Developing Quantitative UPLC Assays with UV

Size: px
Start display at page:

Download "Developing Quantitative UPLC Assays with UV"

Transcription

1 Developing Quantitative UPLC Assays with UV Detection for Antibodies & Other Proteins Steve Taylor 2011 Waters Corporation 1

2 Outline UPLC technology for RP protein separations Method development parameters for RP protein separations Quantitation of proteins and their variants Conclusions 2011 Waters Corporation 2

3 ACQUITY UPLC H-Class Bio UPLC designed for biomolecules 15,000 psi maximum pressure capability Quaternary solvent blending Flow-through needle sample manager Stainless steel free flow path AutoBlend Plus Technology Automates blending of acid modifiers and multiple organic solvents Automates formation of ph buffers Excellent gradient reproducibility Minimized dispersion 2011 Waters Corporation 3

4 Columns for RP UPLC of Proteins ACQUITY UPLC BEH300 C4 300Å pore size C4 ligand Minimal secondary interactions Long column life at elevated temperature Minimal carryover and maximum recovery 2011 Waters Corporation 4

5 Outline UPLC technology for RP protein separations Method development parameters for RP protein separations Quantitation of proteins and their variants Conclusions 2011 Waters Corporation 5

6 Influencing Protein Separations Operating Factors Mobile phase modifier Temperature Column Length Organic solvent Gradient slope Flow rate 2011 Waters Corporation 6

7 Effects of Mobile Phase Modifier Trifluoroacetic acid (TFA) is commonly preferred for good chromatography with proteins and peptides Formic acid (FA) often used for increased signal in MS For quantitative LC assays with UV detection TFA is the preferred modifier 2011 Waters Corporation 7

8 Effect of Acid Concentration Protein Mix % TFA 0.15 A B C D E F A. Ribonuclease B. Cytochrome c C. BSA D. Myoglobin E. Enolase F. Phosphorylase b % TFA % 02% TFA Change selectivity by changing modifier concentration Waters Corporation 8

9 Protein Separation in RP LC Effects of Increasing Temperature Benefits Usually reduces retention Often improves protein peak shape Often improves recovery Often improves resolution by changing selectivity Often makes peaks narrower, but not universally Risks May precipitate proteins May promote chemical modification May increase denaturation 2011 Waters Corporation 9

10 Recovery with Increasing Temperature Intact Murine IgG, BEH300 C % TFA, ACN separation C C C With the monoclonal IgG, elevated temperature is absolutely required for reasonable chromatography Waters Corporation 10

11 Example of Increasing Temperature 0.02% TFA separation A. Ribonuclease B. Cytochrome c C. BSA D. Myoglobin E. Enolase F. Phosphorylase b A B C D E 40ºC 0.08 F Elution order reversal ºC 0.16 A U Waters Corporation 11

12 Effect of Column Length on Separation x 50mm x 150mm Waters Corporation 12

13 Effect of Solvent on Separation at 40ºC 0.1% TFA ACN MeOH EtOH :3 IPA:ACN 5 1 IPA Ribonuclease 2. Cytochrome c 3. BSA 4. Myoglobin 5. Enolase 6. Phosphorylase b Waters Corporation 13

14 Effect of Solvent on Separation at 80ºC Mixture of IgG Monoclonal Antibodies; 0.1% TFA ACN H C M RsH,C = MeOH Rs H,C = coelution H, C EtOH H C M Rs H,C = : IPA:ACN H C M 1.20 IPA H C M ACQUITY UPLC BEH300 C4, 1.7µm, RsH,C = x 50 mm A: 0.1% TFA in waters B: 0.1% TFA in organic solvent 0.2mL/min 20% B to 71.4% B over 29.6 mins, 80 C Detection: 220nm H Humanized; C Chimeric; M Murine Rs H,C = Waters Corporation 14

15 Observed Backpressures (0.2mL/min, 1.7 µm, BEH300 C4 2.1x150mm column) 1.5%/ Column Volume Gradient Slope Mobile Phase B 100% ACN 7:3 IPA: ACN 100% IPA 100% MeOH Temp (ºC) Initial PSI Highest PSI ~ % B at Highest PSI % EtOH values are approximate 2011 Waters Corporation 15

16 ACQUITY UPLC H-Class Bio AutoBlend Plus 95% 0% 45% 50% Water Acetonitrile Water Acetonitrile 0% 5% 0% 5% Isopropanol 1%TFA Isopropanol 1%TFA 100% Water 50% Water 0% Acetonitrile 50% Acetonitrile 0.05% TFA 0.05% TFA Automatically blends up to four solvents formation of desired % TFA or other modifiers (e.g. 0.1% vs 0.05% TFA) formation of new organic solvent mixture (e.g. ACN vs 7:3 IPA:ACN) Routine assays become more rugged (less human error) Exploring different acid modifier percentages and different blends of organic solvents is simplified 2011 Waters Corporation 16

17 Effect of Gradient Slope on Separation of a Monclonal Antibody Mix; 0.1% TFA, ACN, 80ºC %/CV R H,C = %/CV R H,C = %/CV R H,C = Waters Corporation 17

18 Gradient Slope Effects Myoglobin / Enolase Rs Enolase Height () Res solution Pe eak Height () Gradient slope (%B/CV) 2011 Waters Corporation 18

19 Effect of Flow Rate; ACN Separation 2.1mm i.d. column µl/min µl/min Waters Corporation 19

20 Outline UPLC technology for RP protein separations Method development parameters for RP protein separations Quantitation of proteins and their variants Conclusions 2011 Waters Corporation 20

21 Wavelength, sensitivity & detector saturation Humanized IgG4 quantitation at 220nm 2.40 ACQUITY UPLC BEH300 C4 2.1x50mm 0.1% TFA, IPA 20-37%B 0.2mL/min 3.3 µl injection 1%/CV gradient slope TUV at 220 nm µg 0.05 µg 10 µg 7.5 µg 5 µg 1 µg 0.5 µg Detector saturation at 220nm limits dynamic range to a 50-fold range of concentrations Waters Corporation 21

22 280nm for wider dynamic range applications Humanized IgG4 Quantitation nm ACQUITY UPLC BEH300 C4 2.1x50mm µg on column nm Peak height reduced Baseline drift reduced 10x U A Waters Corporation 22

23 Linear Dynamic Range at 280 nm Amount on Area Column (µg) Avg. Area % RSD Humanized IgG μg on column y = 55003x R² = Area Humanized IgG Triplicate injections µg on column 2011 Waters Corporation 23

24 Impurity Quantitation (murine IgG spiked into humanized IgG) 50 µg API on Column % % % % % % Waters Corporation 24

25 Quantitating Impurities in Presence of Large Amount of Protein Impurity API Nominal % of API Measured % of API Area % RSD Area % RSD %RSD values based on 5 replicates 2011 Waters Corporation 25

26 Carryover Carryover and memory effects appearance of constituents of one sample in the next gradient analysis Must determine if the source of carryover is system or column Define a method with an internal gradient analytical gradient repeated, without any injection being made. o If peak appears in the second gradient at the same time after beginning of gradient, then carryover is memory effect, due to the column o If protein only appears when an injection is made, then carryover is due to adsorption onto a system component 2011 Waters Corporation 26

27 Effect of Temperature on Carryover ºC nd gradient start Protein Mix carryover ºC Waters Corporation 27

28 5µg injection of mabs Effect of Organic Solvent on Carryover 1.20 IPA, 0.1% TFA, 80ºC <0.1% carryover nd gradient start 1.20 MeOH, 0.1% TFA, 80ºC ~30% carryover Waters Corporation 28

29 Observed Carryover Protein Mix; 0.1% TFA Approximate Carryover Mobile Phase B1 100% ACN 7:3 IPA:ACN 100% IPA *100% MeOH Protein 40ºC 80ºC 40ºC 80ºC 40ºC 80ºC 40ºC 80ºC Ribonuclease ND ND ND ND ND ND 2 3 Cytochrome c ND ND ND ND ND ND 1 1 Bovine Serum Albumin 0.4 <0.1 ND <0.1 ND ND 5 18 Myoglobin 0.6 ND 0.6 ND 7 ND Enolase 0.1 ND 0.1 ND 15 ND ND ND Phosphorylase b ND ND <0.1 ND 0.2 ND ND 6 ND Not detected * Further testing required to confirm accuracy 2011 Waters Corporation 29

30 Effect of Gradient Slope on Carryover 0.1% TFA, IPA, 20-37% B, 0.2 ml/min, 3.3 µl injection Gradient Slope 1st Gradient Area Relative Area Column temperature 80 C TUV at 220 nm 2nd 3rd Total Gradient Gradient Total Area Relative Area Area Area 3%/CV % Carryover %/CV % Carryover %/CV % Carryover Waters Corporation 30

31 Effect of Mass Load on Carryover µg Humanized IgG4 Mass loads (µg) % Carryover 0.5 N/A 1 N/A A: 0.1% TFA in water; B: 0.1% TFA in IPA; 0.2 ml/min 20-37%B in 14.7min (1% per CV), with 2 nd internal gradient; 3.3 µl injection; TUV at 280 nm; 80 C column tem BEH300 C4 1.7 µm 2.1x50 mm 35 2 nd gradient carryover < 20% of LLOQ 00 2 nd gradient start Waters Corporation 31

32 Minimizing Column-related Carryover Minimizing memory effect Raising temperature can minimize incomplete elution of protein Replace part or all of organic solvent Decrease gradient slope Decrease flow rate (increase gradient time accordingly) Decrease mass load of protein on column, if possible Include a series of fast regeneration gradients (sawtooth gradients) 2011 Waters Corporation 32

33 Method Development and Quantitation Summary ACQUITY UPLC H-Class Bio and BEH300 C4 columns Exploring % acid modifier, temperature, organic solvent mixtures, gradient slope and flow rate Develop protein separations with good resolution, good peak shape, wide dynamic range, good sensitivity & low carry-over Column and system design optimised for proteins Reproducible quantitation across three orders of magnitude can be obtained for API s and low-level l l impuritiesiti 2011 Waters Corporation 33

34 Relevant literature downloads Search waters.com for these literature titles: Reversed-Phase Analysis of Proteins Using ACQUITY UPLC H- Class Bio and AutoBlend Plus Quantitation of Monoclonal Antibodies Using Reversed-Phase Liquid Chromatography Using the BEH300 C4 Column Chemistry Developing Separations of Monoclonal Antibodies And Other Proteins Using Reversed-Phase UPLC Protein Separation Technology Columns Brochure ACQUITY UPLC H-Class Bio System 2011 Waters Corporation 34

Method Development Considerations for Reversed-Phase Protein Separations

Method Development Considerations for Reversed-Phase Protein Separations Method Development Considerations for Reversed-Phase Protein Separations Hillary B. Hewitson, Thomas E. Wheat, Paula Hong, Kenneth J. Fountain APPLICATION BENEFITS n The BEH00 C 4 chemistry is available

More information

Maximizing Chromatographic Resolution of Peptide Maps using UPLC with Tandem Columns

Maximizing Chromatographic Resolution of Peptide Maps using UPLC with Tandem Columns Maximizing Chromatographic Resolution of Peptide Maps using UPLC with Tandem Columns Hongwei Xie, Martin Gilar, and Jeff Mazzeo Waters Corporation, Milford, MA U.S. APPLICATION BENEFITS The ACQUITY UPLC

More information

Analysis of biomolecules by SEC and Ion-Exchange UPLC

Analysis of biomolecules by SEC and Ion-Exchange UPLC Analysis of biomolecules by SEC and Ion-Exchange UPLC Anders Feldthus, Waters Nordic 2011 Waters Corporation 1 Waters Commitment To develop, commercialize and market columns that when used on Waters ACQUITY

More information

2012 Waters Corporation 1

2012 Waters Corporation 1 UPLC User meeeting April 2012 Principles and Practices for SEC, IEX for Intact Protein Analysis by UPLC anders_feldthus@waters.com 2012 Waters Corporation 1 Agenda Ion-Exchange Chromatography Theory and

More information

BioHPLC columns. Tim Rice Biocolumn Technical Specialist

BioHPLC columns. Tim Rice Biocolumn Technical Specialist BioHPLC columns Tim Rice Biocolumn Technical Specialist AU Typical Application Areas Size Exclusion: Aggregation Analysis Ion Exchange: Charge Isoform Analysis 0.035 Monomer 0.030 0.025 0.020 0.015 Dimer

More information

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover columns ProSwift Reversed-Phase Monolith Columns for Protein Analysis ProSwift reversed-phase columns use a unique monolith technology for fast, high-resolution HPLC and LC/MS separations of proteins.

More information

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns BioHPLC columns Paul Dinsmoor Biocolumn Technical Specialist April 23-25, 2013 Size Exclusion BioHPLC Columns 1 NEW Size Exclusion Columns 5 m Particle 100Å, 150Å, 300Å, 500Å, 1000Å, 2000Å pore sizes High

More information

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus Robert Birdsall, Thomas Wheat, and Weibin Chen Waters Corporation,

More information

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS Agilent AdvanceBio Columns ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS with Agilent ZORBAX RRHD 3Å 1.8 µm columns ns Rapid resolution high definition columns for UHPLC protein and peptide separations

More information

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS Agilent AdvanceBio Columns ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS with Agilent ZORBAX RRHD 3Å 1.8 µm columns ns Rapid resolution high definition columns for UHPLC protein and peptide separations

More information

MassPREP On-Line Desalting Cartridge

MassPREP On-Line Desalting Cartridge CONTENTS I. INTRODUCTION II. INSTALLING THE MASSPREP ON-LINE DESALTING CARTRIDGE INTO THE SENTRY.1 X 1 MM GUARD COLUMN HOLDER III. RECOMMENDED LC/MS SYSTEM CONFIGURATION TO MINIMIZE MS SOURCE CONTAMINATION

More information

mabs and ADCs analysis by RP

mabs and ADCs analysis by RP mabs and ADCs analysis by RP Shanhua Lin, Ph.D. The world leader in serving science Protein and mab Separation by HPLC Size difference? YES Size Exclusion Chromatography (SEC) MAbPac SEC-1 NO NO Charge

More information

'Tips and Tricks' for Biopharmaceutical Characterization using SEC

'Tips and Tricks' for Biopharmaceutical Characterization using SEC 'Tips and Tricks' for Biopharmaceutical Characterization using SEC Waters Corporation 2012 Waters Corporation 1 Waters Commitment To develop, commercialize and market columns that, when used on Waters

More information

Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study

Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study Application note Biotherapeutics and Biologics Authors Suresh Babu C.V., Anne

More information

Size Exclusion BioHPLC Columns

Size Exclusion BioHPLC Columns Size Exclusion BioHPLC Columns Size Exclusion Product Families Particle Porosity Functionalities Particle Pore Size Application Sizes Agilent Bio SEC- Silica Fully porous N/A um 00A, 0A, 00A High efficiency

More information

Proteins. Patrick Boyce Biopharmaceutical Marketing Manager Waters Corporation 1

Proteins. Patrick Boyce Biopharmaceutical Marketing Manager Waters Corporation 1 Routine Characterization of mabs and Other Proteins Patrick Boyce Biopharmaceutical Marketing Manager Europe and India 2011 Waters Corporation 1 Agenda Why? What scientific challenges? Technology Example

More information

Protein-Pak Hi Res HIC Column and HIC Protein Standard

Protein-Pak Hi Res HIC Column and HIC Protein Standard Protein-Pak Hi Res HIC Column and HIC Protein Standard CONTENTS I. INTRODUCTION II. a. Mobile Phase b. Flow Direction CONNECTING COLUMN TO LC SYSTEM I. INTRODUCTION This offering contains non-porous, polymethacrylate-based

More information

Analysis and Purification of Polypeptides by Reversed-Phase HPLC

Analysis and Purification of Polypeptides by Reversed-Phase HPLC Analysis and Purification of Polypeptides by Reversed-Phase HPLC Reversed-phase HPLC is a valuable tool for the analysis and purification of proteins and peptides. It is effective in separating peptide

More information

Peptide Mapping: A Quality by Design (QbD) Approach

Peptide Mapping: A Quality by Design (QbD) Approach Peptide Mapping: A Quality by Design (QbD) Approach Application Note Bio-Pharmaceutical Authors Sreelakshmy Menon and Suresh babu C.V. Agilent Technologies, Inc. Richard Verseput S-Matrix Corporation Abstract

More information

PLRP-S Polymeric Reversed-Phase Column for LC/MS Separation of mabs and ADC

PLRP-S Polymeric Reversed-Phase Column for LC/MS Separation of mabs and ADC PLRP-S Polymeric Reversed-Phase Column for LC/MS Separation of mabs and ADC Analysis of Intact and Fragmented mabs and ADC Application Note Biotherapeutics and Biologics Author Suresh Babu C.V. Agilent

More information

Generating Automated and Efficient LC/MS Peptide Mapping Results with the Biopharmaceutical Platform Solution with UNIFI

Generating Automated and Efficient LC/MS Peptide Mapping Results with the Biopharmaceutical Platform Solution with UNIFI with the Biopharmaceutical Platform Solution with UNIFI Vera B. Ivleva, Ying Qing Yu, Scott Berger, and Weibin Chen Waters Corporation, Milford, MA, USA A P P L I C AT ION B E N E F I T S The ability to

More information

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column Disulfide Linkage Analysis of IgG1 using an Agilent 126 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column Application Note Biotherapeutics & Biosimilars Author M. Sundaram

More information

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website: Published in November 2013

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website:  Published in November 2013 5-100 Innovation Way Newark, DE 19711, USA Tel:302-3661101 Fax:302-3661151 Website: www.sepax-tech.com Published in November 2013 P/N SECKIT-7830 These Phases are developed based on innovative surface

More information

Reversed-phase Separation of Intact Monoclonal Antibodies Using Agilent ZORBAX Rapid Resolution High Definition 300SB-C8 1.

Reversed-phase Separation of Intact Monoclonal Antibodies Using Agilent ZORBAX Rapid Resolution High Definition 300SB-C8 1. Reversed-phase Separation of Intact Monoclonal Antibodies Using Agilent ZORBAX Rapid Resolution High Definition 3SB-C8 1.8 µm Column Application Note Biopharmaceuticals Authors James Martosella and Phu

More information

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science 2 Structure of IgG and Typical Forms of Heterogeneity Protein and mab Separation by HPLC Size difference? YES Size Exclusion

More information

Biotherapeutic Non-Reduced Peptide Mapping

Biotherapeutic Non-Reduced Peptide Mapping Biotherapeutic Non-Reduced Peptide Mapping Routine non-reduced peptide mapping of biotherapeutics on the X500B QTOF System Method details for the routine non-reduced peptide mapping of a biotherapeutic

More information

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808 Reversed-Phase Optimization for Ultra Fast Profiling of Intact and Reduced Monoclonal Antibodies using Agilent ZORBAX Rapid Resolution High Definition 3SB-C3 Column Application Note Biopharma Authors James

More information

Analysis of Intact Monoclonal Antibodies Using an M3 MicroLC with the TripleTOF 6600

Analysis of Intact Monoclonal Antibodies Using an M3 MicroLC with the TripleTOF 6600 Procedures Analysis of Intact Monoclonal Antibodies Using an M3 MicroLC with the TripleTOF 66 Robust and Sensitive Workflow for Qualitative and Quantitative Analysis of Biotherapeutic IgGs Khatereh Motamedchaboki,

More information

AdvanceBio Peptide Mapping

AdvanceBio Peptide Mapping AdvanceBio Peptide Mapping An HPLC Column Technology for Faster Protein Biocharacterizations Tim Rice BioColumn Technical Specialist 1 What Is Peptide Mapping? The chemical or enzymatic treatment of a

More information

Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb 5 µm Column

Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb 5 µm Column Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb µm Column Application Note BioPharma Authors Xiaomi Xu and Phu T Duong Agilent Technologies, Inc. Abstract Nearly all proteins undergo

More information

ACQUITY UPLC H-Class Bio System

ACQUITY UPLC H-Class Bio System QUITY UPL H-lass io System uilt for your biomolecular characterization t he IocoM Pt Ile u P lc P lt FoRM The QUITY UPL H-lass io System the latest extension to the family of QUITY UPL Systems, brings

More information

Fraction Analysis of Cysteine Linked Antibody-Drug Conjugates Using Hydrophobic Interaction. chromatography. Agilent 1260 Infinity II Bio-Inert System

Fraction Analysis of Cysteine Linked Antibody-Drug Conjugates Using Hydrophobic Interaction. chromatography. Agilent 1260 Infinity II Bio-Inert System Application Note Biologics & Biosimilars Fraction Analysis of Cysteine Linked Antibody-Drug Conjugates Using Hydrophobic Interaction Chromatography Agilent 126 Infinity II Bio-Inert System 7 6 5 4 5. 7.5

More information

Size-Exclusion Chromatography (SEC) Optimization Guide

Size-Exclusion Chromatography (SEC) Optimization Guide Size-Exclusion Chromatography (SEC) Optimization Guide 1 Table of Contents I. Introduction II. ACQUITY UPLC Instrumentation Considerations for Successful SEC Analysis III. Importance of Developing a Robust

More information

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns Anne Blackwell Bio Columns Product Support Scientist Suresh Babu Senior Application

More information

Next Generation Zirconia-Based Antibody Purification Media

Next Generation Zirconia-Based Antibody Purification Media Next Generation Zirconia-Based Antibody Purification Media Dr. Clayton McNeff, Dwight Stoll, Danielle Hawker (ZirChrom), Dr. Andy Clausen (Merck) Dr. Peter W. Carr and Dr. Anuradha Subramanian (U of MN)

More information

A Unique LC-MS Assay for Host Cell Proteins(HCPs) ) in Biologics

A Unique LC-MS Assay for Host Cell Proteins(HCPs) ) in Biologics A Unique LC-MS Assay for Host Cell Proteins(HCPs) ) in Biologics Catalin Doneanu,, Ph.D. Biopharmaceutical Sciences, Waters September 16, 2009 Mass Spec 2009 2009 Waters Corporation Host Cell Proteins

More information

HPLC to UPLC Method Migration: An Overview of Key Considerations and Available Tools

HPLC to UPLC Method Migration: An Overview of Key Considerations and Available Tools HPLC to UPLC Method Migration: An Overview of Key Considerations and Available Tools Dr. Michael Swartz, Ph. D. Principal Consulting Scientist Worldwide Pharmaceutical Business Operations Waters Corporation

More information

ACQUITY UPLC Protein BEH SEC Columns and Standards

ACQUITY UPLC Protein BEH SEC Columns and Standards and Standards CONTENTS I. INTRODUCTION II. CONFIGURING AN ACQUITY UPLC SYSTEM FOR USE IN SEC PROTEIN SEPARATIONS a. Calibrators III. GETTING STARTED a. ecord installation b. Column connectors c. Column

More information

Application Note. Authors. Abstract. Biopharmaceuticals

Application Note. Authors. Abstract. Biopharmaceuticals Characterization of monoclonal antibodies on the Agilent 126 Infinity Bio-inert Quaternary LC by Size Exclusion Chromatography using the Agilent BioSEC columns Application Note Biopharmaceuticals Authors

More information

Multiple Detector Approaches to Protein Aggregation by SEC

Multiple Detector Approaches to Protein Aggregation by SEC Multiple Detector Approaches to Protein Aggregation by SEC Application Note BioPharma Author Andrew Coffey Agilent Technologies, Inc. Abstract Protein aggregation, where molecules assemble into dimers,

More information

AdvancedTools in HPLC methoddevelopment

AdvancedTools in HPLC methoddevelopment AdvancedTools in HPLC methoddevelopment Remco Stol, Enrico Martina and Jeffrey Vos Analytical Sciences Chemistry, Quality Unit API/BT NL FHI symposium, Houten, 22 april 2010 What does the customer want?

More information

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility Technical Overview Introduction Agilent AdvanceBio SEC columns are a new family of size exclusion chromatography (SEC) columns

More information

Microflow LC-MS with the turn of a key

Microflow LC-MS with the turn of a key [ ionkey/ms ] Microflow LC-MS with the turn of a key Dramatically enhance your sensitivity for both quantitative and qualitative chromatographic data, with an integrated microflow LC-MS solution that is

More information

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies Combining Size Exclusion Chromatography with Method Development and Light Scattering Application Note Biotherapeutics and Biosimilars

More information

APPLICATIONS TN Overview of Kinetex 2.6 µm Core-Shell Technology

APPLICATIONS TN Overview of Kinetex 2.6 µm Core-Shell Technology TN-7 Determination of Impurities and Related Substances for Glibenclamide (EP Monograph 78). Increased Sensitivity, Improved Resolution and Faster Analysis Using Kinetex.6 µm Core-Shell LC Columns Elli

More information

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates Julia Baek, Shanhua Lin, Xiaodong Liu, Thermo Fisher Scientific, Sunnyvale, CA Application Note 2126 Key Words Size exclusion

More information

Fast and High Resolution Analysis of Intact and Reduced Therapeutic Monoclonal Antibodies (mabs)

Fast and High Resolution Analysis of Intact and Reduced Therapeutic Monoclonal Antibodies (mabs) Fast and High Resolution nalysis of Intact and Reduced Therapeutic Monoclonal ntibodies (mbs) The gilent io-inert L and dvanceio RP-mb olumns pplication Note io-pharmaceutical uthor M. Sundaram Palaniswamy

More information

Accelerate mab Characterization Using Automated Sample Prep

Accelerate mab Characterization Using Automated Sample Prep Accelerate mab Characterization Using Automated Sample Prep David Knorr, Ph.D. Automation Solutions Ning Tang, Ph.D. LC/MS 15 February 2012 Page 1 Protein Sample Processing Workflows Glycan Profiling Biological

More information

Quality-by-Design-Based Method Development Using an Agilent 1290 Infinity II LC

Quality-by-Design-Based Method Development Using an Agilent 1290 Infinity II LC Quality-by-Design-Based Method Development Using an Agilent 129 Infinity II LC An Efficient Method Development Workflow Combined with ISET-mediated Method Transfer Under Waters Empower 3 CDS Control Application

More information

Fast and Efficient Peptide Mapping of a Monoclonal Antibody (mab): UHPLC Performance with Superficially Porous Particles

Fast and Efficient Peptide Mapping of a Monoclonal Antibody (mab): UHPLC Performance with Superficially Porous Particles Fast and Efficient Peptide Mapping of a Monoclonal Antibody (mab): UHPLC Performance with Superficially Porous Particles Application Note Biotherapeutics and Biosimilars Authors James Martosella, Alex

More information

Preparative Purification of Corticosteroids by HPLC; Scalability and Loadability Using Agilent Prep C18 HPLC Columns Application

Preparative Purification of Corticosteroids by HPLC; Scalability and Loadability Using Agilent Prep C18 HPLC Columns Application Preparative Purification of Corticosteroids by PLC; Scalability and Loadability Using Agilent Prep C18 PLC Columns Application Pharmaceuticals Authors Cliff Woodward and Ronald Majors Agilent Technologies,

More information

Improved SPE for UPLC/MS Determination of Diquat and Paraquat in Environmental

Improved SPE for UPLC/MS Determination of Diquat and Paraquat in Environmental Improved SPE for UPLC/MS Determination of Diquat and Paraquat in Environmental Samples Michael S.Young, Jeremy C. Shia, Kim vantran, Kevin M. Jenkins and Masayo Yabo Waters Corporation 34 Maple Street,

More information

BÜCHI Labortechnik AG

BÜCHI Labortechnik AG BÜCHI Labortechnik AG Purification BUCHI Chromatography History 1977: BUCHI Fraction Collector 1978: 1 st preparative chromatography system 2008: automated chromatography system 2014: automated high performance

More information

mab Titer Analysis with the Agilent Bio-Monolith Protein A Column

mab Titer Analysis with the Agilent Bio-Monolith Protein A Column mab Titer Analysis with the Agilent Bio-Monolith Protein A Column Application Note Biopharmaceuticals and Biosimilars Authors Emmie Dumont, Isabel Vandenheede, Pat Sandra, and Koen Sandra Research Institute

More information

EASY-Spray Columns. Guidance for column set up and installation Tips to maximize column lifetime

EASY-Spray Columns. Guidance for column set up and installation Tips to maximize column lifetime EASY-Spray Columns Guidance for column set up and installation Tips to maximize column lifetime EASY-Spray Column Tips and Tricks This document provides guidance for Thermo Scientific EASY-Spray column

More information

IgG Purity/Heterogeneity and SDS-MW Assays with High- Speed Separation Method and High Throughput Tray Setup

IgG Purity/Heterogeneity and SDS-MW Assays with High- Speed Separation Method and High Throughput Tray Setup IgG Purity/Heterogeneity and SDS-MW Assays with High- Speed Separation Method and High Throughput Tray Setup High Throughput Methods to Maximize the Use of the PA 800 Plus system Jose-Luis Gallegos-Perez

More information

Sepax Technologies, Inc.

Sepax Technologies, Inc. Sepax Technologies, Inc. Sepax Technologies, Inc. develops and manufactures products in the area of chemical and biological separations, bio-surfaces and proteomics. Sepax product portfolio includes 1)

More information

Improving Sensitivity in Bioanalysis using Trap-and-Elute MicroLC-MS

Improving Sensitivity in Bioanalysis using Trap-and-Elute MicroLC-MS Improving Sensitivity in Bioanalysis using Trap-and-Elute MicroLC-MS Using the SCIEX M3 MicroLC system for Increased Sensitivity in Antibody Quantitation Remco van Soest and Lei Xiong SCIEX, Redwood City,

More information

Hillary B. Hewitson, Thomas E. Wheat, Diane M. Diehl INTRODUCTION

Hillary B. Hewitson, Thomas E. Wheat, Diane M. Diehl INTRODUCTION Enhanc em ent o f t h e U P L C Am ino Ac i d Ana lysis So lu t io n w it h F l e x ibl e Detector Options Hillary B. Hewitson, Thomas E. Wheat, Diane M. Diehl INTRODUCTION The measurement of amino acids

More information

ProSEC 300S. Protein Characterization columns

ProSEC 300S. Protein Characterization columns ProSEC 300S Protein Characterization columns Agilent s ProSEC 300S is a silica-based material specifically designed for the analysis of proteins by aqueous size exclusion chromatography. With a proprietary

More information

Improved Peptide Maps Using Core-Shell Media: Explaining Better Biopharmaceutical Applications With Kinetex C18 Columns

Improved Peptide Maps Using Core-Shell Media: Explaining Better Biopharmaceutical Applications With Kinetex C18 Columns Improved Peptide Maps Using Core-Shell Media: Explaining Better Biopharmaceutical Applications With Kinetex C18 Columns Michael McGinley, Jeff Layne, and Vita Knudson Phenomenex, Inc., 411 Madrid Ave.,Torrance,

More information

A Fast and Robust Linear ph Gradient Separation Platform for Monoclonal Antibody (MAb) Charge Variant Analysis

A Fast and Robust Linear ph Gradient Separation Platform for Monoclonal Antibody (MAb) Charge Variant Analysis A Fast and Robust Linear ph Gradient Separation Platform for Monoclonal Antibody (MAb) Charge Variant Analysis Shanhua Lin, Julia Baek, and Chris Pohl Thermo Fisher Scientific, Sunnyvale, CA, USA Overview

More information

SEC-MS with Volatile Buffers for Characterization of Biopharmaceuticals

SEC-MS with Volatile Buffers for Characterization of Biopharmaceuticals SE-MS with Volatile uffers for haracterization of iopharmaceuticals Martin Samonig, Remco Swart Thermo Fisher Scientific, Germering, Germany pplication Note 1133 Key Words Monoclonal ntibodies, MbPac SE-1,

More information

Reversed-Phase HPLC Columns

Reversed-Phase HPLC Columns Reversed-Phase HPLC Columns Hamilton reversed-phase HPLC columns combine the best characteristics of silica-based and polymeric columns to arrive at a product that is highly inert and long-lasting. Hamilton

More information

Separation of Recombinant Human Erythropoietin (repo) Using Agilent Bio SEC-3

Separation of Recombinant Human Erythropoietin (repo) Using Agilent Bio SEC-3 Separation of Recombinant Human Erythropoietin (repo) Using Agilent Bio SEC-3 Application Note BioPharma Authors Phu T Duong and James Martosella Agilent Technologies, Inc. 285 Centerville Rd, Wilmington,

More information

New Advances in UHPLC -Resolution, Speed & Sensitivity

New Advances in UHPLC -Resolution, Speed & Sensitivity New Advances in UHPLC -Resolution, Speed & Sensitivity Enhancing Productivity with Agilent s Newest Instrumentation Patrick Cronan LC Applications Scientist Boston, MA September 14, 2012 Page 1 The 1290

More information

Promix TM. Enter a New Era in Biomolecule Analysis with. Columns. Unsurpassed Selectivity and Peak Capacity for Peptides and Proteins

Promix TM. Enter a New Era in Biomolecule Analysis with. Columns. Unsurpassed Selectivity and Peak Capacity for Peptides and Proteins Promix TM Enter a New Era in Biomolecule Analysis with Promix TM Columns Unsurpassed electivity and Peak Capacity for Peptides and Proteins Applications: Proteomics Peptide/Protein Analysis Peptide/Protein

More information

Bio-Monolith Protein G Column - More Options for mab Titer Determination

Bio-Monolith Protein G Column - More Options for mab Titer Determination Bio-Monolith Protein G Column - More Options for mab Titer Determination Application Note Biologics and Biosimilars Author Phu T. Duong Agilent Technologies, Inc. Introduction In recent years, monoclonal

More information

Flexibility with. Preparative HPLC

Flexibility with. Preparative HPLC Flexibility with Preparative HPLC Date: August 26 th, 2014 Time: 09.00 10.00 am CEST 1 Who are your Presenters? Dr. Christian Textor Product Manager Preparative HPLC Dipl. Biol. Hagen Schlicke Product

More information

TSKgel STAT Columns for High Performance Ion Exchange Chromatography

TSKgel STAT Columns for High Performance Ion Exchange Chromatography Separation Report No. 09 TSKgel STAT Columns for High Performance Ion Exchange Chromatography Table of Contents. Introduction. Basic Characteristics of TSKgel STAT Columns - Characteristics of Packing

More information

SFC Säulen für analytische und preparative Anwendungen

SFC Säulen für analytische und preparative Anwendungen SFC Säulen für analytische und preparative Anwendungen Technology Symposium Vienna, 25 th October 2016 DI Verena Schmid 2016 Waters Corporation 1 CHIRAL SEPARATIONS ACQUITY UPC 2 Trefoil 2016 Waters Corporation

More information

Technical Overview. Author. Abstract. Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany

Technical Overview. Author. Abstract. Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany New Features of the Agilent Method Scouting Wizard for Automated Method Development of Complex Samples Analysis of Large Data Sets by Method Scouting Reports and Automated Adjustment of Flow Rates and

More information

Improve Your Analyses of Large Proteins, Antibodies and Antibody-Drug Conjugates Using Reversed-Phase Liquid Chromatography by Maximizing Pore Access

Improve Your Analyses of Large Proteins, Antibodies and Antibody-Drug Conjugates Using Reversed-Phase Liquid Chromatography by Maximizing Pore Access Improve Your Analyses of Large Proteins, Antibodies and Antibody-Drug Conjugates Using Reversed-Phase Liquid Chromatography by Maximizing Pore Access Introduction For many years pharmaceutical companies

More information

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC The Agilent 126 Infinity Bio-Inert Quaternary LC System and the AdvanceBio SEC 3Å, 2.7 µm Column Application Note Biologics

More information

Zwitterion Chromatography ZIC

Zwitterion Chromatography ZIC Zwitterion Chromatography ZIC A novel technique, with unique selectivity, suitable for preparative scale separations? PhD Einar Pontén What is Zwitterion Chromatography? Our definition: Liquid chromatography

More information

Development and evaluation of Nano-ESI coupled to a triple quadrupole mass spectrometer for quantitative proteomics research

Development and evaluation of Nano-ESI coupled to a triple quadrupole mass spectrometer for quantitative proteomics research PO-CON138E Development and evaluation of Nano-ESI coupled to a triple quadrupole mass spectrometer for quantitative proteomics research ASMS 213 ThP 115 Shannon L. Cook 1, Hideki Yamamoto 2, Tairo Ogura

More information

Method Translation in Liquid Chromatography

Method Translation in Liquid Chromatography Method Translation in Liquid Chromatography Technical Overview Abstract Ronald E. Majors Agilent Technologies, Inc. 2850 Centerville Rd Wilmington, DE 19808 USA With the recent emphasis on high performance

More information

Protein Quantitation using various Modes of High Performance Liquid Chromatography

Protein Quantitation using various Modes of High Performance Liquid Chromatography Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Protein Quantitation using various Modes of High Performance Liquid Chromatography Grotefend, S.; Wroblewitz, S.; Kaminski, L.; Limberger,

More information

Improving Resolution and Column Loading Systematically in Preparative Liquid Chromatography for Isolating a Minor Component from Peppermint Extract

Improving Resolution and Column Loading Systematically in Preparative Liquid Chromatography for Isolating a Minor Component from Peppermint Extract Improving Resolution and Column Loading Systematically in Preparative Liquid Chromatography for Isolating a Minor Component from Peppermint Extract Jo-Ann M. Jablonski and Rui Chen Waters Corporation,

More information

Microflow Liquid Chromatography Mass Spectrometry System. Nexera Mikros C146-E350

Microflow Liquid Chromatography Mass Spectrometry System. Nexera Mikros C146-E350 Microflow Liquid Chromatography Mass Spectrometry System Nexera Mikros C146-E35 Micro: Above and Beyond Nano The High Sensitivity You Expect from a Low Flow System with the Ruggedness of HPLC Covering

More information

Application Note. Biopharm. Author. Abstract. Christian Wenz Agilent Technologies, Inc. Waldbronn, Germany

Application Note. Biopharm. Author. Abstract. Christian Wenz Agilent Technologies, Inc. Waldbronn, Germany Performance of commercially available gels for protein characterization by capillary gel electrophoresis with UV detection on the Agilent 7100 CE System Application Note Biopharm Author Christian Wenz

More information

Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins

Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins Application Note # ET-20 BioPharma Compass: A fully Automated Solution for Characterization and QC of Intact and Digested Proteins BioPharma Compass TM is a fully automated solution for the rapid characterization

More information

TSKgel G2000SWXL Columns for the Reproducible Analysis of Bovine Serum Albumin

TSKgel G2000SWXL Columns for the Reproducible Analysis of Bovine Serum Albumin TSKgel G2000SWXL Columns for the Reproducible Analysis of Bovine Serum Albumin introduction Figure 2. BSA Loading Capacity Study experimental conditions Column: Mobile Phase: Figure 1. Analysis of BSA

More information

CQA Assessment by Peptide Mapping Using LC/MS with an AdvanceBio Peptide Plus Column

CQA Assessment by Peptide Mapping Using LC/MS with an AdvanceBio Peptide Plus Column CQA Assessment by Peptide Mapping Using LC/MS with an AdvanceBio Peptide Plus Column Anne Blackwell, Ph.D. BioColumns Product Support Scientist June 7, 27 ASMS Analytical groups are tasked with method

More information

ADVANCING ATTRIBUTE CONTROL OF ANTIBODIES AND ITS DERIVATIVES USING HIGH RESOLUTION ANALYTICS

ADVANCING ATTRIBUTE CONTROL OF ANTIBODIES AND ITS DERIVATIVES USING HIGH RESOLUTION ANALYTICS ADVANCING ATTRIBUTE CONTROL OF ANTIBODIES AND ITS DERIVATIVES USING HIGH RESOLUTION ANALYTICS Henry Shion 1, Jing Fang 1, William Alley 1, Barbara Sullivan 2, Nick Tomczyk 3, Liuxi Chen 1, Ying-Qing Yu

More information

MAbPac SCX-10 Column for Monoclonal Antibody Variant Analysis and Characterization

MAbPac SCX-10 Column for Monoclonal Antibody Variant Analysis and Characterization CHROMTOGRPHY MbPac SCX- Column for Monoclonal ntibody Variant nalysis and Characterization Product Specifications The Thermo Scientific MbPac SCX- columns separate closely-related monoclonal antibody variants

More information

Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis

Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis Physical Stability of a Silica- Based Size Exclusion Column for Antibody Analysis Atis Chakrabarti* and Roy Eksteen + Tosoh Bioscience LLC, King of Prussia, PA 19406 *Corresponding Author. + Current address:

More information

Bivalirudin Purification:

Bivalirudin Purification: Bivalirudin Purification: Sorbent Screening and Overload Experiments Marc Jacob, Joshua Heng, and Tivadar Farkas Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA PO94190412_W Abstract In this

More information

Application Note. Author. Abstract. Biotherapeutics and Biologics. Sonja Schneider Agilent Technologies, Inc. Waldbronn, Germany

Application Note. Author. Abstract. Biotherapeutics and Biologics. Sonja Schneider Agilent Technologies, Inc. Waldbronn, Germany D-LC/MS Characterization of Charge Variants Using Ion Exchange and Reversed-Phase Chromatography Multiple Heart-Cutting D-LC Analysis of Innovator versus Biosimilar Monoclonal Antibodies Application Note

More information

HDX-MS at Waters Waters Corporation 1

HDX-MS at Waters Waters Corporation 1 HDX-MS at Waters 2011 Waters Corporation 1 Hydrogen Deuterium Exchange MS systems Dedicated standards and UPLC BEH separation chemistries nanoacquity UPLC with HDX technology Xevo G2-S QTof MS and Synapt

More information

RAM Direct Injection. (Restricted Access Media) A Tool for the Separation of Small Molecules in the Presence of Large Biomolecules

RAM Direct Injection. (Restricted Access Media) A Tool for the Separation of Small Molecules in the Presence of Large Biomolecules RAM Direct Injection (Restricted Access Media) A Tool for the Separation of Small Molecules in the Presence of Large Biomolecules HPLC analysis of small molecules contained within a protein matrix can

More information

Ultrapure water: LC-MS suitability tests

Ultrapure water: LC-MS suitability tests Ultrapure water: LC-MS suitability tests Application details Contaminations such as ions and organic traces present in ultrapure water affect LC- MS analyses and decrease perfomance of the analytical instumentation.

More information

Chromatography Column Performance and Data Analysis Success Guide. Hints and Tips for Better Purifications

Chromatography Column Performance and Data Analysis Success Guide. Hints and Tips for Better Purifications Chromatography Column Performance and Data Analysis Success Guide Hints and Tips for Better Purifications This Chromatography Success Guide provides practical advice on preparative chromatography and protein

More information

Using the Sartobind pico

Using the Sartobind pico Using the Sartobind pico Optimizing Steps for using micro-scale membrane adsorbers on liquid chromatography systems Application Note Steps for the successful use of Sartobind pico 1. Start with a new unused

More information

ACQUITY UPLC. I-Class PLUS WHAT SEPARATES YOU FROM EVERYONE ELSE

ACQUITY UPLC. I-Class PLUS WHAT SEPARATES YOU FROM EVERYONE ELSE ACQUITY UPLC I-Class PLUS WHAT SEPARATES YOU FROM EVERYONE ELSE COMPLEX CHALLENGES SOLVED Looking for answers to the most complex scientific challenges is what you do. Your research could lead to ground-breaking

More information

Accucore. Ultimate Core Performance LC Column Technology to Maximize Your Investment. Dave Jarzinski. October 2011

Accucore. Ultimate Core Performance LC Column Technology to Maximize Your Investment. Dave Jarzinski. October 2011 Accucore Ultimate Core Performance LC Column Technology to Maximize Your Investment Dave Jarzinski Thermo Fisher Scientific Account Manager Greater Boston/Cambridge & North Phone: 978-408-1576 Email: dave.jarzinski@thermofisher.com

More information

High-Resolution Charge Variant Analysis for Top-Selling Monoclonal Antibody Therapeutics Using a Linear ph Gradient Separation Platform

High-Resolution Charge Variant Analysis for Top-Selling Monoclonal Antibody Therapeutics Using a Linear ph Gradient Separation Platform High-Resolution Charge Variant Analysis for Top-Selling Monoclonal Antibody Therapeutics Using a Linear ph Gradient Separation Platform Shanhua Lin and Chris Pohl, Thermo Fisher Scientific, Sunnyvale,

More information

Preparative HPLC is still the

Preparative HPLC is still the B I O P R O C E S S TECHNICAL Optimizing Sample Load Capacity and Separation Through a Series of Short Prep Columns Mark Crawford, Joan Stevens, and Luke Roenneburg Preparative HPLC is still the dominate

More information

Precise Characterization of Intact Monoclonal Antibodies by the Agilent 6545XT AdvanceBio LC/Q-TOF

Precise Characterization of Intact Monoclonal Antibodies by the Agilent 6545XT AdvanceBio LC/Q-TOF Precise Characterization of Intact Monoclonal Antibodies by the Agilent 6545XT AdvanceBio LC/Q-TOF Application Note Author David L. Wong Agilent Technologies, Inc. Santa Clara, CA, USA Introduction Monoclonal

More information

MAbPac SCX-10 Columns

MAbPac SCX-10 Columns User Manual MAbPac SCX-10 Columns 065393 Revision 09 October 2015 For Research Use Only. Not for use in diagnostic procedures. Product Manual for MAbPac SCX-10, 10µm Analytical Column (10μm, 9 x 250 mm,

More information