Professor Wei-Shou Hu Spring 2007 ChEn 5751

Size: px
Start display at page:

Download "Professor Wei-Shou Hu Spring 2007 ChEn 5751"

Transcription

1 Professor Wei-Shou Hu Spring 2007 ChEn 5751

2 Cell Culture Bioreactors Basic Types of Bioreactors Segregated Bioreactors (Dead Zone Present)\Compartmentalized Bioreactors.. 4 Homogenous Reactor vs. Heterogeneous Reactor Batch and Continuous Processes The Operating Mode of Reactors Batch Cultures Fedbatch Cultures Continuous Cultures Material Balance on Bioreactors Material Balance Equation for Reactor Tissue culture and disposable cell culture systems Microcarriers Cell Aggregates Microsphere Induce Cell Aggregates Agarose Microencapsulation Cell Culture Bioreactors Simple Stirred Tank Bioreactor Airlift Bioreactor Spin Filter Stirred Tank Vibromixer Fluidized Bed Bioreactor Basic Types of Bioreactors Mammalian cell bioreactors are generally categorized similarly to chemical reactors according to their mixing characteristics. It is instructive to review two ideal reactors: well-mixed stirred tank and plug-flow (tubular) reactor. In an ideal well-mixed bioreactor, the mixing is assumed to be intense enough that the fluid is homogeneous through the reactor. The mathematical description of ideal continuous flow stirred tank reactor is described by the following first-order differential equation. d( VCA) = FC i Ai FoC Ao + rav dt Cell Culture Bioreactors

3 V is the culture volume in the bioreactor, CA the concentration of nutrient or product A, t is time, F is the flow rate and ra is the volumetric consumption rate of nutrient or production rate of product A. In an ideal stirred tank reactor, there is no flow bypass and no shunt of substrate from inlet to outlet, no dead zones or clumps of undissolved solid substrate floating around. The addition of a substrate through feeding is instantaneously distributed throughout the entire reactor, and when gas sparging is employed the agitator provides an intimately mixed gas-liquid. It also follows from this assumption that th e stream exiting the reactor will have the same composition as the well mixed fluid in the reactor. The basic model for the tubular reactor (such as hollow fiber and ceramic systems to be described later in this chapter) specifies that the liquid phase moves as a plug-flow, meaning that there is no variation of axial velocity over the cross section. The mass balance for component A in a volume element S z that described an ideal plug-flow reactor is the following: C A C A = vz + ra t z where vz is the linear velocity in the z direction along the flow and S is the cross-sectional area. Note that we assume there is no liquid dispersion or back mixing. All elements in the fluid move at the same velocity. At steady state (i.e., cell concentration and cellular activities at a given position are not changing with time), the equation becomes ca ra S = z F which describes changes of concentration of A along the direction of fluid flow. It is clear that the nutrient concentration will decrease from inlet to the distal end of the reactor, while metabolite concentration increases. The length of the reactor is limited because eventually nutrient depletion or metabolite accumulation inhibits growth and metabolism. These ideal cases of completely mixed tanks or plug flow tubular reactors are situations that can be approximated in small-scale laboratory conditions. The conditions in larger scale process reactors deviate significantly from these ideal conditions. In a well-mixed bioreactor, there are no concentration gradients in either the gas or the liquid phase. In other words, none of the chemical species or cells is segregated in the reactor. The other extreme of mixing is total segregation where there is no interaction between different volume elements in the bioreactor. An ideal plug flow reactor is assumed to be under conditions of total segregation. Most bioreactor systems have a mixing pattern between the two extremes and are under partially segregated conditions. In general, laboratory and small pilot plant bioreactors are used for process development and optimization. The fluid mixing characteristics are rather sensitive to the scale of the reactor. Furthermore, plug-flow bioreactors are intrinsically more difficult to scale up than mixing vessels, as the concentration gradient of essential 2 Cell Culture Bioreactors

4 nutrients, oxygen in particular, will inevitably become limiting in the downstream region of the reactor. In considering the selection of bioreactors for mammalian cell cultures, the mixing characteristics and their relationship to scale-up have to be kept in mind. Stirred Tank (Well Mixed) vs. Tubular Reactor (Plug Flow) The distinction between a well mixed continuous stirred tank reactor (CSTR) and plug flow reactor (PFR) is best illustrated by comparison of their response in the outlet to a step change in feed concentration, consider a continuous reactor that has an inlet stream (feed) and an outlet stream that are equal in volumetric flow rate, the volume of the reactor is thus constant. For the case that the feed stream is colorless, but at time 0 the stream is changed to a feed with red color at a concentration of C O If the reactor is well mixed as in a CSTR, as soon as the feed stream is switched, the color will be seen immediately in the effluent stream, since the color is distributed instantaneously everywhere including the fluid that is taken out in the effluent stream. The plots shown are the colors seen at the outlet. The red dye concentrate will increase gradually. If the reactor volume is V, it will take longer than the time needed to flow through one reactor volume to reach the same concentration as in the feed, since the dye is also being taken out from the reactor from the beginning. In fact, by solving the differentiation equation, t I can be shown that it takes about three holding times (3t 0 ) to reach almost the same concentration as in the feed. Now examine the case of PFR. According to the model of PFR, the red color dye will move downstream like a sharp band, since there is no backmixing or diffusion to blur the sharp boundary between the color and colorless streams. So the detector at the exit will detect no color right after the switch to dye solution in the feed. It will not see any color until the front of the color feed solution reaches the outlet. The time it will take will be a hold time, the exact time of flow a reactor volume into the reactor to displace all the original clear solution in the reactor. As soon as the color comes out in the outlet, the concentration will be equal as in the feed. If the reactor is not idealized, obviously the pattern of the dye concentration will be different. For a tubular reactor, the front may not be as sharp, rather the appearance in the exit will be more gradual. Similarly in a stirred tank, there will be deviation to the perfect mixing curve. In more severe cases, a reactor may be compartmentalized or segregated. Some channeling may occur to have some portion of Cell Culture Bioreactors

5 the feed stream passing right through, or some portions of the reactor hardly see any feed stream. Segregated Bioreactors (Dead Zone Present)\ Compartmentalized Bioreactors Concentrations in different compartments may be different Most reactors are not ideally all mixed or plug-flow; segregated zone is not a completely dead zone Implication When Growth or Reaction Occurs in the Reactor Flow and mixing behavior may have a profound effect on the reaction or growth. Consider a nutrient stream entering the reactor. If the reactor is a PFR, the cells in the upstream will have abundant nutrient. As the fluid moves downstream more nutrients get consumed and their concentration decreases. The cells downstream may not have enough nutrients or face starvation. One way to solve the problem is of course to increase the supply rate by using a higher nutrient concentration in the feed or by operating at a higher flow rate. But there are limits on both nutrient concentration and flow rate. Eventually the size of the reactor will be restricted. In a CSTR model, all cells in the reactor see the same environment. The nutrients that feed into the reactor will be distributed uniformly everywhere, either all have abundant or suboptimal levels. Reactor Homogenous Reactor vs. Heterogeneous Reactor Heterogeneous reactor with a solid phase, e.g., microcarriers in stirred tank, tubular reactor packed with foam. A typical tissue has a cell concentration of about 5X10 8 /ml. Unless a rector have a very high cell concentration in the middle of 10 7 /ml, cell mass is only a small fraction of the culture volume. So, even though almost all cell culture reactors have all three phases, liquid medium, gas bubbles and cell mass, they are often treated as homogenous bioreactors. On the other hand, in addition to high cell density culture there are cases where the bioreactor must be treated as heterogeneous. The solid phase constitutes a large fraction of the culture volume. An examples is the microcarrier culture. Microcarrier beads often constitute 10-30% of the culture volume. In such cases even cell concentration needs to be well defined, for example, whether 10 7 per milliliter is referring to total culture volume or liquid volume needs to be specified. Operating Mode of Bioreactors Batch and Continuous Processes A reactor is called continuous when the feed and product streams are continuously being fed and withdrawn from the system. In principle, a reactor can have a continuous recirculating flow, but no continuous feeding of nutrient or product harvest; it is still a batch reactor. A fed-batch bioreactor usually has intermittent feed. It may or may not have medium withdrawal during the run. 4 Cell Culture Bioreactors

6 Example: For instance, Yeast cells (saccharomyces cereviciae) can metabolize glucose either to ethanol, or to oxidize it to carbon dioxide, mammalian cells can convert glucose mostly to lactate, or oxidize it to carbon dioxide. Cells in two such types of metabolism are in two different metabolic states. The two metabolic states are characterized by different specific glucose consumption rates, lactate or ethanol production and the yield coefficient for biomass, i.e. different stoichiometric ratio. Example: For instance, a 1 l culture has 0.3 of solid microcarriers and 0.7 l of medium, with 10 9 cells in it. The cell concentration is 109 cells/l-culture or 1.43 x 10 9 cells/l-medium. If the glucose concentration in the culture medium decreases from 2.10 g/l (medium) over one day, then the specific glucose consumption rate is ( ) g/l-medium (1.43 x 10 9 cells/l-medium) = 1.40 x g/cell-hr. The specific rate calculated would have been very different if one concentration is based on liquid volume and the other is based on total culture volume. The Operating Mode of Reactors Batch Cultures Batch processes are simple and are widely used, especially in the vaccine industry and in pre-production scales of rdna protein production. Fedbatch processes are widely used in multi-purpose, multi-product facilities because of their simplicity, scalability, and flexibility. A variety of fedbatch operations, ranging from very simple to highly complex and automated, are seen in current production facilities. Fedbatch Cultures Intermittent Harvest In general, fedbatch processes do not deviate significantly from batch cultures. For both intermittent-harvest and traditional fedbatch cultures, cells are inoculated at a lower viable cell density in a medium that is usually very similar in composition to a typical batch medium. Cells are allowed to grow exponentially with essentially no external manipulation until nutrients are somewhat depleted and cells are approaching the stationary growth phase. At this point, for Cell Culture Bioreactors 5

7 an intermittent-harvest fedbatch process, a portion of the cells and product are harvested, and the removed culture fluid is replenished with fresh medium. This process is repeated several times. This simple strategy is commonplace for the production of viral vaccines produced by persistent infection, as it allows for an extended production period. It is also used in roller bottle processes with adherent cells. Fedbatch For production of recombinant proteins and antibodies, a more traditional fedbatch process is typically used. While cells are still growing exponentially, but nutrients are becoming depleted, concentrated feed medium (usually a times concentrated basal medium) is added either continuously (as shown) or intermittently to supply additional nutrients, allowing for a further increase in cell concentration and the length of the production phase. In contrast to an intermittent-harvest strategy, fresh medium is added proportionally to cell concentration without any removal of culture broth. To accommodate the addition of medium, a fedbatch culture is started in a volume much lower than the full capacity of the bioreactor (approximately 40% to 50% of the maximum volume). The initial volume should be large enough to allow the impeller to be submerged, but is kept as low as possible to allow for a maximum extension of the cultivation period. Fed-batch Culture with Metabolic Shift In batch cultures and most fedbatch processes, lactate, ammonium, and other metabolites eventually accumulate in the culture broth over time, inhibiting cell growth. Other factors, such as high osmolarity and accumulation of reactive oxygen species, are also likely to be growth inhibitory, and certainly contribute to the eventual loss of viability and productivity. The effects of lactate and ammonia on cultured cells are complex. Detectable changes in growth, productivity, and metabolism have all been documented. Additionally, metabolite accumulation has been found to affect product quality. In recombinant erythropoietin producing CHO cells, high ammonia concentration 6 Cell Culture Bioreactors

8 has been reported to affect glycoform of the product. By minimizing metabolite accumulation, the duration of a fedbatch culture can be even further extended and higher cell and product concentrations can be achieved. Reduced metabolite accumulation in fedbatch culture is traditionally accomplished by limiting the availability of glucose and glutamine using controlled feeding strategies that maintain glucose at very low levels. After extended exposure to low glucose concentrations, cell metabolism is directed to a more efficient state, characterized by a dramatic reduction in the amount of lactate produced. Such a change in cell metabolism from the normally observed high lactate producing state to a much reduced lactate production state is often referred to as metabolic shift. The observation of such changes in metabolism was made more than two decades ago, yet its application in fedbatch culture was not realized until much later. Extending the methodology to controlling both glucose and glutamine at low levels, both lactate ammonium accumulations can be reduced. By applying such a control scheme in fedbatch culture, lactate concentration was reduced by more than three fold, and very high cell concentrations and product titers were achieved in hybridoma cells. Continuous Cultures Simple Continuous Stirred Tank Reactor (CSTR) Steady state Grow up the culture in batch mode. Then turn on both in and out flow of medium. Cell and product concentration reach steady state. Transient Same as that for steady state except that cell and product nutrient concentration fluctuate. Continuous Culture with Cell Retention (Recycle) Perfusion Culture Transient Same as CSTR, some cells are retained in bioreactor to reach high cell concentration. Product throughput is higher per reactor volume, but not the concentration. Typically cell, nutrient and product concentrations fluctuate. Steady state Same as that for transient except that steady state is achieved. This rarely happens. Continuous Culture with a Metabolic Shift This is the same as simple continuous culture except in the start-up. Instead of starting from a batch culture, a fed-batch culture with a metabolic shift is used. After cells reach a high concentration and the metabolic shift is affected, the culture is shifted to a continuous culture. Because no (or low) lactate and ammonia is produced, the concentrations of cells and products are substantially higher than in conventional continuous cultures. In some cases, the cell Cell Culture Bioreactors 7

9 concentration approaches that of perfusion cultures. However, the medium usage is substantially reduced, and the product concentration is higher. Material Balance on Bioreactors Material Balance Equation for Reactor Batch Culture dx v V = V mx v dt ds V = Vqs x dt v Fed-batch Culture V d( xvv d(sv) = F( t) = mx vv = qsxvv dt dt dt 8 Cell Culture Bioreactors

10 Fedbatch Culture and Dynamic Nutrient Feeding 45 of antibiotic production capacity have process engineers played such a key role in bringing a large array of products to therapeutic use in such a short time. The increased output required to meet the expanding market was not accomplished by merely increasing the total culture volume. A large part was achieved through improving yields by process renovation, as opposed to process innovation. Only a decade ago, an antibody titer in the hundreds of milligrams per liter was the norm. Now, concentrations of a few grams per liter are common. With the increasing development of new products and the growing need for large quantities of each new therapeutic, it is prudent to reassess the technological advances made in the past decade and to pursue innovative ideas that will ease the task of meeting future demands. The final product concentration is primarily affected by the specific productivity of cells, the maximum cell concentration, and the duration that high viability can be sustained. For batch processes, the low level of nutrients that can be tolerated by cells limits the final cell and product concentration. Cells are simply unable to attain and sustain high cell concentrations with the resources available in a typical growth medium. To overcome nutrient limitation, fedbatch processes have been widely practiced and are currently the norm for most cell culture processes. In fedbatch cultures, concentrated medium is added during cultivation to prevent nutrient depletion, prolonging the growth phase and increasing cell and product concentrations. Continued addition of medium past the peak of cell concentration also increases the final titer significantly by allowing cells to be kept viable at high concentrations and continue to produce product for a longer time. Efforts to enhance the performance of fedbatch culture have traditionally focused on medium development, process control, and manipulation of cell metabolism by control of the culture environment. With recent advances in genomic research tools and a more global understanding of cell physiology, metabolic engineering may emerge as a more prominent strategy to increase productivity. Even with the promise of creating superior host cells through cell engineering, pushing the limits of productivity will always require an intensive process engineering effort to accommodate the increased demands of higher cell and product concentrations. This review will summarize current practices and articulate the developmental needs of fedbatch culture to meet these future challenges. 2 Different Forms of Fedbatch Culture Fedbatch processes are widely used in multi-purpose, multi-product facilities because of their simplicity, scalability, and flexibility. A variety of fedbatch operations, ranging from very simple to highly complex and automated, are seen in current production facilities. To illustrate the basic operation principles

11 46 K.F. Wlaschin W.-S. Hu of fedbatch cultures as compared to a typical batch operation, time profiles of cell, nutrient, and product concentrations for batch (Fig. 1a), intermittentharvest fedbatch (Fig. 1b), and traditional fedbatch cultures (Fig. 1c) are shown. In general, fedbatch processes do not deviate significantly from batch cultures. For both intermittent-harvest and traditional fedbatch cultures, cells are inoculated at a lower viable cell density in a medium that is usually very similar in composition to a typical batch medium. Cells are allowed to grow exponentially with essentially no external manipulation until nutrients are somewhat depleted and cells are approaching the stationary growth phase. At this point, for an intermittent-harvest fedbatch process (Fig. 1b), a portion of the cells and product are harvested, and the removed culture fluid is replenished with fresh medium. This process is repeated several times. This simple strategy is commonplace for the production of viral vaccines produced by persistent infection, as it allows for an extended production period. It is also used in roller bottle processes with adherent cells. For production of recombinant proteins and antibodies, a more traditional fedbatch process (shown in Fig. 1c) is typically used. While cells are still growing exponentially, but nutrients are becoming depleted, concentrated feed medium (usually a times concentrated basal medium) is added either continuously (as shown) or intermittently to supply additional nutrients, allowing for a further increase in cell concentration and in the length of the production phase. In contrast to an intermittent-harvest strategy, fresh medium is added proportionally to cell concentration without any removal of culture broth. To accommodate the addition of medium, a fedbatch culture is started in a volume much lower than the full capacity of the bioreactor (approximately 40%to50% of the maximum volume). The initial volume should belargeenoughfortheimpellertobesubmerged,butiskeptaslowaspossible to allow for a maximum extension of the cultivation period. In batch cultures and most fedbatch processes, lactate, ammonium, and other metabolites eventually accumulate in the culture broth over time, inhibiting cell growth. Other factors, such as high osmolarity and accumulation of reactive oxygen species, are also likely to be growth inhibitory, and certainly contribute to the eventual loss of viability and productivity. The effects of lactate and ammonia on cultured cells are complex. Detectable changes in growth, productivity, and metabolism have all been documented [1]. Additionally, metabolite accumulation has been found to affect product quality. In recombinant erythropoietin producing CHO cells, high ammonia concentration has been reported to affect the glycoform of the product [2]. By minimizing metabolite accumulation, the duration of a fedbatch culture can be even further extended and higher cell and product concentrations can be achieved. Reduced metabolite accumulation in fedbatch culture is traditionally accomplished by limiting the availability of glucose and glutamine using controlled feeding strategies that maintain glucose at very low levels.

12 Fedbatch Culture and Dynamic Nutrient Feeding 47 Fig. 1 Representative cell, nutrient, and product concentrations for a typical a batch culture, b intermittent-harvest fedbatch culture, and c fedbatch culture with dynamic feeding. As compared to a batch culture, the strategies shown in Figs. b and c extend the duration and productivity of a culture run by re-supplying depleted nutrients. In fedbatch culture (c), feed is added continuously to sustain nutrient levels. Much higher cell and product concentrations are achieved

13 48 K.F. Wlaschin W.-S. Hu After extended exposure to low glucose concentration, cell metabolism is directed to a more efficient state, characterized by a dramatic reduction in the amount of lactate produced. Such a change in cell metabolism from the normally observed high lactate producing state to a much reduced lactate production state is often referred to as metabolic shift. The observation of such changes in metabolism was made more than two decades ago [3 7], yet its application in fedbatch culture was not realized until much later [8]. Extending the methodology to controlling both glucose and glutamine at low levels, both lactate and ammonium accumulation can be reduced [7, 9 11]. By applying such a control scheme in fedbatch culture, lactate concentration was reduced by more than three fold, and very high cell concentrations and product titers were achieved in hybridoma cells [8]. Figure 2 compares the time profile of cell growth, glucose concentration and lactate concentration for two hybridoma fedbatch cultures growing under different metabolic states. Shown in Fig. 2a is a culture in which the glucose level was controlled in the range of mm, a relatively low concentration. In many cultures, glucose concentration is controlled at even higher levels, in the range of 10 mm. In these ranges of glucose concentration, cells behave very similarly, having a high lactate production rate. As a result, the level of lactate accumulated eventually requires the addition of base to maintain ph. To supply nutrients to the culture, feed medium was added approximately proportionally with the base addition rate, since lactate production is indicative of the metabolic demands of the culture. This feeding strategy will be discussed in more detail in Sect A final cell concentration of cells ml 1 was obtained with lactate accumulating to nearly 70 mm in the final culture volume. In the culture shown in Fig. 2b, the set point of glucose concentration was at 0.03 mm. Feed medium was added based on the oxygen uptake rate (OUR), which is estimated on-line. This strategy will also be discussed further in a later section (4.2.4). The continuous exposure to very low glucose concentrations allowed cells to shift their metabolism to a state where little lactate was produced. The final lactate concentration only accumulated to 40 mm. With the control of glucose concentration at low levels, the reduced lactate concentration, and the elimination of base addition, a final viable cell concentration of more than cells ml 1 was achieved. Historical data from several batch and fedbatch hybridoma cultures, including those shown in Fig. 2, were analyzed to generate the values in Table 1. Direct comparison of the values between cells in different metabolic states illustrates that the stoichiometric nutrient consumption and metabolite production for cells is notably changed in different metabolic states. Under typical culture conditions, where nutrients are supplied in excess, more than half of the carbon in glucose and at least one fourth of the nitrogen in glutamine consumed is excreted as lactate and ammonium [5, 12]. For hybridoma cells in a high lactate producing state, this observed stoichiometric ratio is be-

14 Fedbatch Culture and Dynamic Nutrient Feeding 49 Fig. 2 Time profiles of cell, lactate, and glucose concentration for a hybridoma fedbatch culture with cells growing with a high-lactate producing metabolism, and b metabolic shift. Metabolic shift was achieved by control of glucose concentrations at 0.03 mm tween moles lactate produced per mole glucose consumed. For the same cells cultured in a metabolically shifted state, a very low ratio of less than 0.5 moles of lactate produced per mole of glucose consumed is observed. The ratio of ammonia produced per glutamine consumed is also compared

15 50 K.F. Wlaschin W.-S. Hu Table 1 Characteristic Stoichiometric Ratios of Key Nutrients for Cells Growing in Different Metabolic States Stoichiometric ratio Without Metabolic shift Lactate (mmole/mmole) metabolic shift consuming cells lactate/glucose ammonia/glutamine alanine/glutamine oxygen/glucose in Table 1, showing a dramatic reduction from moles ammonium per mole of glutamine to mole per mole under metabolically shifted conditions. In later stages of fedbatch cultures, lactate consumption, as opposed to production, is occasionally observed, although this phenomenon is not well documented in published literature. In such cases, an approximate ratio of lactate to glucose consumption is between moles of lactate consumed per mole of glucose consumed. While this observation seemingly contradicts the role of lactate as an inhibitory molecule, it illustrates the flexibility of mammalian cells to adapt their behavior for survival under a wide range of conditions. With this repertoire of available cell behavior, fedbatch culture strategies that provide conditions that reduce metabolite accumulation is a field of fedbatch culture technology still warranting further development. 3 Designing Feed Medium for Fedbatch Cultures The design of feed medium is critical for the implementation of a successful fedbatch process. A well-designed feed medium should ensure cell growth and product formation are not limited by depletion of any medium component or inhibited by excessive nutrient concentration or metabolite accumulation. To achieve this, a good estimate of the rates of consumption of medium components is required. For most processes, a feed medium that is 10 to 15 times the nutrient concentration of basal medium is used. With this simple design, the consumed nutrients are replenished, and the growth and production phases are prolonged; however, many components will likely be supplied in excess, while others will be in limited supply [13]. The nutritional requirements for mammalian cells are very complex. Most media contains glucose, vitamins, and virtually all amino acids. Among the amino acids included, 13 are deemed essential for cultured cells, as most cell lines cease to grow in their absence [14, 15]. This requirement for cultured cells is higher than the essential amino acids required for survival

2.4 TYPES OF MICROBIAL CULTURE

2.4 TYPES OF MICROBIAL CULTURE 2.4 TYPES OF MICROBIAL CULTURE Microbial culture processes can be carried out in different ways. There are three models of fermentation used in industrial applications: batch, continuous and fed batch

More information

Bioreactor System ERT 314. Sidang /2011

Bioreactor System ERT 314. Sidang /2011 Bioreactor System ERT 314 Sidang 1 2010/2011 Chapter 2:Types of Bioreactors Week 2 Choosing the Cultivation Method The Choice of Bioreactor Affects Many Aspects of Bioprocessing. Product concentration

More information

Hollow Fiber Bioreactors: Single-Use. Perfusion. Scalable. Continuous Manufacturing.

Hollow Fiber Bioreactors: Single-Use. Perfusion. Scalable. Continuous Manufacturing. Bioreactors and BioServices for the Life of your Proteins Hollow Fiber Bioreactors: Single-Use. Perfusion. Scalable. Continuous Manufacturing. Presented by: Scott Waniger Vice President, BioServices BPI

More information

Bioreactor Considerations

Bioreactor Considerations Bioreactor Considerations for Animal Cell Culture Animal cells are difficult to cultivate in large-scale because: They are larger (10-30 µm) and more complex than most microorganisms; Their growth rate

More information

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor In: Scott, Charles D., ed. Proceedings of the 9th symposium on biotechnology for fuels and chemicals; 1987 May 5-8; Boulder, CO. In: Applied Biochemistry and Biotechnology. Clifton, NJ: Humana Press; 1988:

More information

CEE ENVIRONMENTAL QUALITY ENGINEERING PROBLEM SET #5

CEE ENVIRONMENTAL QUALITY ENGINEERING PROBLEM SET #5 CEE 3510 -- ENVIRONMENTAL UALITY ENGINEERING PROBLEM SET #5 Problem 1. (adapted from Water uality by Tchobanoglous and Schroeder) A stream has a nearly uniform cross section, although it passes through

More information

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 02 Sterilization

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 02 Sterilization Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras Lecture - 02 Sterilization Welcome, to this second lecture on Bioreactors. This is a mooc on Bioreactors.

More information

Critical Analytical Measurements for Bioreactor Optimization. controlling an organism s chemical environment leads to consistent and

Critical Analytical Measurements for Bioreactor Optimization. controlling an organism s chemical environment leads to consistent and Critical Analytical Measurements for Bioreactor Optimization Mettler-Toledo Ingold, Inc., Bedford, MA Abstract Most bioreactor processes share a basic principle; optimizing and controlling an organism

More information

Chapter 7 Mass Transfer

Chapter 7 Mass Transfer Chapter 7 Mass Transfer Mass transfer occurs in mixtures containing local concentration variation. For example, when dye is dropped into a cup of water, mass-transfer processes are responsible for the

More information

Scalability of the Mobius CellReady Single-use Bioreactor Systems

Scalability of the Mobius CellReady Single-use Bioreactor Systems Application Note Scalability of the Mobius CellReady Single-use Bioreactor Systems Abstract The Mobius CellReady single-use bioreactor systems are designed for mammalian cell growth and recombinant protein

More information

Module 1: CHAPTER FOUR PHYSICAL PROCESSES

Module 1: CHAPTER FOUR PHYSICAL PROCESSES Module 1: CHAPTER FOUR PHYSICAL PROCESSES Objectives: To know physical processes that are important in the movement of pollutants through the environment and processes used to control and treat pollutant

More information

Homework #3. From the textbook, problems 9.1, 9.2, 9.3, 9.10, In 9.2 use q P = 0.02 g P / g cell h.

Homework #3. From the textbook, problems 9.1, 9.2, 9.3, 9.10, In 9.2 use q P = 0.02 g P / g cell h. Homework #3 From the textbook, problems 9.1, 9.2, 9.3, 9.10, 9.15 In 9.2 use q P = 0.02 g P / g cell h. In 9.10 the factor k s is k d, the kinetic factor for the cell death. Also, use r=0 for part (b)

More information

Wednesday, August 17, Mini-Review (2016) in Applied Microbiology and Biotechnology

Wednesday, August 17, Mini-Review (2016) in Applied Microbiology and Biotechnology Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production Wednesday, Mini-Review () in Applied Microbiology

More information

In the biopharmaceutical industry,

In the biopharmaceutical industry, S i n g l e - U s e TECHNOLOGIES Continuous Cell Culture Operation at 2,000-L Scale Michael Sherman, Vincent Lam, Melissa Carpio, Nick Hutchinson, and Christel Fenge In the biopharmaceutical industry,

More information

APPROACHES TO IMPROVING THE PERFORMANCE OF MAMMALIAN CELL CULTURES FOR PROTEIN PRODUCTION

APPROACHES TO IMPROVING THE PERFORMANCE OF MAMMALIAN CELL CULTURES FOR PROTEIN PRODUCTION BioLOGIC USA BOSTON, 20 th OCTOBER 2004 APPROACHES TO IMPROVING THE PERFORMANCE OF MAMMALIAN CELL CULTURES FOR PROTEIN PRODUCTION Dr Robert Gay Lonza Biologics 2004 The Challenge of the MAb Market Global

More information

PHEN 612 SPRING 2008 WEEK 4 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 4 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 4 LAURENT SIMON Bioreactors Breads, yogurt, cheeses, etc Recombinant DNA techniques are used to make cheese. Fermentation is a microbial process that is used to produce food products

More information

A Hollow Fiber Bioreactor Allows Any Lab to Efficiently Express Recombinant Proteins in Mammalian Cells

A Hollow Fiber Bioreactor Allows Any Lab to Efficiently Express Recombinant Proteins in Mammalian Cells A Hollow Fiber Bioreactor Allows Any Lab to Efficiently Express Recombinant Proteins in Mammalian Cells John J S Cadwell, President and CEO, FiberCell Systems Inc. Cultured mammalian cells have become

More information

168 West Main Street, #922, New Market, Md Revision 5.2 6/6/2017

168 West Main Street, #922, New Market, Md Revision 5.2 6/6/2017 QUICK START GUIDE 168 West Main Street, #922, New Market, Md. 21774 TABLE OF CONTENTS Introduction... 2 General Culture Guidelines... 3 Reservoir Bottle and Cap Assembly Sterilization... 4 Pre-culture...

More information

Anaerobic Reactor Technologies

Anaerobic Reactor Technologies Chapter 7 Anaerobic Reactor Technologies Reactor Configurations Slowly growing anaerobic bacteria require longer sludge retention times (SRT) in anaerobic reactors. Loading rates are therefore, primarily

More information

Fluid Dynamic Properties of Bacterial Cellulose and Application

Fluid Dynamic Properties of Bacterial Cellulose and Application Fluid Dynamic Properties of Bacterial Cellulose and Application Andrew J. Keefe May 8, 2006 Abstract The purpose of this study was to develop a new use for microbial cellulose produced by the bacterium,

More information

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing - 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants by Glenn Thesing Through retrofitting IFAS systems, communities can upgrade and expand wastewater treatment without the expense and complication

More information

Future Perspectives of Antibody Manufacturing

Future Perspectives of Antibody Manufacturing BioProduction 2005 Amsterdam Future Perspectives of Antibody Manufacturing John Birch Lonza Biologics Monoclonal Antibodies A Success Story Fastest growing segment of the pharmaceutical market Sales forecast

More information

One-step seed culture expansion from one vial of high-density cell bank to 2000 L production bioreactor

One-step seed culture expansion from one vial of high-density cell bank to 2000 L production bioreactor GE Healthcare One-step seed culture expansion from one vial of high-density cell bank to 2 L production bioreactor This application note describes how perfusion cell culturing can be used to reduce processing

More information

Optimization of Fermentation processes Both at the Process and Cellular Levels. K. V. Venkatesh

Optimization of Fermentation processes Both at the Process and Cellular Levels. K. V. Venkatesh Optimization of Fermentation processes Both at the Process and Cellular Levels 'Simultaneous saccharification and fermentation of starch to lactic acid' K. V. Venkatesh Department of Chemical Engineering

More information

Scaling Down Bioreactor Process Development: Comparison of Microbioreactor and Bench Scale Solutions.

Scaling Down Bioreactor Process Development: Comparison of Microbioreactor and Bench Scale Solutions. Scaling Down Bioreactor Process Development: Comparison of Microbioreactor and Bench Scale Solutions. Richard Lugg. Scientist I, MedImmune. European Laboratory Robotics Interest Group: High Throughput

More information

Implementation of a Micro Bioreactor System for Platform Cell Culture Process Development at Cobra Biologics

Implementation of a Micro Bioreactor System for Platform Cell Culture Process Development at Cobra Biologics Implementation of a Micro Bioreactor System for Platform Cell Culture Process Development at Cobra Biologics Kristina Lae, Scientist, Cell Culture Cobra Biologics, Södertälje, Sweden Cobra Biologics and

More information

Integrity icellis. Single-Use Bioreactor for Process Intensification. The Source of Bioprocess Efficiency

Integrity icellis. Single-Use Bioreactor for Process Intensification. The Source of Bioprocess Efficiency Integrity icellis Single-Use for Process Intensification ATMI LifeSciences The Source of Bioprocess Efficiency Flexible, Fast, Effective Overview The icellis system, the world s first fully-integrated,

More information

Application of the AGF (Anoxic Gas Flotation) Process

Application of the AGF (Anoxic Gas Flotation) Process Application of the AGF (Anoxic Gas Flotation) Process Dennis A. Burke Environmental Energy Company, 6007 Hill Road NE, Olympia, WA 98516 USA (E-mail: dennis@makingenergy.com http//www.makingenergy.com)

More information

Chapter 9: Operating Bioreactors

Chapter 9: Operating Bioreactors Chapter 9: Operating Bioreactors David Shonnard Department of Chemical Engineering 1 Presentation Outline: Choosing Cultivation Methods Modifying Batch and Continuous Reactors Immobilized Cell Systems

More information

Bioreactor Process Control Principles from Lab to Industrial Scale. Daniel Egger & Manfred Zinn

Bioreactor Process Control Principles from Lab to Industrial Scale. Daniel Egger & Manfred Zinn Bioreactor Process Control Principles from Lab to Industrial Scale Daniel Egger & Manfred Zinn Agenda What is industrial production Scale up importance Classic scale up principles Problems in industrial

More information

Chemical Product and Process Modeling

Chemical Product and Process Modeling Chemical Product and Process Modeling Volume 6, Issue 1 2011 Article 13 Segregated Model of Adherent Cell Culture in a Fixed-Bed Bioreactor Valérie Gelbgras, Université Libre de Bruxelles Christophe E.

More information

Abstract. Materials and Methods. Introduction

Abstract. Materials and Methods. Introduction The Performance of Serum-Free and Animal Component-Free Media for Multiple Hybridoma Cell Lines and Culture Systems Heather N. Loke, Steven C. Peppers, Daniel W. Allison, Damon L. Talley, and Matthew V.

More information

Bioreactor System ERT 314. Sidang /2012

Bioreactor System ERT 314. Sidang /2012 Bioreactor System ERT 314 Sidang 1 2011/2012 Chapter 3:Types of Bioreactors Week 4-5 Handouts : Chapter 13 in Doran, Bioprocess Engineering Principles Background to Bioreactors The bioreactor is the heart

More information

Cultivation of sensitive cell lines - Improving bioreactor performance by dynamic membrane aeration

Cultivation of sensitive cell lines - Improving bioreactor performance by dynamic membrane aeration Cultivation of sensitive cell lines - Improving bioreactor performance by dynamic membrane aeration Björn Frahm, Helmut Brod Bioprocessing Summit Optimizing Cell Culture Technology, Boston, 2010-08-24

More information

Take the Rational Approach of the BalanCD CHO Media Platform

Take the Rational Approach of the BalanCD CHO Media Platform Accelerate your development of therapeutics from discovery to commercialization Take the Rational Approach of the BalanCD CHO Media Platform It takes ambition, dedication, and fortitude to translate a

More information

Dr: RAWIA BADR Associate Professor of Microbiology&Immunology

Dr: RAWIA BADR Associate Professor of Microbiology&Immunology Dr: RAWIA BADR Associate Professor of Microbiology&Immunology Cell culture Commonly refers to the culture of animal cells and tissues, while the more specific term plant tissue.culture is used only for

More information

Pharma&Biotech. XS Microbial Expression Technologies Optimize Productivity, Speed and Process Robustness

Pharma&Biotech. XS Microbial Expression Technologies Optimize Productivity, Speed and Process Robustness Pharma&Biotech XS Microbial Expression Technologies Optimize Productivity, Speed and Process Robustness Embracing Complexity Based on 30 years of innovation in microbial biotechnology, Lonza offers the

More information

CASY Model TT E L E C T R I C A L C U R R E N T EXCLUSION ECE BASED CELL ANALYSIS

CASY Model TT E L E C T R I C A L C U R R E N T EXCLUSION ECE BASED CELL ANALYSIS CASY Model TT Cell Counter + AnalyZer E L E C T R I C A L C U R R E N T EXCLUSION ECE BASED CELL ANALYSIS ELECTRICAL CURRENT EXCLUSION CASY Model TT Cell Counter + Analyzer R&D Easy and fast adaptation

More information

6.1 Mixing Equipment. Fig. 6.1 A standard tank with a working volume of 100 M 3 and used for penicillin production

6.1 Mixing Equipment. Fig. 6.1 A standard tank with a working volume of 100 M 3 and used for penicillin production Chapter 6 Mixing Mixing, a physical process which aims at reducing non-uniformities in fluids by eliminating gradients of concentration, temperature, and other properties, is happening within every bioreactor.

More information

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ENHANCING THE PERFORMANCE OF OXIDATION DITCHES Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ABSTRACT Oxidation ditches are very popular wastewater treatment

More information

Fundamentals and Applications of Biofilms Bacterial Biofilm Formation and Culture

Fundamentals and Applications of Biofilms Bacterial Biofilm Formation and Culture 1 Fundamentals and Applications of Biofilms Bacterial Biofilm Formation and Culture Ching-Tsan Huang ( 黃慶璨 ) Office: Agronomy Building, Room 111 Tel: (02) 33664454 E-mail: cthuang@ntu.edu.tw 2 Introduction

More information

A Hands-On Guide to Ultrafiltration/ Diafiltration Optimization using Pellicon Cassettes

A Hands-On Guide to Ultrafiltration/ Diafiltration Optimization using Pellicon Cassettes Application Note A Hands-On Guide to Ultrafiltration/ Diafiltration Optimization using Pellicon Cassettes In ultrafiltration (UF) tangential flow filtration (TFF) systems, operating parameter selection

More information

The Use of Walnut Shell Filtration with Enhanced Synthetic Media for the Reduction and/or Elimination of Upstream Produced Water Treatment Equipment

The Use of Walnut Shell Filtration with Enhanced Synthetic Media for the Reduction and/or Elimination of Upstream Produced Water Treatment Equipment Siemens Water Solutions The Use of Walnut Shell Filtration with Enhanced Synthetic Media for the Reduction and/or Elimination of Upstream Produced Water Treatment Equipment White Paper January 2016 Researchers

More information

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 A STUDY ON DENITRIFICATION IN A FLUIDIZED

More information

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Growing global demand for clean water and increasing environmental concerns make membrane filtration the technology of choice

More information

FRAUNHOFER INSTITUTE FOR MOLECULAR BIOLOGY AND APPLIED ECOLOGY IME INTEGRATED PRODUCTION PLATFORMS GMP-COMPLIANT PRODUCTION OF BIOPHARMACEUTICALS

FRAUNHOFER INSTITUTE FOR MOLECULAR BIOLOGY AND APPLIED ECOLOGY IME INTEGRATED PRODUCTION PLATFORMS GMP-COMPLIANT PRODUCTION OF BIOPHARMACEUTICALS FRAUNHOFER INSTITUTE FOR MOLECULAR BIOLOGY AND APPLIED ECOLOGY IME INTEGRATED PRODUCTION PLATFORMS GMP-COMPLIANT PRODUCTION OF BIOPHARMACEUTICALS Close-up of large scale UF/DF control unit conditions and

More information

Transient and Succession-of-Steady-States Pipeline Flow Models

Transient and Succession-of-Steady-States Pipeline Flow Models Transient and Succession-of-Steady-States Pipeline Flow Models Jerry L. Modisette, PhD, Consultant Jason P. Modisette, PhD, Energy Solutions International This paper is copyrighted to the Pipeline Simulation

More information

MICROBIAL FUEL CELLS FOR SUSTAINABLE FOOD WASTE DISPOSAL

MICROBIAL FUEL CELLS FOR SUSTAINABLE FOOD WASTE DISPOSAL MICROBIAL FUEL CELLS FOR SUSTAINABLE FOOD WASTE DISPOSAL 1.0 Problem Statement The disposal of municipal solid wastes is one of the most serious problems facing the 21st century. Waste generation is on

More information

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL Alvin C. Firmin CDM Jefferson Mill, 670 North Commercial Street Suite 201 Manchester, New Hampshire 03101 ABSTRACT Sequencing

More information

19. AEROBIC SECONDARY TREATMENT OF WASTEWATER

19. AEROBIC SECONDARY TREATMENT OF WASTEWATER 19. AEROBIC SECONDARY TREATMENT OF WASTEWATER 19.1 Activated Sludge Process Conventional biological treatment of wastewater under aerobic conditions includes activated sludge process (ASP) and Trickling

More information

CE3502. ENVIRONMENTAL MONITORING, MEASUREMENTS & DATA ANALYSIS. Inflow. Outflo

CE3502. ENVIRONMENTAL MONITORING, MEASUREMENTS & DATA ANALYSIS. Inflow. Outflo CE35. ENVIRONMENTAL MONITORING, MEASUREMENTS & DATA ANALYSIS Lab exercise: Statistics topic: Distributions Environmental Engineering Topic: Plug Flow Reactors Environmental Engineering Background There

More information

KGC SCIENTIFIC FERMENTER DESIGN INDUSTRIAL SCALE

KGC SCIENTIFIC  FERMENTER DESIGN INDUSTRIAL SCALE KGC SCIENTIFIC www.kgcscientific.com FERMENTER DESIGN INDUSTRIAL SCALE Definition of Biotechnology Utilization of bioprocess using microorganism, plant tissue, and animal cell, and components of them for

More information

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation Paper # B03 Topic: Turbulent Flames 5 th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March 25-28, 2007.

More information

FlowCAT - continuous flow reactor system for hydrogenation screening and small scale production. Dr Jasbir Singh

FlowCAT - continuous flow reactor system for hydrogenation screening and small scale production. Dr Jasbir Singh FlowCAT - continuous flow reactor system for hydrogenation screening and small scale production Dr Jasbir Singh (Jsingh@helgroup.com) HEL Ltd, England 2nd Symposium on Continuous Flow Reactor Technology

More information

Freshwater Wetlands: Functions & Conservation. ENVIRTHON Workshop 2016 University of Massachusetts Amherst Deborah J.

Freshwater Wetlands: Functions & Conservation. ENVIRTHON Workshop 2016 University of Massachusetts Amherst Deborah J. Freshwater Wetlands: Functions & Conservation ENVIRTHON Workshop 2016 University of Massachusetts Amherst Deborah J. Henson, PhD, CPSS What is a Wetland? Legal Definition:...those areas that are inundated

More information

Thermo Scientific HyClone Single-Use Bioreactor Products and Capabilities. Discovery Development Production

Thermo Scientific HyClone Single-Use Bioreactor Products and Capabilities. Discovery Development Production Thermo Scientific HyClone Single-Use Bioreactor Products and Capabilities Discovery Development Production Introduction Leading the way in Single-Use Bioreactors Since its introduction, the Thermo Scientific

More information

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 24 : Aerobic Secondary Treatment Of Wastewater

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 24 : Aerobic Secondary Treatment Of Wastewater 1 P age Module 19 : Aerobic Secondary Treatment Of Wastewater Lecture 24 : Aerobic Secondary Treatment Of Wastewater 2 P age 19.1 Activated Sludge Process Conventional biological treatment of wastewater

More information

Trends in Perfusion Bioreactors: Will Perfusion Be the Next Revolution in Bioprocessing? June 15, 2011 BioProcess International

Trends in Perfusion Bioreactors: Will Perfusion Be the Next Revolution in Bioprocessing? June 15, 2011 BioProcess International Trends in Perfusion Bioreactors: Will Perfusion Be the Next Revolution in Bioprocessing? June 15, 2011 BioProcess International Single-use/disposable bioprocessing equipment has come to thoroughly dominate

More information

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology

BIOTECHNOLOGY. Course Syllabus. Section A: Engineering Mathematics. Subject Code: BT. Course Structure. Engineering Mathematics. General Biotechnology BIOTECHNOLOGY Subject Code: BT Course Structure Sections/Units Section A Section B Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section C Section D Section E Topics Engineering Mathematics General

More information

Efficient and controlled expansion of IgG1 producing CHO-DG44 cells using the ActiCHO Media System and WAVE Bioreactor

Efficient and controlled expansion of IgG1 producing CHO-DG44 cells using the ActiCHO Media System and WAVE Bioreactor Efficient and controlled expansion of IgG1 producing CHO-DG44 cells using the ActiCHO Media System and WAVE Bioreactor Thomas Falkman, Eric Fäldt, Anita Vitina and Cecilia Annerén. GE Healthcare Bio-Sciences

More information

Simulating Process Limitations in Microbial Cultivation: A Parallel Two-Compartment Scale-Down Approach

Simulating Process Limitations in Microbial Cultivation: A Parallel Two-Compartment Scale-Down Approach APPLICATION NOTE No. 301 I February 2016 Simulating Process Limitations in Microbial Cultivation: A Parallel Two-Compartment Scale-Down Approach Michael H. Limberg 1, Stephan Zelle 2, Christiane Schlottbom

More information

TECHNICAL PAPER. Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1. By: Dr.

TECHNICAL PAPER. Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1. By: Dr. TECHNICAL PAPER Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1 By: Dr. Alvin Nienow Senior Technical Consultant The Merrick Consultancy Merrick & Company

More information

Single-Use Simplicity

Single-Use Simplicity Single-Use Simplicity BioBLU c and BioBLU p Single-Use Vessels for cell culture »Proven stirred-tank design meets single-use technology.«reliable performance and ease-of-use Combine the benefits of single-use

More information

A High-Yielding, Generic Fed-Batch Process for Recombinant Antibody Production of GS-Engineered Cell Lines

A High-Yielding, Generic Fed-Batch Process for Recombinant Antibody Production of GS-Engineered Cell Lines J. Microbiol. Biotechnol. (2009), 19(12), 1695 1702 doi: 10.4014/jmb.0904.04054 First published online 26 September 2009 A High-Yielding, Generic Fed-Batch Process for Recombinant Antibody Production of

More information

AquaNereda Aerobic Granular Sludge Technology

AquaNereda Aerobic Granular Sludge Technology Aerobic Granular Sludge AquaNereda Aerobic Granular Sludge Technology The AquaNereda Aerobic Granular Sludge (AGS) Technology is an innovative biological wastewater treatment technology that provides advanced

More information

BCT Loop Reactor Technology

BCT Loop Reactor Technology BCT Loop Reactor Technology By BUSS ChemTech AG www.buss-ct.com Hohenrainstrasse 10 CH-4133 Pratteln 1, Switzerland Tel. + 41 (0) 618 256 462 Fax. +41 (0) 618 256 737 Abstract This paper highlights the

More information

Parameters to Consider When Expanding Cells on Corning Microcarriers

Parameters to Consider When Expanding Cells on Corning Microcarriers Parameters to Consider When Expanding Cells on Corning Microcarriers Application Note Katherine E. Strathearn, Ph.D. and Ana Maria P. Pardo Corning Incorporated, Life Sciences Kennebunk, Maine 04043 Introduction

More information

Optimal control of a continuous bioreactor for maximized beta-carotene production

Optimal control of a continuous bioreactor for maximized beta-carotene production Engineering Conferences International ECI Digital Archives Integrated Continuous Biomanufacturing II Proceedings Fall 11-2-2015 Optimal control of a continuous bioreactor for maximized beta-carotene production

More information

A Case Study on the Application of Disposable Technologies in cgmp Manufacturing Processes for a Therapeutic Antibody.

A Case Study on the Application of Disposable Technologies in cgmp Manufacturing Processes for a Therapeutic Antibody. A Case Study on the Application of Disposable Technologies in cgmp Manufacturing Processes for a Therapeutic Antibody. Jeremy M Tong (presenting), Mark S Kettel, Edward M Perry, David J Pain, David M Valentine,

More information

A Bacterial Individual-Based Virtual Bioreactor to Test Handling Protocols in a Netlogo Platform

A Bacterial Individual-Based Virtual Bioreactor to Test Handling Protocols in a Netlogo Platform A Bacterial Individual-Based Virtual Bioreactor to Test Handling Protocols in a Netlogo Platform Marta Ginovart*, Clara Prats** *Applied Mathematics III Department, Universitat Politècnica de Catalunya,

More information

WASTEWATER TREATMENT SYSTEM

WASTEWATER TREATMENT SYSTEM WASTEWATER TREATMENT SYSTEM PrintStudioOne.com Nelson Environmental Inc. The Nelson Environmental OPTAER system is an efficient pond-based wastewater treatment solution utilized in a broad spectrum of

More information

Protocol for Small-Scale Microcarrier Culture

Protocol for Small-Scale Microcarrier Culture Protocol for Small-Scale Microcarrier Culture Hillex II Microcarriers This document provides a general protocol for initiation of small-scale mammalian cell spinner cultures. This procedure is based upon

More information

Optimum Recirculation Rates in Phosphoric Acid Production

Optimum Recirculation Rates in Phosphoric Acid Production Optimum Recirculation Rates in Phosphoric Acid Production Prepared by: Paul S. Waters, P.E. James Byrd Clearwater AIChE June 2013 INTRODUCTION Integral to modern phosphoric acid reaction circuits is the

More information

Efficient Cell-Free Hydrogen Production from Glucose A Feasibility Study Annual Report 5/1/09 to 4/30/10

Efficient Cell-Free Hydrogen Production from Glucose A Feasibility Study Annual Report 5/1/09 to 4/30/10 Efficient Cell-Free Hydrogen Production from Glucose A Feasibility Study Annual Report 5/1/09 to 4/30/10 Investigators James R. Swartz, Professor, Chemical Engineering and Bioengineering; Phil Smith, Jon

More information

NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT

NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT ABSTRACT C. Yang*, L. Zhou**, W. Luo***, and L. Johnson**** *Corstar International Corp. 111

More information

Lab #2 Bioreactors and Fermentation

Lab #2 Bioreactors and Fermentation Lab #2 Bioreactors and Fermentation Outline Goals of Lab Yeast Fermentation Bioreactor Analysis equipment Hemacytometer, cellometer, spectrophotometer, HPLC system 2 Goals of Lab Familiarization with a

More information

Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors

Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors Short Course on Membrane Bioreactors 3/22/06 R. Shane Trussell, Ph.D., P.E. shane@trusselltech.com Outline Introduction Process

More information

Technical University of Denmark

Technical University of Denmark 1 of 13 Technical University of Denmark Written exam, 15 December 2007 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open Book Exam Provide your answers and calculations on

More information

A Generic Framework for Modeling, Design and Optimization of Industrial Phosphoric Acid Production Processes

A Generic Framework for Modeling, Design and Optimization of Industrial Phosphoric Acid Production Processes 18 th European Symposium on Computer Aided Process Engineering ESCAPE 18 Bertrand Braunschweig and Xavier Joulia (Editors) 2008 Elsevier B.V./Ltd. All rights reserved. A Generic Framework for Modeling,

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 5. Diffusion Learning objectives: - To know the

More information

Module 17: The Activated Sludge Process - Part III Answer Key

Module 17: The Activated Sludge Process - Part III Answer Key Module 17: The Activated Sludge Process - Part III Answer Key What other differences can you see between Complete Mix and Step Aeration? One of the features that make Complete Mix Aeration different from

More information

Examples of Studies conducted by

Examples of Studies conducted by Examples of Studies conducted by Page Oxygen Uptake Rate (OUR) Fingerprints 1 Toxicity Assessment Using a Dilution Series 4 Assessment of Acute Toxicity to Treatment Plants 5 Biodegradation Tests for Wastewater

More information

Kelly Thom Associate Principal Scientist Fujifilm Diosynth Biotechnologies. Your Biologics and Vaccines CDMO Partner of Choice.

Kelly Thom Associate Principal Scientist Fujifilm Diosynth Biotechnologies. Your Biologics and Vaccines CDMO Partner of Choice. Process Design for an All Single-Use Manufacturing Facility: Scaling Low to High Titer Processes to Fit Standard mab Equipment BioProcess International West March 2, 2017 Kelly Thom Associate Principal

More information

Design of Membrane Filtration Systems for Biotechnology Process Applications June 19, 2003

Design of Membrane Filtration Systems for Biotechnology Process Applications June 19, 2003 Design of Membrane Filtration Systems for Biotechnology Process Applications June 19, 2003 Who is GEA Filtration? April 15, 2003 Template 2 Who is GEA Filtration? mg Technologies Frankfurt, Germany mg

More information

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD *e ) as modeled in the previous assignment. t is the time in days.

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD *e ) as modeled in the previous assignment. t is the time in days. STELLA Assignment #3 - Dissolved Oxygen and BOD Now that you have a good grasp of the STELLA basics, let's begin to expand the BOD model developed in the past assignment. Often the concern of an environmental

More information

CHAPTER ONE: EXECUTIVE SUMMARY Scope and Methodology Cells for Biopharmaceutical Production Bacteria and Yeasts Systems Animal Cell Systems Insect

CHAPTER ONE: EXECUTIVE SUMMARY Scope and Methodology Cells for Biopharmaceutical Production Bacteria and Yeasts Systems Animal Cell Systems Insect CHAPTER ONE: EXECUTIVE SUMMARY Scope and Methodology Cells for Biopharmaceutical Production Bacteria and Yeasts Systems Animal Cell Systems Insect Cell Systems Cell Lines and Cell Banks Fermentors and

More information

Driving Innovation Through Bioengineering Solutions. a world-class business in a global hub for biotechnology

Driving Innovation Through Bioengineering Solutions. a world-class business in a global hub for biotechnology Driving Innovation Through Bioengineering Solutions a world-class business in a global hub for biotechnology Process Scale-Up & Tech Transfer Capabilities Unique blend of engineering and biotechnology

More information

Unlock Pichia High level methanol-free phytase production in Pichia pastoris

Unlock Pichia High level methanol-free phytase production in Pichia pastoris WHITE PAPER Unlock Pichia High level methanol-free phytase production in Pichia pastoris Thomas Purkarthofer, Evelyn Trummer-Gödl, Iskandar Dib, Roland Weis VTU Technology GmbH, Parkring 18, 8074 Raaba-Grambach,

More information

BioWin 3. New Developments in BioWin. Created by process engineers.. for process engineers

BioWin 3. New Developments in BioWin. Created by process engineers.. for process engineers BioWin 3 Created by process engineers.. for process engineers New Developments in BioWin The latest version of BioWin provides a host of additions and improvements to enhance your wastewater treatment

More information

The scale-up of microbial batch and fed-batch fermentation processes

The scale-up of microbial batch and fed-batch fermentation processes Loughborough University Institutional Repository The scale-up of microbial batch and fed-batch fermentation processes This item was submitted to Loughborough University's Institutional Repository by the/an

More information

Using the Sartobind pico

Using the Sartobind pico Using the Sartobind pico Optimizing Steps for using micro-scale membrane adsorbers on liquid chromatography systems Application Note Steps for the successful use of Sartobind pico 1. Start with a new unused

More information

Outline Introduction Membrane Issues Other Issues

Outline Introduction Membrane Issues Other Issues Outline Introduction Membrane Issues Other Issues Outline Introduction Membrane Issues Other Issues Aeration Foam and Colloids Pretreatment Research needs Aeration For Biomass Oxygen Transfer Most commonly

More information

Utilizing algal oxygen production for advanced wastewater treatment in a Moving Bed Biofilm Reactor (MBBR) the Biologically Aerated Reactor (BAR )

Utilizing algal oxygen production for advanced wastewater treatment in a Moving Bed Biofilm Reactor (MBBR) the Biologically Aerated Reactor (BAR ) Utilizing algal oxygen production for advanced wastewater treatment in a Moving Bed Biofilm Reactor (MBBR) the Biologically Aerated Reactor (BAR ) R. Blanc*, U. Leshem Aquanos Energy Ltd., 4 Hadekel Street,

More information

Fractal applications for sugar decolorization processes. ABSTRACT

Fractal applications for sugar decolorization processes. ABSTRACT Tzschaetzsch, Oliver 1 *, Bill Jacob 2 and Tim Pryor 2, 1 ESCON, Schlosstrasse 48 a, D-1265 Berlin, Germany and 2 Amalgamated Research Inc., 2531 Orchard Drive East, Twin Falls, ID 83301. Fractal applications

More information

Chapter 8 Proteins and Bioprocesses

Chapter 8 Proteins and Bioprocesses Chapter 8 Proteins and Bioprocesses 8.1 Proteins and Biomolecules This introductory paragraph summarizes a few basic concepts of protein science required for the next paragraphs. The human body is composed

More information

336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE

336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE 336098: DYNAMIC MODELLING AND SIMULATION OF ANAEROBIC DIGESTER FOR HIGH ORGANIC STRENGTH WASTE POOJA SHARMA, U K GHOSH, A K RAY Department of Polymer & Process Engineering Indian Institute of Technology,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction The prediction of far-field pollutant concentrations using residual currents M. Hartnett, S.Nash, R. Leslie Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin 2, Ireland

More information

Figure Trickling Filter

Figure Trickling Filter 19.2 Trickling Filter A trickling filter is a fixed film attached growth aerobic process for treatment of organic matter from the wastewater. The surface of the bed is covered with the biofilm and as the

More information

Abstract Process Economics Program Report 188B BIOTECHNOLOGY SEPARATION PROCESSES (June 2002)

Abstract Process Economics Program Report 188B BIOTECHNOLOGY SEPARATION PROCESSES (June 2002) Abstract Process Economics Program Report 188B BIOTECHNOLOGY SEPARATION PROCESSES (June 2002) The chemical industry has a renewed interest in developing processes for producing industrial chemicals from

More information