1, Bay1, Nanofabrication Center Chemicals Used: H 2 O : NH 4 OH : H 2 O 2 (5 : 1 : 1) H 2 O : HF (10 : 1) H 2 O : HCl : H 2 O 2

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

Fabrication and Layout

Fabrication and Layout ECEN454 Digital Integrated Circuit Design Fabrication and Layout ECEN 454 3.1 A Glimpse at MOS Device Polysilicon Aluminum ECEN 475 4.2 1 Material Classification Insulators Glass, diamond, silicon oxide

More information

Workshop on Nanoscience and Catalysts March 2008, QAU, Islamabad Nanocomposites for Thermal management Applications

Workshop on Nanoscience and Catalysts March 2008, QAU, Islamabad Nanocomposites for Thermal management Applications Fazal Ahmad Khalid Pro-Rector GIK Institute of Engineering Sciences and Technology Topi, NWFP, Pakistan (Khalid@giki.edu.pk) Workshop on Nanoscience and Catalysts 24-25 March 2008, QAU, Islamabad Nanocomposites

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

Moving toward Sustainability

Moving toward Sustainability Nanotechnology and the Environment: Moving toward Sustainability Barbara Karn, PhD Health and Environment Organization April 17, 2012 A bit of history Nanotechnology is enabled Nanotechnology is recognized

More information

National Center for Nanoscience and Technology, China

National Center for Nanoscience and Technology, China National Center for Nanoscience and Technology, China National Center for Nanoscience and Technology, China (NCNST) is co-founded by the Chinese Academy of Sciences and Ministry of Education, on December

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

Leveraging the Precision of Electroforming over Alternative Processes When Developing Nano-scale Structures

Leveraging the Precision of Electroforming over Alternative Processes When Developing Nano-scale Structures VOLUME 4 - ELECTROFORMING Leveraging the Precision of over Alternative Processes When Developing Nano-scale Structures Electrical and mechanical component and subsystem designers generally have five techniques

More information

Superionic Solid State Stamping (S4)

Superionic Solid State Stamping (S4) Superionic Solid State Stamping (S4) Lead Faculty Researcher: Placid Ferreira Department: Materials Science & Engineering Hsu et al, Nano Letters, 2007 1. Description: This dry, single step, electrochemical

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Fig. 1. Single-material Heatuator with selective doping on one arm (G.K. Ananthasuresh)

More information

Nano Computers through Nanotechnology

Nano Computers through Nanotechnology International Journal of Education and Science Research Review E-ISSN 2348-6457 Volume-2, Issue-1 February- 2015 P-ISSN 2348-1817 Nano Computers through Nanotechnology Laith R.Fleih, Taghreed M. Younis

More information

NanoSystemsEngineering: NanoNose Final Status, March 2011

NanoSystemsEngineering: NanoNose Final Status, March 2011 1 NanoSystemsEngineering: NanoNose Final Status, March 2011 The Nanonose project is based on four research projects (VCSELs, 3D nanolithography, coatings and system integration). Below, the major achievements

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Check your ALCE Reading Skills: Activity 2. Key and item analysis

Check your ALCE Reading Skills: Activity 2. Key and item analysis Check your ALCE Reading Skills: Activity 2 Key and item analysis Text This text has been adapted from an article in the New Scientist Imagine a world where microscopic medical implants patrol our bodies,

More information

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Advances in Intense Pulsed Light Solutions For Display Manufacturing XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Talk Outline Introduction to Pulsed Light Applications in Display UV Curing Applications

More information

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers David W. Stollberg, Ph.D., P.E. Research Engineer and Adjunct Faculty GTRI_B-1 Field Emitters GTRI_B-2

More information

Nanotechnology: A Brief History and Its Convergence with Medicine. Weston Daniel, PhD Director of Program Management

Nanotechnology: A Brief History and Its Convergence with Medicine. Weston Daniel, PhD Director of Program Management Nanotechnology: A Brief History and Its Convergence with Medicine Weston Daniel, PhD Director of Program Management Outline Introduction The Nanoscale Applications Realization of a Vision There s Plenty

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 1400 ma-n 1400 is a negative tone photoresist series designed for the use in microelectronics and microsystems. The resists are

More information

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal Oxford Lasers Ltd Moorbrook Park Didcot, Oxfordshire, OX11 7HP Tel: +44 (0) 1235 810088 www.oxfordlasers.com Outline Oxford Lasers Importance

More information

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS - Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS Chemnitz System Packaging Page 1 System Packaging Outline: Wafer level packaging for MEMS

More information

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Research at the nanoscale is more effective, when research teams can quickly and easily observe and characterize a wide

More information

Micro & nanofabrica,on

Micro & nanofabrica,on Micro & nanofabrica,on Photolitography : - contact - projec,on Electron Beam lithography (EBL) Nano imprint lithography Etching Contact Photolithography Substrate (e.g. Silicon wafer) Photoresist spinning

More information

The application of nano metal powder

The application of nano metal powder The application of nano metal powder Nano material and nanotechnology respectively belong to the new material and advanced technology that emerged in the late 20 th century. Due to the small size effect,

More information

Gaetano L Episcopo. Introduction to MEMS

Gaetano L Episcopo. Introduction to MEMS Gaetano L Episcopo Introduction to MEMS What are MEMS? Micro Electro Mechanichal Systems MEMS are integrated devices, or systems of devices, with microscopic parts, such as: Mechanical Parts Electrical

More information

Lecture 10: MultiUser MEMS Process (MUMPS)

Lecture 10: MultiUser MEMS Process (MUMPS) MEMS: Fabrication Lecture 10: MultiUser MEMS Process (MUMPS) Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, 1 Recap Various VLSI based

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

CHAPTER 1 HOW SEMICONDUCTOR CHIPS ARE MADE

CHAPTER 1 HOW SEMICONDUCTOR CHIPS ARE MADE CHAPTER 1 HOW SEMICONDUCTOR CHIPS ARE MADE Hwaiyu Geng Hewlett-Packard Company Palo Alto, California Lin Zhou Intel Corporation Hillsboro, Oregon 1.1 INTRODUCTION Over the past decades, an information

More information

CO 2 Emission. (2) Scientific processes. The student uses scientific methods during field and laboratory investigations. The student is expected to:

CO 2 Emission. (2) Scientific processes. The student uses scientific methods during field and laboratory investigations. The student is expected to: CO 2 Emission Subject: Chemistry Grade Level: 11 th Rational or Purpose: This activity is intended to strengthen students concepts on scientific notation, unit conversion, and moles. The content will help

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Lowering Barriers for Nanotechnology Commercialisation

Lowering Barriers for Nanotechnology Commercialisation Lowering Barriers for Nanotechnology Commercialisation Dr Joel Segal University of Nottingham, UK ETP Conference 11/12 May 2010, Brussels Open Innovation in Nanotechnologies Overview NanoCom Vision and

More information

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow.

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow. Abstract Evaporation driven particle packing has been investigated to reveal interesting patterns at micrometer to millimeter scale. While the microscopic structures of these patterns are well characterized,

More information

There are basically two approaches for bulk micromachining of. silicon, wet and dry. Wet bulk micromachining is usually carried out

There are basically two approaches for bulk micromachining of. silicon, wet and dry. Wet bulk micromachining is usually carried out 57 Chapter 3 Fabrication of Accelerometer 3.1 Introduction There are basically two approaches for bulk micromachining of silicon, wet and dry. Wet bulk micromachining is usually carried out using anisotropic

More information

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine Nanoimprinting in Polymers and Applications in Cell Studies Albert F. YEE Chemical Engineering & Materials Science UC Irvine Presentation outline Motivation Reversal imprinting Soft inkpad imprinting on

More information

Lloyd Whitman Deputy Director Center for Nanoscale Science and Technology

Lloyd Whitman Deputy Director Center for Nanoscale Science and Technology Nanotechnology at NIST Lloyd Whitman Deputy Director Center for Nanoscale Science and Technology whitman@nist.gov Nanotechnology Innovation Summit December 8, 2010 NIST Nanotechnology Mission: To promote

More information

Nano-Processing for High Voltage and High Power Devices. J. Parsey March 21, 2013

Nano-Processing for High Voltage and High Power Devices. J. Parsey March 21, 2013 Nano-Processing for High Voltage and High Power Devices J. Parsey March 21, 2013 Outline Background concepts Two nano ideas: New high voltage, high power FET device designs Application of nano-particles

More information

Nanotechnology. DTSC and Nanotechnology

Nanotechnology. DTSC and Nanotechnology 1 of 5 6/3/2010 10:16 AM Nanotechnology DTSC and Nanotechnology Nanotechnology is a science that promises breakthroughs in all kinds of areas. We are already seeing it in stain resistant clothes, stronger

More information

Nanotechnology & UIC (Engineering & Science)

Nanotechnology & UIC (Engineering & Science) Nanotechnology & Nanobiotechnology @ UIC (Engineering & Science) by G.Ali Mansoori, PhD mansoori@uic.edu BioEngineering, Chemical Engineering & Physics Departments at Livingston Nanotechnology Conference

More information

Nano-imprinting Lithography Technology І

Nano-imprinting Lithography Technology І Nano-imprinting Lithography Technology І Agenda Limitation of photolithograph - Remind of photolithography technology - What is diffraction - Diffraction limit Concept of nano-imprinting lithography Basic

More information

Transmission Kikuchi Diffraction in the Scanning Electron Microscope

Transmission Kikuchi Diffraction in the Scanning Electron Microscope Transmission Kikuchi Diffraction in the Scanning Electron Microscope Robert Keller, Roy Geiss, Katherine Rice National Institute of Standards and Technology Nanoscale Reliability Group Boulder, Colorado

More information

Application Note #124 VITA: Quantitative Nanoscale Characterization and Unambiguous Material Identification for Polymers

Application Note #124 VITA: Quantitative Nanoscale Characterization and Unambiguous Material Identification for Polymers Local thermal analysis identifies polymer AFM image of polymer blend Application Note #124 VITA: Quantitative Nanoscale Characterization and Unambiguous Material Identification for Polymers VITA module

More information

Surface Acoustic Wave fabrication using nanoimprint. Zachary J. Davis, Senior Consultant,

Surface Acoustic Wave fabrication using nanoimprint. Zachary J. Davis, Senior Consultant, Surface Acoustic Wave fabrication using nanoimprint Zachary J. Davis, Senior Consultant, zjd@teknologisk.dk Center for Microtechnology & Surface Analysis Micro and Nano Technology Sensor Technology Top

More information

Sub-5 nm Structures Process Development and Fabrication Over Large Areas

Sub-5 nm Structures Process Development and Fabrication Over Large Areas A S Jugessur,, 2017, 1:1 SciFed Nanotech Research Letters Research Article Open Access Sub-5 nm Structures Process Development and Fabrication Over Large Areas * A S Jugessur * University of Iowa Microfabrication

More information

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller Webpage: http://www.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

Visit

Visit Practical Applications for Nano- Electronics by Vimal Gopee E-mail: Vimal.gopee@npl.co.uk 10/10/12 Your Delegate Webinar Control Panel Open and close your panel Full screen view Raise hand for Q&A at the

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

Nanotechnology and space By Ali Ghasemi

Nanotechnology and space By Ali Ghasemi In the name of god Nanotechnology and space By Ali Ghasemi Abstract: Nanotechnology is an ability to produce new materials and systems by working in molecular and atomic sales and utilizing the features

More information

Nanotechnology: Small is big business

Nanotechnology: Small is big business Nanotechnology: Small is big business Dr. G. Wayne Clough President, Georgia Institute of Technology Rotary International Southeast Leadership Institute September 30, 2005 I would like to describe a field

More information

Controlled Growth, Patterning and Placement of Carbon Nanotube Thin Films

Controlled Growth, Patterning and Placement of Carbon Nanotube Thin Films Controlled Growth, Patterning and Placement of Carbon Nanotube Thin Films V. K. Sangwan a,b * #, V. W. Ballarotto b, D. R. Hines b, M. S. Fuhrer a, and E. D. Williams a,b a Center for Nanophysics and Advanced

More information

3. Overview of Microfabrication Techniques

3. Overview of Microfabrication Techniques 3. Overview of Microfabrication Techniques The Si revolution First Transistor Bell Labs (1947) Si integrated circuits Texas Instruments (~1960) Modern ICs More? Check out: http://www.pbs.org/transistor/background1/events/miraclemo.html

More information

M. Ikhlasul Amal 1) Research Center for Metallurgy and Material Indonesian Institute of Sciences 2) Indonesian Society for Nano

M. Ikhlasul Amal 1) Research Center for Metallurgy and Material Indonesian Institute of Sciences 2) Indonesian Society for Nano National policy, regulatory and institutional support mechanism/framework and critical gaps in testing standardization and certification of nanomaterials and nanoproducts: INDONESIA chapter M. Ikhlasul

More information

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Researcher: Kunbae (Kevin) Noh, Graduate Student, MAE Dept. and CMRR Collaborators: Leon Chen,

More information

CREOL, The College of Optics & Photonics, University of Central Florida

CREOL, The College of Optics & Photonics, University of Central Florida Metal Substrate Induced Control of Ag Nanoparticle Plasmon Resonances for Tunable SERS Substrates Pieter G. Kik 1, Amitabh Ghoshal 1, Manuel Marquez 2 and Min Hu 1 1 CREOL, The College of Optics and Photonics,

More information

Environmental Applications and Implications of Nanotechnology

Environmental Applications and Implications of Nanotechnology Environmental Applications and Implications of Nanotechnology Association of State and Territorial Solid Waste Management Officials Annual Meeting Baltimore, MD October 23, 2008 Marti Otto Office of Superfund

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Development of National Nanotechnology Standards for Safe Consumer Products

Development of National Nanotechnology Standards for Safe Consumer Products Development of National Nanotechnology Standards for Safe Consumer Products Agus Haryono Research Center for Chemistry Indonesian Institute of Sciences (LIPI) International Conference on Nanotechnology

More information

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 623-628 online at http://www.scientific.net 2004 Trans Tech Publications, Switzerland Grain Sizes and Surface Roughness in Platinum

More information

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University 2014 Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University Page1 Syllabus UNIT 1 Introduction to VLSI Technology: Classification of ICs, Scale of integration,

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 13/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 13/2 Outline Introduction: Ceramic materials Carbon based materials Applications of ceramics Ceramic Processing Mechanical properties of Ceramics Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

The Swedish Foundation for Strategic Research calls for proposals for research group grants for research in Materials Science

The Swedish Foundation for Strategic Research calls for proposals for research group grants for research in Materials Science 27 June 2008 The Swedish Foundation for Strategic Research calls for proposals for research group grants for research in Materials Science The Foundation calls for proposals for five-year research group

More information

Nanoparticles Improve Coating Performances

Nanoparticles Improve Coating Performances Nanoparticles Improve Coating Performances presented by Dr. Thomas Sawitowski, Manager Nanotechnology The use of Nanoadditives in plastic and coating composites ICNT, San Francisco 2005 1 Out-line Definition

More information

Sketch Corporation. Manufacturer of Inorganic Adhesive Binder Opens new horizons in Nanotechnology Functional Coating Development CORPORATION OUTLINE

Sketch Corporation. Manufacturer of Inorganic Adhesive Binder Opens new horizons in Nanotechnology Functional Coating Development CORPORATION OUTLINE Sketch Corporation Manufacturer of Inorganic Adhesive Binder Opens new horizons in Nanotechnology Functional Coating Development CORPORATION OUTLINE To See is to Believe But Try is Best! 1 HISTORY What

More information

GE s Technology and Services

GE s Technology and Services GE s Technology and Services Analyst Meeting May 4, 2006 GE Global Research Big Bets on Technology Mark Little Senior Vice President, GE Global Research 2/ Big market opportunities FROM Healthcare See

More information

Choi, Jun-Hyuk Korea Institute of Machinery & Materials

Choi, Jun-Hyuk Korea Institute of Machinery & Materials The 11 th US-Korea Nanosymposium Choi, Jun-Hyuk 2014. 09. 29 Korea Institute of Machinery & Materials About KIMM Nano-research Bldg Clean RM Five Research Divisions; 1. Advanced Manufacturing Sys. 2. Extreme

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

Temperature Scales. Questions. Temperature Conversions 7/21/2010. EE580 Solar Cells Todd J. Kaiser. Thermally Activated Processes

Temperature Scales. Questions. Temperature Conversions 7/21/2010. EE580 Solar Cells Todd J. Kaiser. Thermally Activated Processes 7/1/010 EE80 Solar Cells Todd J. Kaiser Flow of Wafer in Fabrication Lecture 0 Microfabrication A combination of Applied Chemistry, Physics and ptics Thermal Processes Diffusion & xidation Photolithograpy

More information

NRL Institute for Nanoscience 1 May 2012

NRL Institute for Nanoscience 1 May 2012 NRL Institute for Nanoscience 1 May 2012 Dr. Eric S. Snow, Director The Naval Research Laboratory Highly interdisciplinary laboratory Research Focus Areas Battlespace Environments, Undersea Warfare, Space

More information

Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites

Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites Solar Energy Materials & Solar Cells 8 () 339 38 Structure and optical properties of M/ (M=Au, Cu, Pt) nanocomposites U. Pal a,b, *, J. Garc!ıa-Serrano a, G. Casarrubias-Segura a, N. Koshizaki c, T. Sasaki

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(1):163-167 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Synthesis and Characterization of Carbon Nano Spheres

More information

FABRICATION of MOSFETs

FABRICATION of MOSFETs FABRICATION of MOSFETs CMOS fabrication sequence -p-type silicon substrate wafer -creation of n-well regions for pmos transistors, -impurity implantation into the substrate. -thick oxide is grown in the

More information

NANO SCRATCH TESTING OF THIN FILM ON GLASS SUBSTRATE

NANO SCRATCH TESTING OF THIN FILM ON GLASS SUBSTRATE NANO SCRATCH TESTING OF THIN FILM ON GLASS SUBSTRATE Prepared by Jesse Angle 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2010

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array PIERS ONLINE, VOL. 4, NO. 7, 2008 746 High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array Bing-Hung Chen, Yih-Chau Wang, and Jia-Hung Lin Institute of Electronic Engineering,

More information