Bacterial- and phage genetics

Size: px
Start display at page:

Download "Bacterial- and phage genetics"

Transcription

1 Bacterial- and phage genetics

2 Bacteria Prokaryotes are unicellular organisms haploid, circular dsdna genome 70 S ribosome plasmamembrane, cytoplasm no nuclei, ER, Golgi, mitochondria asexual reproduction Present in most habitats, growing in oceans, fresh water, hydrothermal vents, hot springs, arctic regions, deep in the Earth's crust, in organic matter, live bodies of plants and animals larger biomass than plants or animals Bacteria associated with living organisms: symbionts: commensals, mutualists and parasites, probiotic, pathogenic or opportunist size: μm range

3 Changing genomes E. coli strains exhibit % diffference of genome all are E. coli Human and mice genomes differ less than % In bacteria new metabolic pathways appear or genes are lost within a few generations In the genome of two, genetically very different bacteria up to % homologous genes can be present! The species as taxonomic unit is useless in case of bacteria

4 Changing genomes OTU = operational taxonomic unit, based on the sequence of 16S rrna gene Vertical and horizontal gene transfer: DNA from the environment genes providing evolutionary advantage spread among microorganisms useless genes are rapidly lost The fact that natural transformation has been detected among bacteria from all taxonomic groups suggests that transformability evolved early in phylogeny 1542 nucleotides

5 Tree of Life based on sequence of 16S rrna genes Even extinct species fit into this system Prokaryote Archea are clearly separated from Bacteria (Woese) Organisms close to the theoretical common ancestor tolerate high temperatures well Carl Woese

6 Prokaroyte cells at 0, 37 and 130 C 130 C

7 Markers of bacteria Visible markers wild and mutant growth is different: colony size, shape wild and mutant exhibit enzyme differences, different metabolites: color or staining Selectable markers permissive and restrictive media, conditions wild or mutant allele means selective advantage (in certain conditions), cells can be selected according to genetic make up

8 Markers of bacteria Visible markers wild and mutant growth is different: colony size, shape wild and mutant exhibit enzyme differences, different metabolites: color or staining Selectable markers permissive and restrictive media, conditions wild or mutant allele means selective advantage (in certain conditions), cells can be selected according to genetic make up

9 Markers of bacteria Visible markers wild and mutant growth is different: colony size, shape wild and mutant exhibit enzyme differences, different metabolites: color or staining Selectable markers permissive and restrictive media, conditions wild or mutant allele means selective advantage (in certain conditions), cells can be selected according to genetic make up

10 Bakteriális kolónia formák (Eshel Ben Jacob, Tel Aviv University)

11 Bakteriális kolónia formák (Eshel Ben Jacob, Tel Aviv University)

12 Discovery of genetic transformation Prokaryotes frequently take up genetic material from the environment to change their genome adaptation to environmental changes Discovery of gene transfer: Frederick Griffith, 1928, Streptococcus pneumoniae DNA is the genetic material: Oswald Avery (MacLeod and McCarty) 1944 Stereptococcus Enormous medical importance: spread of antibiotic resistance and pathogenicity

13 The bacterial metagenome The number of bacterial OTUs in a human body is estimated to be around An average bacterium has approx. 4-5 thousand genes ( ) They suppose to have close to 200 million genes, times more than we have In reality bacterial genes probably code for less than one million genes: they have many homologous genes (genes leading to positive selection spread fast in microbial populations, even among genetically unrelated cells) Divergent species in identical environment tend to develop similar metabolism: convergent evolution

14 Transfer of genes, mobile genes Some genes are transfered between different cells by random events (DNA of dead cells is taken up and integrated by living cells) Other genes move around (transposons), or multiplicate (retrotransposons) to increase their chances to get into other cells Genes evolved that code for proteins forming structures (sex pili) needed for transfer of genetic material between cells Groups of genes evolved that can ensure their own survival if the environment becomes lethal for the host cells (lysogenic phages) Even more selfish genes use the host only as a means to replicate themselves (bacterial viruses = bacteriophages)

15 Gene exchange among prokaryotes Transformation: uptake of DNA from (dead) cells Conjugation: transfer of DNA (among living cells) Transducion: gene transfer (by infectious agents)

16 Recombination among auxotrophic bacteria Auxotroph cells: require compounds what wild type cells (prototrophs) do not need The experiment of Lederberg and Tatum: mixing auxotroph strains Neither strain gave rise to prototrophic cells only after mixing the strains. Exchange and recombination of genetic material.

17 Discovery of conjugation U-tube experiment - Bernard Davis: soluble factors are unimportant The filter allows exchange of subcellular material, but prevents mixing of the cells. No recombination detected (no prototroph colonies). William Hayes, 1953: lost capacity to recombine ( fertility ) Formation of recombinants is unidirectional and requires physical contact of cells of the strains. The transfer is one way only! "Sexual-like difference between the cells A = donor ("male"), B = recipient ("female"). Fertility frequently lost from male cells independent of other properties.

18 Discovery of conjugation An extrachromosomal piece of DNA, a (F= fertility) plasmid is responsible for the conjugation capability Characteristic features: donor strain has pili (pilus) One copy of F-plasmid is transferred to recipient F factor replicates independently (not linked to chromosome) Many types of plasmids: fertility, F, resistance, R, virulence (pathogenity), killer, (K or Col), degradative

19 Discovery of high frequency conjugation Luca Cavalli-Sforza: unexpectedly high frequency of transformation (1000 x), very low or no transfer of fertility Donor strain always exhibited high transformation frequency: Hfr strain (high frequency recombination). A number of different Hfr strains were isolated. The recipient rarely converted to Hfr

20 Genetic mapping During conjugation the individual genes follow each other from the donor to the recipient Interrupting the conjugation only certain genes are transferred. It took 90 min to transfer the whole E. coli genome

21 Genetic mapping It took 90 min to transfer the whole E. coli genome Using different Hfr strains different genes enter first. Experiments with different Hfr strains validate the results: sequence of genes.

22 Genetic mapping F-plasmids can integrate into different positions within the chromosome. Depending on the site and orientation different genes are transfered in different sequences. If the plasmid integrated into the chromosome Fertility genes are transferred last. The chances for this are very low, usually conjugation is interrupted earlier. With F-plasmids that are free replicons the situation is the opposite: donor property is transmitted frequently, as origo is not separated from the fertility gene by the whole bacterial chromosome. Conjugation is the most frequent and most important genetic event concerning antibiotic resistance and pathogenicity Conjugating bacteria

23 Phage genetics Work with bacteriophages (phages) was very simple. Some of the most important and fundamental genetic informations resulted from studies on E. coli phages T2, T4 and lambda. After infection with one single phage particle withing a couple of hours tens of thousands of phages are released from the lysed bacterial cell. The new phages infect new cells and soon a clear plaque is formed in the bacterial lawn.

24 Phage genetics To find genetic markers was a problem Most phage mutations are "lethal. Phages have a haploid genome. A mutation can be inherited only if it is conditionally lethal: in permissive conditions (proper host, low temperature) it can function. ts mutations (ts = temperature sensitive) are very useful: they have wild type phenotype at low temperature, but render essential gene products inactive at higher, restrictive temperatures (37-42 C). 40 C 30 C

25 Lysogenic and lytic infection

26 Phage-mediated gene transfer: general transduction Recombination of DNA is a frequent event in bacteria, phage DNA might also be involved Recombination of phage DNA with chromosomal genes might create transducing phages. These phages carry host sequences but lost phage gene(s), so are defective. The transducing phage-infected cell will be the recipient. Any host gene can be carried by these phages. General transduction was discovered by Lederberg and Zinder (1951) working with the P22 phage of Salmonella.

27 Phage-mediated gene transfer: special transduction Some phages integrate at a given sequence into the chromosome (att). Inversion of a small DNA fragment involving host and integrated phage sequences generate special transducing phages In case of special transduction the transducing phage can carry only specific host genes: genes neighboring the phage integration site. The phenomenon was discovered in the lambda phage - E. coli system. Lambda phage integrates at a unique site in the coli chromosome: (attb).

28 Special transduction In case of incorrect removal of the phage DNA from the chromosome, gal gene, which is very close to the attb region will replace part of the phage genome. Only this gene will be carried by special transducing phages. This transducing phage is a defective phage, lambda dgal, as it lost phage genes. This phage can not integrate, unless a "helper phage" can complement its lost functions.

29 Use of bacterial and phage genetics New knowledge resulting from bacterial and phage genetics led to the discovery of the restriction-modification enzymes and the development of in vitro gene technologies. Today sequence of any gene of any organism can be determined. Study of genetics of different prokaryotic organisms is still an important goal: especially bacteria causing diseases, living in extreme environments, or in symbiosis with higher organisms. We want to know everything about virulence genes and genes that code for exotic enzymes.

30 Circular Genome Map represents circular bacterial genome (and plasmids) E. coli Outer ring (red): genes on direct strand, next (yellow): genes on complementary strand trnas (green arrows), rrnas (pink or orange stripes), GC content (brown lines), GC skew (yellow lines). Replication origin and terminus predicted from the GC skew shift points are also labeled.

31 The genome of Clostridium perfringens, which shows extremely biased GC skew and gene orientation. E. coli: non biased gene orientation

32 GC content usually does not vary much within the genome, but local area of abnormal GC content is sometimes indicative of horizontally transferred genes or insertions. For example, the lower left region with low GC content in Corynebacterium glutamicum is a known large insertion region.

33 Islands of pathogenicity (PAI) Pathogenic bacteria have virulence factors encoded by pathogenicity islands of genes. Pathogenicity islands are encoded by either mobile genetic elements (transposons, retrotransposons) plasmids (eg. invasion factors) bacteriophages (eg. Shiga toxin) or by the host chromosome

34 Research on bacteria help following human migration A multilocus haplotype tree and quantitative sources of nucleotides from three ancestral populations for 119 H. pylori isolates from Ladakh, East Asia, and Indo-Europe.

35 Taiwan By analyzing both genetic variations in human gut bacteria and linguistic evidence, scientists found that people migrated to the Pacific Islands approximately 5,000 years ago from Taiwan Read more:

36 Bacterial and phage genetics Bacterial genome is very flexible, genes are rapidly lost and aquired Analysis of ribosomal gene sequences help to identify bacteria Genes are transmitted by conjugation (frequent event), F+ and Hfr strains Bacteria take up and integrate genes from the environment (from lysed cells) Defective phages transmit genes between host cells (specific and general transduction, very rare event) Most bacteria living on/in us are beneficial. Very few bacteria cause disease: only those equipped with virulence factors Virulence factors are encoded by genes of pathogenicity islands (sets of genes) Pathogenicity islands are carried by mobile genetic elements, plasmids and bacteriophages The list of genome-sequenced microorganisms: Ongoing microbial genome projects:

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics Lectures of Dr.Mohammad Alfaham The Bacterial Genetics is the total collection of genes carried by a bacterium both on its chromosome and on its extrachromosomal genetic elements (plasmids) A Gene A gene

More information

Spostiamo ora la nostra attenzione sui batteri, e batteriofagi

Spostiamo ora la nostra attenzione sui batteri, e batteriofagi Spostiamo ora la nostra attenzione sui batteri, e batteriofagi Bacteria Mutate Spontaneously and Grow at an Exponential Rate. Useful for genetics studies, development of genetic engineering Teoria dell'adattamento

More information

2054, Chap. 13, page 1

2054, Chap. 13, page 1 2054, Chap. 13, page 1 I. Microbial Recombination and Plasmids (Chapter 13) A. recombination = process of combining genetic material from 2 organisms to produce a genotype different from either parent

More information

number Done by Corrected by Doctor Hamed Al Zoubi

number Done by Corrected by Doctor Hamed Al Zoubi number 3 Done by Neda a Baniata Corrected by Waseem Abu Obeida Doctor Hamed Al Zoubi Note: it is important to refer to slides. Bacterial genetics *The main concepts we will talk about in this lecture:

More information

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element

Gene Transfer 11/4/13. Fredrick Griffith in the 1920s did an experiment. Not until 1944 was DNA shown to be the moveable element Gene Transfer Fredrick Griffith in the 1920s did an experiment. Not until 19 was DN shown to be the moveable element Dead pathogen cells able to make a capsule were able to pass this ability to the live

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

Bacteria. Bacteria. Chapter 27. Bacteria 7/18/2016

Bacteria. Bacteria. Chapter 27. Bacteria 7/18/2016 Chapter 27 Prokaryotes Most numerous organisms on earth Earliest life forms (fossils: 2.5 billion years old) Contain ribosomes Surrounded by protective cell wall containing peptidoglycan (protein-carbohydrate)

More information

The Mosaic Nature of Genomes

The Mosaic Nature of Genomes The Mosaic Nature of Genomes n DNA sequence is not static Mutations of single bases Large deletions Large insertions of sequence n Transferred from other species n New functions useful in particular situations

More information

DO NOT OPEN UNTIL TOLD TO START

DO NOT OPEN UNTIL TOLD TO START DO NOT OPEN UNTIL TOLD TO START BIO 312, Section 1, Spring 2011 February 21, 2011 Exam 1 Name (print neatly) Instructor 7 digit student ID INSTRUCTIONS: 1. There are 11 pages to the exam. Make sure you

More information

BACTERIAL CONJUGATION. To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another.

BACTERIAL CONJUGATION. To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another. BACTERIAL CONJUGATION I. OBJECTIVES To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another. To learn about the various genetic elements

More information

QUESTIONS 16 THROUGH 30 FROM EXAM 3 OF FALL, 2010

QUESTIONS 16 THROUGH 30 FROM EXAM 3 OF FALL, 2010 BISC403 Genetic and Evolutionary Biology Spring, 2011 April 19, 2011 Summary of requirements for Exam 3 (to be given on April 26 plus third exam from fall, 2010) The primary responsibility is for any topic

More information

Talaro. Chapter 9: Microbial Genetics

Talaro. Chapter 9: Microbial Genetics Talaro Chapter 9: Microbial Genetics 3 Figure 9.2 4 James Watson and Francis Crick Rosalind Frank: DNA is a double helix!!! DNA Composition Nitrogenouse base Adenine (A) Thymine (T) Guanine (G) Cytosine

More information

Name Per AP: CHAPTER 27: PROKARYOTES (Bacteria) p559,

Name Per AP: CHAPTER 27: PROKARYOTES (Bacteria) p559, AP: CHAPTER 27: PROKARYOTES (Bacteria) p559, 561-564 1. How does the bacterial chromosome compare to a eukaryotic chromosome? 2. What is a plasmid? 3. How fast can bacteria reproduce? 4. What is a bacterial

More information

Viruses and Bacteria Notes

Viruses and Bacteria Notes Viruses and Bacteria Notes A. Virus Structure: Viruses are in contrast to bacteria. Viruses are (DNA or RNA) enclosed in a coat called a. Also some viruses have a that helps them infect their host. These

More information

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved. CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? 35 INTRODUCTION In the Program Introduction, you learned that the increase in diabetes in the United States has resulted in a great demand for its treatment,

More information

Sequence Analysis Lab Protocol

Sequence Analysis Lab Protocol Sequence Analysis Lab Protocol You will need this handout of instructions The sequence of your plasmid from the ABI The Accession number for Lambda DNA J02459 The Accession number for puc 18 is L09136

More information

BACTERIA. NO or membrane bound WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA. bilayer embedded with

BACTERIA. NO or membrane bound WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA. bilayer embedded with Bacteria and Virus Notes WHAT ARE PROKARYOTES? ALWAYS organisms BACTERIA NO or membrane bound Very compared to cells WHAT ARE THE TWO TYPES OF PROKARYOTES? TYPES EUBACTERIA ARCHAEBACTERIA MAJOR DIFFERENCES

More information

Molecular Genetics Student Objectives

Molecular Genetics Student Objectives Molecular Genetics Student Objectives Exam 1: Enduring understanding 3.A: Heritable information provides for continuity of life. Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source

More information

Bacterial Antibiotic Resistance from Chapter 9. Microbiology: A Systems Approach 1 st Edition Cowan & Talaro

Bacterial Antibiotic Resistance from Chapter 9. Microbiology: A Systems Approach 1 st Edition Cowan & Talaro Bacterial Antibiotic Resistance from Chapter 9 Microbiology: A Systems Approach 1 st Edition Cowan & Talaro Types of intermicrobial exchange conjugation transformation requires the attachment of two related

More information

The Fertility Factor, or F

The Fertility Factor, or F The Fertility Factor, or F Pili Contains pili genes, tra genes, replication genes, but no genes essential for cell survival or growth. Chromosome F factor 100,000 bp Closely related R factor contains multiply

More information

DNA is the Genetic Material

DNA is the Genetic Material Lecture#1 DNA is the Genetic Material Readings: Griffiths et al (2004) 8th Edition: Chap. 1, 2-4; Chap. 7 pp 227-249 Problems: Chap. 7: 1-25, 26, 27 Genetics has been approached from two directions. Mendel,

More information

The plasmid shown to the right has an oriv and orit at the positions indicated, and is known to replicate bidirectionally.

The plasmid shown to the right has an oriv and orit at the positions indicated, and is known to replicate bidirectionally. Name Microbial Genetics, BIO 410/510 2008 Exam II The plasmid shown to the right has an oriv and orit at the positions indicated, and is known to replicate bidirectionally. 1.) Indicate where replication

More information

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY.

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY. BIOTECHNOLOGY Biotechnology can be defined as the use of micro-organisms, plant or animal cells or their components or enzymes from organisms to produce products and processes (services) useful to human

More information

Scientific History. Chromosomes related to phenotype 1/5/2015. DNA The Genetic Material. The march to understanding that DNA is the genetic material

Scientific History. Chromosomes related to phenotype 1/5/2015. DNA The Genetic Material. The march to understanding that DNA is the genetic material DNA The Genetic Material 2006-2007 Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff

More information

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19 Chapter 19 Viruses Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 19 1. A virus consists of a nucleic acid surrounded by a protein coat. 2. Viruses replicate only in host

More information

Central Dogma of genetics: DNA -> Transcription -> RNA -> Translation > Protein

Central Dogma of genetics: DNA -> Transcription -> RNA -> Translation > Protein Genetics Midterm 1 Chapter 1: Purines: Adenine (double bond), Guanine (Triple Bond) Pyrimidines: Thymine (double bond), Cytosine (Triple Bond), Uracil Central Dogma of genetics: DNA -> Transcription ->

More information

Viruses and Prokaryotes

Viruses and Prokaryotes Viruses and Prokaryotes Viruses Are they living things? Viruses can reproduce, however, they cannot reproduce without a host cell. They also do not contain cytoplasmic materials and they do not have a

More information

Section A: Prokaryotes Types and Structure 1. What is microbiology?

Section A: Prokaryotes Types and Structure 1. What is microbiology? Section A: Prokaryotes Types and Structure 1. What is microbiology? 2. Compare and contrast characteristics of each bacterial type: Eubacteria and Archaebacteria. Eubacteria Both Archaebacteria 3. Label

More information

MCB 421 First Exam October 4, 2004

MCB 421 First Exam October 4, 2004 1. (10 pts). An E. coli strain (strain A) that lacks an inducing prophage and carries the F factor is heavily irradiated with UV light and then mixed 1:1 with a second E. coli strain (strain B) that carries

More information

They are similar to one another but different from other species: They are capable of breeding: Artificial classification: Natural classification:

They are similar to one another but different from other species: They are capable of breeding: Artificial classification: Natural classification: Classification Scientists estimate that the numbers of species on Earth are from 10 million to 100 million. Classification is the organisation of living organisms into groups. This process is based on

More information

DNA: THE GENETIC MATERIAL

DNA: THE GENETIC MATERIAL DNA: THE GENETIC MATERIAL This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. Which macromolecule

More information

Reading Lecture 3: 24-25, 45, Lecture 4: 66-71, Lecture 3. Vectors. Definition Properties Types. Transformation

Reading Lecture 3: 24-25, 45, Lecture 4: 66-71, Lecture 3. Vectors. Definition Properties Types. Transformation Lecture 3 Reading Lecture 3: 24-25, 45, 55-66 Lecture 4: 66-71, 75-79 Vectors Definition Properties Types Transformation 56 VECTORS- Definition Vectors are carriers of a DNA fragment of interest Insert

More information

Biology Test Review Microorganisms

Biology Test Review Microorganisms Name: Period: Biology Test Review Microorganisms Use your booklet, notes, & quizzes to complete this review. 1. Define the following terms using a few key words: a. Host cell - victim of the virus b. Retrovirus

More information

MMG 301, Lec. 25 Mutations and Bacteriophage

MMG 301, Lec. 25 Mutations and Bacteriophage MMG 301, Lec. 25 Mutations and Bacteriophage Questions for today: 1. What are mutations and how do they form? 2. How are mutant bacteria used in research? 3. What are the general properties of bacteriophage

More information

Big Idea 3C Basic Review

Big Idea 3C Basic Review Big Idea 3C Basic Review 1. A gene is a. A sequence of DNA that codes for a protein. b. A sequence of amino acids that codes for a protein. c. A sequence of codons that code for nucleic acids. d. The end

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage)

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage) Name Student ID# Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Final Exam 1.) Different bacteriophage utilize different mechanisms to ensure that their own genes (and not host s genes) are transcribed

More information

DNA The Genetic Material

DNA The Genetic Material DNA The Genetic Material 2006-2007 Genes are on chromosomes Morgan s conclusions genes are on chromosomes but is it the protein or the DNA of the chromosomes that are the genes? initially proteins were

More information

Mutagenesis for Studying Gene Function Spring, 2007 Guangyi Wang, Ph.D. POST103B

Mutagenesis for Studying Gene Function Spring, 2007 Guangyi Wang, Ph.D. POST103B Mutagenesis for Studying Gene Function Spring, 2007 Guangyi Wang, Ph.D. POST103B guangyi@hawaii.edu http://www.soest.hawaii.edu/marinefungi/ocn403webpage.htm Overview of Last Lecture DNA microarray hybridization

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

The Regulation of Bacterial Gene Expression

The Regulation of Bacterial Gene Expression The Regulation of Bacterial Gene Expression Constitutive genes are expressed at a fixed rate Other genes are expressed only as needed Inducible genes Repressible genes Catabolite repression Pre-transcriptional

More information

DNA. Empty protein shell Phage. Radioactivity in liquid. Pellet. 3 Centrifuge the mixture so bacteria form a pellet at the bottom of the test tube.

DNA. Empty protein shell Phage. Radioactivity in liquid. Pellet. 3 Centrifuge the mixture so bacteria form a pellet at the bottom of the test tube. MOLECULAR BIOLOGY: RELICATION, TRANSCITION, AND TRANSLATION Honors Biology 0 IMORTANT EXERIMENTS Frederick Griffith Described a transforming factor that could be transferred into a bacterial cell rocess

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology DNA The Genetic Material 2006-2007 Scientific History The march to understanding that DNA is the genetic material u T.H. Morgan (1908) u Frederick Griffith (1928) u Avery, McCarty & MacLeod (1944) u Erwin

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below.

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below. Base your answers to questions 1 and 2 on the statement below and on your knowledge of biology. Scientists have found a gene in the DNA of a certain plant that could be the key to increasing the amount

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information

3.C Genetic Variation

3.C Genetic Variation 3.C Genetic Variation Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. EU 3.A: Heritable information provides for continuity of life. EU 3.B:

More information

BIO303, Genetics Study Guide II for Spring 2007 Semester

BIO303, Genetics Study Guide II for Spring 2007 Semester BIO303, Genetics Study Guide II for Spring 2007 Semester 1 Questions from F05 1. Tryptophan (Trp) is encoded by the codon UGG. Suppose that a cell was treated with high levels of 5- Bromouracil such that

More information

Suggest a technique that could be used to provide molecular evidence that all English Elm trees form a clone. ... [1]

Suggest a technique that could be used to provide molecular evidence that all English Elm trees form a clone. ... [1] 1 Molecular evidence E Ulmus procera, form a genetically isolated clone. English Elms developed from a variety of elm brought to Britain from Rome in the first century A.D. Although English Elm trees make

More information

Chapter 13: DNA Structure & Function

Chapter 13: DNA Structure & Function Chapter 13: DNA Structure & Function Structure of the Hereditary Material Experiments in the 1950s showed that DNA is the hereditary material Scientists raced to determine the structure of DNA 1953 - Watson

More information

Genetic Background Page 1 PHAGE P22

Genetic Background Page 1 PHAGE P22 Genetic Background Page 1 PHAGE P22 Growth of P22. P22 is a temperate phage that infects Salmonella by binding to the O-antigen, part of the lipopolysaccharide on the outer membrane. After infection, P22

More information

Test Prep Pretest. in the. the. whereas prokaryotic DNA contains only replication forks during replication. Skills Worksheet

Test Prep Pretest. in the. the. whereas prokaryotic DNA contains only replication forks during replication. Skills Worksheet Skills Worksheet Test Prep Pretest Complete each statement by writing the correct term or phrase in the space provided. 1. In 1928, Frederick Griffith found that the capsule that enclosed one strain of

More information

Biology. Prokaryotes: The First Life on Earth. Types of Prokaryotes. Slide 1 / 135 Slide 2 / 135. Slide 3 / 135. Slide 4 / 135.

Biology. Prokaryotes: The First Life on Earth. Types of Prokaryotes. Slide 1 / 135 Slide 2 / 135. Slide 3 / 135. Slide 4 / 135. Slide 1 / 135 Slide 2 / 135 iology Prokaryotes: The First Life on Earth www.njctl.org Slide 3 / 135 Vocabulary Click on each word below to go to the definition. antibiotic resistance extremophile archaea

More information

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance?

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? 12 DNA Big idea Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? WHAT I KNOW WHAT I LEARNED 12.1 How did scientists determine

More information

Brief History. Many people contributed to our understanding of DNA

Brief History. Many people contributed to our understanding of DNA DNA (Ch. 12) Brief History Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey & Chase (1952)

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 16 The Molecular Basis of Inheritance Unit 6: Molecular Genetics

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics AP Biology What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron microscope size smaller than ribosomes ~20 50 nm

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Microbial Biotechnology agustin krisna wardani

Microbial Biotechnology agustin krisna wardani Microbial Biotechnology agustin krisna wardani 1. The Structure of Microbes Microbes (microorganisms) are tiny organisms that are too small to be seen individually by the naked eye and must be viewed with

More information

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write.

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write. Name KEY Section Biology 201 (Genetics) Exam #3 120 points 20 November 2006 Read the question carefully before answering. Think before you write. You will have up to 50 minutes to take this exam. After

More information

GENE(S) Carried by transposon

GENE(S) Carried by transposon ANSWER KEY Microbial Genetics BIO 510/610 Fall Quarter 2009 Final Exam 1.) Some Insertion Sequences transpose through a Replicative mechanism of transposition. Other Insertion Sequences utilize a Cut and

More information

Lecture Four. Molecular Approaches I: Nucleic Acids

Lecture Four. Molecular Approaches I: Nucleic Acids Lecture Four. Molecular Approaches I: Nucleic Acids I. Recombinant DNA and Gene Cloning Recombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single

More information

CHAPTER 21 LECTURE SLIDES

CHAPTER 21 LECTURE SLIDES CHAPTER 21 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Topic 10 Molecular Biology of the Gene

Topic 10 Molecular Biology of the Gene Topic 10 Molecular Biology of the Gene Sabotage Inside Our Cells Viruses are invaders that sabotage our cells Viruses have genetic material surrounded by a protein coat and, in some cases, a membranous

More information

DNA: The Genetic Material. Chapter 14. Genetic Material

DNA: The Genetic Material. Chapter 14. Genetic Material DNA: The Genetic Material Chapter 14 Genetic Material Frederick Griffith, 1928 Streptococcus pneumoniae, a pathogenic bacterium causing pneumonia 2 strains of Streptococcus: - S strain virulent - R strain

More information

Bodies Cells DNA. Bodies are made up of cells All cells run on a set of instructions spelled out in DNA

Bodies Cells DNA. Bodies are made up of cells All cells run on a set of instructions spelled out in DNA What is DNA? Although the environment influences how an organism develops, the genetic information that is held in the molecules of DNA ultimately determines an organism s traits. DNA achieves its control

More information

Biochemistry 401G Lecture 30 Andres. Discussion of the requirements of genetic material

Biochemistry 401G Lecture 30 Andres. Discussion of the requirements of genetic material Biochemistry 401G Lecture 30 Andres Lecture Summary: Introduction to remainder of the course Office hours Web resources Discussion of the requirements of genetic material History of DNA Early experimental

More information

DNA The Genetic Material

DNA The Genetic Material DNA The Genetic Material 2006-2007 Chromosomes related to phenotype T.H. Morgan working with Drosophila fruit flies associated phenotype with specific chromosome white-eyed male had specific X chromosome

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

Chapter 11: Regulation of Gene Expression

Chapter 11: Regulation of Gene Expression Chapter Review 1. It has long been known that there is probably a genetic link for alcoholism. Researchers studying rats have begun to elucidate this link. Briefly describe the genetic mechanism found

More information

Biotechnology Unit: Viruses

Biotechnology Unit: Viruses Biotechnology Unit: Viruses What do you see here? What is the cause: bacteria or virus? In the late 1800 s Martinus Beijerinck performed this experiment and saw that something smaller than bacteria was

More information

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16

Wednesday, April 9 th. DNA The Genetic Material Replication. Chapter 16 Wednesday, April 9 th DNA The Genetic Material Replication Chapter 16 Modified from Kim Foglia Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick

More information

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins KEY CONCEPT Section 1 DNA was identified as the genetic material through a series of experiments. Griffith finds a transforming principle. Griffith experimented with the bacteria that cause pneumonia.

More information

Chapter 13 DNA The Genetic Material Replication

Chapter 13 DNA The Genetic Material Replication Chapter 13 DNA The Genetic Material Replication Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944)

More information

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material PowerPoint Notes on Chapter 9 - DNA: The Genetic Material Section 1 Identifying the Genetic Material Objectives Relate Griffith s conclusions to the observations he made during the transformation experiments.

More information

12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall:

12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall: 12 1 DNA 1 of 37 http://www.biologyjunction.com/powerpoints_dragonfly_book_prent.htm 12 1 DNA Griffith and Transformation Griffith and Transformation In 1928, Fredrick Griffith was trying to learn how

More information

HISTORICAL EXPERIMENTS. DNA as Genetic Material DNA Structure

HISTORICAL EXPERIMENTS. DNA as Genetic Material DNA Structure HISTORICAL EXPERIMENTS DNA as Genetic Material DNA Structure DNA as the genetic material Miescher (1868) Griffith (1928) Avery, McCarty, MacLeod (1944) Hershey, Chase (1952) 1868 - Friedrich Miescher Discovery

More information

Chapter 7 Outline. Microbial Physiology Introduction 5/22/2011

Chapter 7 Outline. Microbial Physiology Introduction 5/22/2011 Chapter 7 Outline Microbial Physiology Introduction Microbial Nutritional Requirements Categorizing Microorganisms According to Their Energy and Carbon Sources Metabolic Enzymes Biologic Catalysts Factors

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions.

Opening Activity. DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. Opening Activity DNA is often compared to a ladder or a spiral staircase. Look at the picture above and answer the following questions. 1. How is the structure of DNA similar to that of a ladder or spiral

More information

1. What is the structure and function of DNA? Describe in words or a drawing the structure of a DNA molecule. Be as detailed as possible.

1. What is the structure and function of DNA? Describe in words or a drawing the structure of a DNA molecule. Be as detailed as possible. INTRODUCTION In the Program Introduction, you learned that the increase in diabetes in the United States has resulted in a great demand for its treatment, insulin. You also learned that the best way to

More information

DNA: The Genetic Material. Chapter 10

DNA: The Genetic Material. Chapter 10 DNA: The Genetic Material Chapter 10 DNA as the Genetic Material DNA was first extracted from nuclei in 1870 named nuclein after their source. Chemical analysis determined that DNA was a weak acid rich

More information

DNA, RNA and Protein Synthesis

DNA, RNA and Protein Synthesis By the end of this lesson, I can Relate how Griffith s bacterial experiments showed that a hereditary factor was involved in transformation. Summarize how Avery s experiments led his group to conclude

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test #3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists would be _. a.

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Molecular Genetics Techniques. BIT 220 Chapter 20

Molecular Genetics Techniques. BIT 220 Chapter 20 Molecular Genetics Techniques BIT 220 Chapter 20 What is Cloning? Recombinant DNA technologies 1. Producing Recombinant DNA molecule Incorporate gene of interest into plasmid (cloning vector) 2. Recombinant

More information

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this DNA 1. Evidence for DNA as the genetic material. a. Until the 1940s, proteins were believed to be the genetic material. b. In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 16 The Molecular Basis of Inheritance Concept 16.1 DNA is the

More information

I. Mechanism of Prokaryote Regulation of Enzyme Synthesis (Operons)

I. Mechanism of Prokaryote Regulation of Enzyme Synthesis (Operons) UN2005/UN2401 '17 -- Lecture 17 -- Edited 11/9/17, after PM lecture. Anything added is in blue. A few duplicate sections were deleted. (Problems to do are indicated in red bold.) (c) Copyright 2017 Mowshowitz

More information

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment DNA Chapter 12 DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B.1.27 To truly understand genetics, biologists after Mendel had to discover the chemical nature of the gene. In 1928, Frederick Griffith was trying

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool. 11.1 Genetic Variation Within Population Genetic variation in a population increases the chance that some individuals

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

FARM MICROBIOLOGY 2008 PART 2: BASIC STRUCTURE AND GENETICS OF BACTERIA. 1. Epulopiscium fishelsoni and Thiomargarita namibiensis.

FARM MICROBIOLOGY 2008 PART 2: BASIC STRUCTURE AND GENETICS OF BACTERIA. 1. Epulopiscium fishelsoni and Thiomargarita namibiensis. FARM MICROBIOLOGY 2008 PART 2: BASIC STRUCTURE AND GENETICS OF BACTERIA I. Basic Morphology (Shape) of Vegetative Cells. A. Microscopic. Example Escherichia coli (aka E. coli) is 1.3 µm (= 0.000052 inch)

More information

Section KEY CONCEPT A population shares a common gene pool.

Section KEY CONCEPT A population shares a common gene pool. Section 11.1 KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Why it s beneficial: Genetic variation leads

More information