Cellular Automaton, Genetic Algorithms, and Neural Networks

Size: px
Start display at page:

Download "Cellular Automaton, Genetic Algorithms, and Neural Networks"

Transcription

1 Cellular Automaton, Genetic Algorithms, and Neural Networks Catherine Beauchemin, Department of Physics, University of Alberta January 30, 2004

2 Overview Cellular Automaton What is a cellular automaton? A simple cellular automaton: Wolfram s 1-D cellular automaton A more complex cellular automaton: a viral infection model MASyV: a cellular automaton visualization tool Genetic Algorithms What are genetic algorithms? A simple genetic algorithm Other applications for genetic algorithms Artificial Neural Networks What are artificial neural networks? Applications for artificial neural networks

3 What is a cellular automaton? Cellular automata (CA) were originally introduced by John von Neumann and Stanislas Ulam under the name of cellular spaces as possible idealization of biological systems. A typical CA consists of a regular lattice. The lattice contains a discrete variable or cell at each site, that can assume m possible discrete values. The state of a CA is completely specified by the values of the variables at each site. The CA evolves in discrete time steps, with the value of a variable at a given site being affected by the values of variables at sites in its neighborhood on the previous time step. At a new time step, the variables at all sites are updated simultaneously, based on the values of the variables and their defined neighborhood at the preceding time step, and according to a definite set of local rules.

4 A simple CA: Wolfram s 1-D CA Wolfram concentrated most of his work on 1-D CA with only two possible state at each site: dead or alive (0 or 1). The neighborhood was composed of the cell itself plus its two immediate neighbours. Rules can be expressed as 8 digit binary numbers in the following manner: The above rule is Rule 90. Recall that a binary number can be expressed in base 10 in the following manner: = = 90 Of the 256 possible rules, only 32 rules are considered legal. biological origins of the CA impose certain restrictions The The rule must be symetrical (110 and 011 must yield the same thing) Only life can generate life (000 must yield 0)

5 Evolution of various rules in time When initially seeded with only one non-zero seed, the behaviour of the 32 legal rules can be divided into 4 types (disapear with time, merely copies the non-zero cell forever, yields a completely uniform type of row or pairs of rows, develop nontrivial patterns). Each pattern below is the result of rules 128 ( ), 36 ( ), 250 ( ), and 90 ( ) respectively.

6 A more complex CA: a viral infection model A model I developed to explore whether spatial inhomogeneities such as localized populations of dead cells might adversely affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading The model considers 2 species: epithelial cells, which are the target of the viral infection, and immune cells which fight the infection The CA is run on a two-dimensional square lattice where each site represents one epithelial cell Immune cells are mobile, moving from one lattice site to another, and their population size is not constant: the CA lattice is therefore like a tissue of immobile cells which is patrolled by the mobile immune cells The CA is updated synchronously and the boundary conditions for both the epithelial and immune cells are toroidal The virus particles are not explicitly considered, rather the infection is modelled as spreading directly from one epithelial cell to another

7 The CA model: the epithelial cells An epithelial cell can be in any of five states: healthy, infected, expressing, infectious, or dead. Transitions between epithelial cell states occur as follows: Epithelial cells of all states become dead when they are older than CELL LIFESPAN. A healthy epithelial cell becomes infected with probability INFECT RATE/(8 nearest neighbours) for each infectious nearest neighbour. An infected cell becomes expressing, i.e. begins expressing the viral peptide, after having been infected for EXPRESS DELAY. An expressing cell becomes infectious after having been infected for INFECT DELAY > EXPRESS DELAY. Infected, expressing, and infectious cells become dead after having been infected for INFECT LIFESPAN.

8 The CA model: the epithelial cells Continued... Expressing and infectious cells become dead when recognized by an immune cell. See below for the meaning of recognition. A dead cell is revived at a rate DIVISION TIME 1 # healthy/# dead. When revived, a dead cell becomes a healthy cell or an infected cell with probability INFECT RATE/(8 nearest neighbours) for each infectious nearest neighbour. A simulation is initialized with each epithelial cell being assigned a random age between 0 and CELL LIFESPAN inclusively. All epithelial cells start in the healthy state with the exception of a fraction IN- FECT INIT of the total number of epithelial cells which, chosen at random, are set to the infected state.

9 The CA model: the immune cells An immune cell can be in any of two states: virgin or mature. A virgin cell is an immune cell that has no specificity. A mature cell is an immune cell that has either already encoutered an infected cell or has been recruited by another mature immune cell. Immune cells move randomly on the CA lattice at a speed of one lattice site per time step. An immune cell is removed if it is older than IMM LIFESPAN. An encounter between an immune cell and an expressing or infectious epithelial cell requires the immune cell to be in the same site as the expressing or infectious cell. A virgin immune cell becomes a mature immune cell if the lattice site it is occupying is in the expressing or infectious states.

10 The CA model: the immune cells Continued... A mature immune cell occupying an expressing or infectious lattice site recognizes the epithelial cell and causes it to become dead. Each recognition event causes RECRUITMENT mature immune cells to be added at random sites on the CA lattice after a delay of RE- CRUIT DELAY. Virgin immune cells are added at random lattice sites as needed to maintain a minimum density of BASE IMM CELL virgin immune cells. A simulation is initialzed with a density of BASE IMM CELL virgin immune cells at random locations on the CA lattice, each with a random age.

11 Viral infection model: quantitative results % total cells time (h)

12 MASyV: a visualization tool MASyV stands for Multi-Agent System Visualization. It is a powerful general purpose user interface accompanied by a message passing library. It enables one to write cellular automaton simulations programs and visualize them with very little additional time and effort. The simulation (client) and the user interface (server) interact via UNIX domain sockets using the message passing library. Simulation runs can be saved as movies through the use of transcode. MASyV requires: GTK+ 2.0 or higher an OpenGL compatible library as well as GtkGLExt, an OpenGL widget for GTK+. MASyV comes with a few client modules which stand as good examples of how to write a client module and how to use the message passing library. MASyV is distributed under the GNU General Public License and is hosted on SourceForge (

13 Visualizing a few simulations The simple Wolfram 1-D CA A simple model of gas diffusion The viral infection CA model Ants moving around depositing pheromone trails

14 Applications of CA When to use a CA? ODEs are better when simple enough to be analytically solved such that the parameters space can be explored theoretically. With a CA, adding complexity such as delays, nonlinearities, and stage-classes does not introduce greater difficulty in solving it as is the case with ODE but the parameter space has to be explored by brute force. A CA offers a natural description of the physical system. There is good correspondance between the CA s parameters and measurable quantities. Why would a Medical Physics student want to use a CA? To model the dynamics of a particular disease where spatial inhomogeneities are important (e.g. Cancer) Where non-linearities and age classes would make a differential equation model too messy

15 What is a genetic algorithm? Genetic algorithms (GA) were invented by John Holland in the 1960s in order to: formally study the phenomenon of adaptation as it occurs in nature develop ways in which the mechanisms of natural adaptation might be imported into computer systems. Now, GAs have evoluved into a class of algorithms typically used to solve optimization problems. Biological terms are used in GA research in the spirit of analogy with the real biological system. A population consists of chromosomes which are strings of genes each of which can take on different values called alleles. Each gene is located at a particular locus (position or site) on the chromosome and the particular sequence of genes of a chromosome is called a genotype. Chromosome from a population are selected for the fitness of their genotype to a particular problem and the most fit pair of individuals get to reproduce. Each pair of individuals will produce a pair of offspring and the process can involve crossovers or mutations.

16 A simple genetic algorithm 1. Start with a randomly generated population of n l-bit chromosomes. 2. Calculate the fitness of each chromosome in the population. 3. Repeat the following until n chromosomes have been created: (a) Select a pair of parent chromosome from the population (with replacement) with the probability of selection being an increasing function of fitness. (b) With a probability p C, cross over the pair at a randomly chosen locus. If no crossover occurs, the offspring will be exact copies of the parents. (c) Mutate the 2 offsprings at each locus with probability p M and place the resulting offspring in the new population 4. If n is odd, one new population member is discarded at random. 5. Replace the current population with the new population. 6. Go back to step 2. Each iteration of this process is called a generation and the entire set of generations is called a run.

17 A simple GA example Let us consider a population of n = 4 chromosomes made up of l = 8 genes, each of which have 2 alleles: 0 and 1. With a goal to evolve the chromosome , let us define the fitness function as being the number of 1s in the chromosome. Chromosome label Chromosome string Fitness A B C D A common selection method is fitness-proportionate selection where the probability that a chromosome will reproduce is equal to its fitness divided by the average fitness of the population. Let s say the pair (B,D) and (B,C) were selected. Say parents B and D cross over after the 1st bit to yield offsprings E= and F= and parents B and C do not.

18 A simple GA example (continued) Next mutation is applied, E= is mutated at the 6th locus to yield E = , B= is mutated at the 1st locus to yield B = , and F= and C= are not mutated. The new generation is Chromosome label Chromosome string Fitness E F C B Although the best string was lost (B= ), the average fitness rose from 12/4 to 14/4. Repeating the procedure will eventually result in a string with all 1s.

19 Common GA terminology (Hamming) Distance The distance between two chromosomes is defined as the number of loci at which the chromosome s genotypes differ. When the chromosomes are composed of bits, this distance is refered to as the Hamming distance. E.g. Chromosomes and have a Hamming distance of 2. Fitness Landscape Originally defined by the biologist Sewell Wright (1931) in the context of population genetics, a fitness landscape is a representation of the space of all possible genotypes along with their fitness. In other word, a fitness landscape for l-gene chromosomes would be an l +1-dimensional plot in which each genotype is a point in l dimensions and its fitness is plotted along the (l + 1)st axis. The GA provides the way in which to patrol this fitness landscape to find local minima.

20 Applications of GAs When to use a GA? When you want to take advantage of evolutionary rules to evolve a solution to an optimization problem When you want to model the process of evolution of a system Preferably when your problem can be expressed in terms of a character string (although aparently, even this problem can be overcome) Why would a Medical Physics student want to use a GA? To find a sequence of amino acid that would fold to a desired threedimensional protein structure To model the phenomenon of escape mutants with a given pathogen in order to determine the mutation parameters p C and p M specific to that pathogen

21 What are artificial neural networks? Artificial neural networks (ANNs) are inspired by the way biological nervous systems, such as the brain, process information. Like the brain an ANN is composed of a large number of highly interconnected processing elements (neurones) working in unison to solve specific problems. ANNs like people, learn by example. There are two types of training used in ANNs, with different types of networks using different types of training. These are supervised and unsupervised training, of which supervised is the most common. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Just like biological systems, learning in ANNs involves adjustments to the synaptic connections that exist between the neurones.

22 Real neurons VS artificial neurons Dendrites Soma Axon Synaptic Terminal x 1 x 2 W 1 summation function u(w 1x 1, w 2 x 2,..., w nx n) transfer function f(u) W 2 u f x n Wn

23 A simple ANN example: the OR gate Let s say we want our ANN to learn to emulate an OR gate: x 1 x 2 d (desired output) Let s pick our summation and transfer (or activation) functions to be u = f(u) = 2 w i x i, i=1 { 0 u < θ 1 u θ respectively. Let us pick a correction function that adds (or subtracts) 0.1 to w i when f(u) is smaller (or greater) than d, whenever x i is non-zero.

24 Linear separation in single node networks Since the critical condition for classification occurs when the result of the summation equals the threshold of the transfer function, let us put the summation equal to the threshold, this means 2 w i=1 ix i = θ. In the 2-D case we are considering w 1 x 1 + w 2 x 2 = θ so that ( ) ( ) w1 θ x 2 = x 1 +. w 2 w 2 Yielding x 2 θ w 2 (0,1) (1,1) (0,0) (1,0) θ w 1 x 1

25 More complex separations For more complex separations, one needs a more complex ANN Y 1 hidden layer L1 L2 L1 L2 L3 L4 X1 X2 L4 L3 Y 2 hidden layers P1 P2 P1 P2 P3 P3 X1 X2

26 Applications of ANNs When to use ANNs? When you know (or strongly suspect) that there is a relationship between the proposed known inputs and unknown outputs. This relationship may be noisy but it must exist. When you don t know the exact nature of the relationship between inputs and outputs. Otherwise, you should model it directly. When you don t care how it works and you just want it to work. Why would a Medical Physics student want to use an ANN? Data mining, i.e. classifying large databases of protein sequences based on various criterion Recognition of patterns in X-Rays or MRI scans to enhance key information from apparently fuzzy images or to formulate diagnosis Recognition of complex combinations of changes in health indices (e.g. heart rate, levels of various substances in the blood) could allow one to predict the onset of a particular medical condition

27 Where to find information and links: On cellular automaton Cellular automaton and statistical mechanics, online at cbeau/docs/statmech.pdf MASyV on Sourceforge and movie files from ma immune On genetic algorithms M. Mitchell. An introduction to genetic algorithms, The MIT Press, Cambridge, Massachusetts, A good introduction to immunology for physicists A.S. Perelson, G. Weisbuch. Immunology for physicists, Reviews of Modern Physics, 69(4): , 1997.

Evolutionary Computation

Evolutionary Computation Evolutionary Computation Evolution and Intelligent Besides learning ability, intelligence can also be defined as the capability of a system to adapt its behaviour to ever changing environment. Evolutionary

More information

In order to have GA, you must have a way to rate a given solution (fitness function). The fitness function must be continuous.

In order to have GA, you must have a way to rate a given solution (fitness function). The fitness function must be continuous. Disclaimer This document is a summary of Prof. Floreano s Bio-inspired Adaptive Machines course. The purpose is to help the student revise for the oral examination. This document should not be considered

More information

What is Evolutionary Computation? Genetic Algorithms. Components of Evolutionary Computing. The Argument. When changes occur...

What is Evolutionary Computation? Genetic Algorithms. Components of Evolutionary Computing. The Argument. When changes occur... What is Evolutionary Computation? Genetic Algorithms Russell & Norvig, Cha. 4.3 An abstraction from the theory of biological evolution that is used to create optimization procedures or methodologies, usually

More information

Immune Programming. Payman Samadi. Supervisor: Dr. Majid Ahmadi. March Department of Electrical & Computer Engineering University of Windsor

Immune Programming. Payman Samadi. Supervisor: Dr. Majid Ahmadi. March Department of Electrical & Computer Engineering University of Windsor Immune Programming Payman Samadi Supervisor: Dr. Majid Ahmadi March 2006 Department of Electrical & Computer Engineering University of Windsor OUTLINE Introduction Biological Immune System Artificial Immune

More information

Computational Intelligence Lecture 20:Intorcution to Genetic Algorithm

Computational Intelligence Lecture 20:Intorcution to Genetic Algorithm Computational Intelligence Lecture 20:Intorcution to Genetic Algorithm Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2012 Farzaneh Abdollahi Computational

More information

A Comprehensive Study of Forest Fire Behavior as Cellular Automata Model

A Comprehensive Study of Forest Fire Behavior as Cellular Automata Model A Comprehensive Study of Forest Fire Behavior as Cellular Automata Model MOHAMMAD ASHRAF SIDDIQUEE, University of New Mexico HUMAYRA TASNIM, University of New Mexico In this paper, we present a comprehensive

More information

Introduction to Genetic Algorithm (GA) Presented By: Rabiya Khalid Department of Computer Science

Introduction to Genetic Algorithm (GA) Presented By: Rabiya Khalid Department of Computer Science Introduction to Genetic Algorithm (GA) Presented By: Rabiya Khalid Department of Computer Science 1 GA (1/31) Introduction Based on Darwin s theory of evolution Rapidly growing area of artificial intelligence

More information

EVOLUTIONARY ALGORITHMS AT CHOICE: FROM GA TO GP EVOLŪCIJAS ALGORITMI PĒC IZVĒLES: NO GA UZ GP

EVOLUTIONARY ALGORITHMS AT CHOICE: FROM GA TO GP EVOLŪCIJAS ALGORITMI PĒC IZVĒLES: NO GA UZ GP ISSN 1691-5402 ISBN 978-9984-44-028-6 Environment. Technology. Resources Proceedings of the 7 th International Scientific and Practical Conference. Volume I1 Rēzeknes Augstskola, Rēzekne, RA Izdevniecība,

More information

GENETIC ALGORITHMS. Narra Priyanka. K.Naga Sowjanya. Vasavi College of Engineering. Ibrahimbahg,Hyderabad.

GENETIC ALGORITHMS. Narra Priyanka. K.Naga Sowjanya. Vasavi College of Engineering. Ibrahimbahg,Hyderabad. GENETIC ALGORITHMS Narra Priyanka K.Naga Sowjanya Vasavi College of Engineering. Ibrahimbahg,Hyderabad mynameissowji@yahoo.com priyankanarra@yahoo.com Abstract Genetic algorithms are a part of evolutionary

More information

Biological immune systems

Biological immune systems Immune Systems 1 Introduction 2 Biological immune systems Living organism must protect themselves from the attempt of other organisms to exploit their resources Some would-be exploiter (pathogen) is much

More information

Genetic Algorithm: An Optimization Technique Concept

Genetic Algorithm: An Optimization Technique Concept Genetic Algorithm: An Optimization Technique Concept 1 Uma Anand, 2 Chain Singh 1 Student M.Tech (3 rd sem) Department of Computer Science Engineering Dronacharya College of Engineering, Gurgaon-123506,

More information

Introduction to Artificial Intelligence. Prof. Inkyu Moon Dept. of Robotics Engineering, DGIST

Introduction to Artificial Intelligence. Prof. Inkyu Moon Dept. of Robotics Engineering, DGIST Introduction to Artificial Intelligence Prof. Inkyu Moon Dept. of Robotics Engineering, DGIST Chapter 9 Evolutionary Computation Introduction Intelligence can be defined as the capability of a system to

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 17: Genetic Algorithms and Evolutionary Computing Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/

More information

Part 1: Motivation, Basic Concepts, Algorithms

Part 1: Motivation, Basic Concepts, Algorithms Part 1: Motivation, Basic Concepts, Algorithms 1 Review of Biological Evolution Evolution is a long time scale process that changes a population of an organism by generating better offspring through reproduction.

More information

From Genetics to Genetic Algorithms

From Genetics to Genetic Algorithms From Genetics to Genetic Algorithms Solution to Optimisation Problems Using Natural Systems Jitendra R Raol and Abhijit Jalisatgi Genetic algorithms are search procedures inspired by natural selection

More information

Genetic Algorithms and Genetic Programming Lecture 14

Genetic Algorithms and Genetic Programming Lecture 14 Genetic Algorithms and Genetic Programming Lecture 14 Gillian Hayes 13th November 2007 GAs: Representation, Fitness, Searching the Space Representation binary, real, plans, trees Operators for non-binary

More information

Evolutionary Algorithms

Evolutionary Algorithms Evolutionary Algorithms Evolutionary Algorithms What is Evolutionary Algorithms (EAs)? Evolutionary algorithms are iterative and stochastic search methods that mimic the natural biological evolution and/or

More information

Evolutionary Algorithms

Evolutionary Algorithms Evolutionary Algorithms Fall 2008 1 Introduction Evolutionary algorithms (or EAs) are tools for solving complex problems. They were originally developed for engineering and chemistry problems. Much of

More information

Evolutionary Computation

Evolutionary Computation Evolutionary Computation Dean F. Hougen w/ contributions from Pedro Diaz-Gomez & Brent Eskridge Robotics, Evolution, Adaptation, and Learning Laboratory (REAL Lab) School of Computer Science University

More information

Keywords Genetic Algorithm (GA), Evolutionary, Representation, Binary, Floating Point, Operator

Keywords Genetic Algorithm (GA), Evolutionary, Representation, Binary, Floating Point, Operator Volume 5, Issue 4, 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Review on Genetic

More information

Feature Selection for Predictive Modelling - a Needle in a Haystack Problem

Feature Selection for Predictive Modelling - a Needle in a Haystack Problem Paper AB07 Feature Selection for Predictive Modelling - a Needle in a Haystack Problem Munshi Imran Hossain, Cytel Statistical Software & Services Pvt. Ltd., Pune, India Sudipta Basu, Cytel Statistical

More information

Genetic algorithms. History

Genetic algorithms. History Genetic algorithms History Idea of evolutionary computing was introduced in the 1960s by I. Rechenberg in his work "Evolution strategies" (Evolutionsstrategie in original). His idea was then developed

More information

Plan for today GENETIC ALGORITHMS. Randomised search. Terminology: The GA cycle. Decoding genotypes

Plan for today GENETIC ALGORITHMS. Randomised search. Terminology: The GA cycle. Decoding genotypes GENETIC ALGORITHMS Jacek Malec email: jacek.malec@cs.lth.se Plan for today What is a genetic algorithm? Degrees of freedom. Some examples. Co-evolution, SAGA, Genetic Programming, Evolutionary Strategies,...

More information

IMPLEMENTATION OF AN OPTIMIZATION TECHNIQUE: GENETIC ALGORITHM

IMPLEMENTATION OF AN OPTIMIZATION TECHNIQUE: GENETIC ALGORITHM IMPLEMENTATION OF AN OPTIMIZATION TECHNIQUE: GENETIC ALGORITHM TWINKLE GUPTA* Department of Computer Science, Hindu Kanya MahaVidyalya, Jind, India Abstract We are encountered with various optimization

More information

College of information technology Department of software

College of information technology Department of software University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************

More information

Genetic Algorithm. Presented by Shi Yong Feb. 1, 2007 Music McGill University

Genetic Algorithm. Presented by Shi Yong Feb. 1, 2007 Music McGill University Genetic Algorithm Presented by Shi Yong Feb. 1, 2007 Music Tech @ McGill University Outline Background: Biological Genetics & GA Two Examples Some Applications Online Demos* (if the time allows) Introduction

More information

COMPARATIVE STUDY OF SELECTION METHODS IN GENETIC ALGORITHM

COMPARATIVE STUDY OF SELECTION METHODS IN GENETIC ALGORITHM COMPARATIVE STUDY OF SELECTION METHODS IN GENETIC ALGORITHM 1 MANSI GANGWAR, 2 MAIYA DIN, 3 V. K. JHA 1 Information Security, 3 Associate Professor, 1,3 Dept of CSE, Birla Institute of Technology, Mesra

More information

Available online at ScienceDirect. Procedia Computer Science 102 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 102 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 102 (2016 ) 562 569 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30

More information

Gene Reduction for Cancer Classification using Cascaded Neural Network with Gene Masking

Gene Reduction for Cancer Classification using Cascaded Neural Network with Gene Masking Gene Reduction for Cancer Classification using Cascaded Neural Network with Gene Masking Raneel Kumar, Krishnil Chand, Sunil Pranit Lal School of Computing, Information, and Mathematical Sciences University

More information

Machine Learning. Genetic Algorithms

Machine Learning. Genetic Algorithms Machine Learning Genetic Algorithms Genetic Algorithms Developed: USA in the 1970 s Early names: J. Holland, K. DeJong, D. Goldberg Typically applied to: discrete parameter optimization Attributed features:

More information

Machine Learning. Genetic Algorithms

Machine Learning. Genetic Algorithms Machine Learning Genetic Algorithms Genetic Algorithms Developed: USA in the 1970 s Early names: J. Holland, K. DeJong, D. Goldberg Typically applied to: discrete parameter optimization Attributed features:

More information

Genetic Algorithm for Variable Selection. Genetic Algorithms Step by Step. Genetic Algorithm (Holland) Flowchart of GA

Genetic Algorithm for Variable Selection. Genetic Algorithms Step by Step. Genetic Algorithm (Holland) Flowchart of GA http://www.spectroscopynow.com http://ib-poland.virtualave.net/ee/genetic1/3geneticalgorithms.htm http://www.uni-mainz.de/~frosc000/fbg_po3.html relative intensity Genetic Algorithm for Variable Selection

More information

The Metaphor. Individuals living in that environment Individual s degree of adaptation to its surrounding environment

The Metaphor. Individuals living in that environment Individual s degree of adaptation to its surrounding environment Genetic Algorithms Sesi 14 Optimization Techniques Mathematical Programming Network Analysis Branch & Bound Simulated Annealing Tabu Search Classes of Search Techniques Calculus Base Techniqes Fibonacci

More information

2. Genetic Algorithms - An Overview

2. Genetic Algorithms - An Overview 2. Genetic Algorithms - An Overview 2.1 GA Terminology Genetic Algorithms (GAs), which are adaptive methods used to solve search and optimization problems, are based on the genetic processes of biological

More information

GENETIC ALGORITHM BASED APPROACH FOR THE SELECTION OF PROJECTS IN PUBLIC R&D INSTITUTIONS

GENETIC ALGORITHM BASED APPROACH FOR THE SELECTION OF PROJECTS IN PUBLIC R&D INSTITUTIONS GENETIC ALGORITHM BASED APPROACH FOR THE SELECTION OF PROJECTS IN PUBLIC R&D INSTITUTIONS SANJAY S, PRADEEP S, MANIKANTA V, KUMARA S.S, HARSHA P Department of Human Resource Development CSIR-Central Food

More information

Intro. ANN & Fuzzy Systems. Lecture 36 GENETIC ALGORITHM (1)

Intro. ANN & Fuzzy Systems. Lecture 36 GENETIC ALGORITHM (1) Lecture 36 GENETIC ALGORITHM (1) Outline What is a Genetic Algorithm? An Example Components of a Genetic Algorithm Representation of gene Selection Criteria Reproduction Rules Cross-over Mutation Potential

More information

Design and Implementation of Genetic Algorithm as a Stimulus Generator for Memory Verification

Design and Implementation of Genetic Algorithm as a Stimulus Generator for Memory Verification International Journal of Emerging Engineering Research and Technology Volume 3, Issue 9, September, 2015, PP 18-24 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design and Implementation of Genetic

More information

initial set of random solutions called population satisfying boundary and/or system

initial set of random solutions called population satisfying boundary and/or system CHAPTER 4 Genetic Algorithm GAs are stochastic search algorithms based on the mechanism of natural selection and natural genetics. GA, differing from conventional search techniques, start with an initial

More information

Evolutionary Computation. Lecture 1 January, 2007 Ivan Garibay

Evolutionary Computation. Lecture 1 January, 2007 Ivan Garibay Evolutionary Computation Lecture 1 January, 2007 Ivan Garibay igaribay@cs.ucf.edu Lecture 1 What is Evolutionary Computation? Evolution, Genetics, DNA Historical Perspective Genetic Algorithm Components

More information

Genetic Programming for Symbolic Regression

Genetic Programming for Symbolic Regression Genetic Programming for Symbolic Regression Chi Zhang Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA Email: czhang24@utk.edu Abstract Genetic

More information

Genetic Algorithms and Genetic Programming. Lecture 1: Introduction (25/9/09)

Genetic Algorithms and Genetic Programming. Lecture 1: Introduction (25/9/09) Genetic Algorithms and Genetic Programming Michael Herrmann Lecture 1: Introduction (25/9/09) michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42 Problem Solving at Decreasing Domain

More information

Reliable classification of two-class cancer data using evolutionary algorithms

Reliable classification of two-class cancer data using evolutionary algorithms BioSystems 72 (23) 111 129 Reliable classification of two-class cancer data using evolutionary algorithms Kalyanmoy Deb, A. Raji Reddy Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of

More information

Energy management using genetic algorithms

Energy management using genetic algorithms Energy management using genetic algorithms F. Garzia, F. Fiamingo & G. M. Veca Department of Electrical Engineering, University of Rome "La Sapienza", Italy Abstract An energy management technique based

More information

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology.

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology. G16B BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY Methods or systems for genetic

More information

Introduction To Genetic Algorithms

Introduction To Genetic Algorithms 1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization

More information

DEVELOPMENT OF MULTI-OBJECTIVE SIMULATION-BASED GENETIC ALGORITHM FOR SUPPLY CHAIN CYCLIC PLANNING AND OPTIMISATION

DEVELOPMENT OF MULTI-OBJECTIVE SIMULATION-BASED GENETIC ALGORITHM FOR SUPPLY CHAIN CYCLIC PLANNING AND OPTIMISATION From the SelectedWorks of Liana Napalkova May, 2008 DEVELOPMENT OF MULTI-OBJECTIVE SIMULATION-BASED GENETIC ALGORITHM FOR SUPPLY CHAIN CYCLIC PLANNING AND OPTIMISATION Galina Merkuryeva Liana Napalkova

More information

Tumor Detection Using Genetic Algorithm

Tumor Detection Using Genetic Algorithm Tumor Detection Using Genetic Algorithm 1 Amanpreet Kaur, 2 Gagan Jindal 1,2 Dept. of CSE, Chandigarh Engineering College, Landran, Mohali, Punjab, India Abstract In the medical field, Image Segmentation

More information

Supplemental Digital Content. A new severity of illness scale using a subset of APACHE data elements shows comparable predictive accuracy

Supplemental Digital Content. A new severity of illness scale using a subset of APACHE data elements shows comparable predictive accuracy Supplemental Digital Content A new severity of illness scale using a subset of APACHE data elements shows comparable predictive accuracy Alistair E. W. Johnson, BS Centre for Doctoral Training in Healthcare

More information

An introduction to evolutionary computation

An introduction to evolutionary computation An introduction to evolutionary computation Andrea Roli andrea.roli@unibo.it Dept. of Computer Science and Engineering (DISI) Campus of Cesena Alma Mater Studiorum Università di Bologna Outline 1 Basic

More information

Evolutionary Computation. Lecture 3. Evolutionary Computation. X 2 example: crossover. x 2 example: selection

Evolutionary Computation. Lecture 3. Evolutionary Computation. X 2 example: crossover. x 2 example: selection Evolutionary Computation Lecture 3 Evolutionary Computation CIS 412 Artificial Intelligence Umass, Dartmouth Stochastic search (or problem solving) techniques that mimic the metaphor of natural biological

More information

ABSTRACT COMPUTER EVOLUTION OF GENE CIRCUITS FOR CELL- EMBEDDED COMPUTATION, BIOTECHNOLOGY AND AS A MODEL FOR EVOLUTIONARY COMPUTATION

ABSTRACT COMPUTER EVOLUTION OF GENE CIRCUITS FOR CELL- EMBEDDED COMPUTATION, BIOTECHNOLOGY AND AS A MODEL FOR EVOLUTIONARY COMPUTATION ABSTRACT COMPUTER EVOLUTION OF GENE CIRCUITS FOR CELL- EMBEDDED COMPUTATION, BIOTECHNOLOGY AND AS A MODEL FOR EVOLUTIONARY COMPUTATION by Tommaso F. Bersano-Begey Chair: John H. Holland This dissertation

More information

Use of Genetic Algorithms in Discrete Optimalization Problems

Use of Genetic Algorithms in Discrete Optimalization Problems Use of Genetic Algorithms in Discrete Optimalization Problems Alena Rybičková supervisor: Ing. Denisa Mocková PhD Faculty of Transportation Sciences Main goals: design of genetic algorithm for vehicle

More information

Generational and steady state genetic algorithms for generator maintenance scheduling problems

Generational and steady state genetic algorithms for generator maintenance scheduling problems Generational and steady state genetic algorithms for generator maintenance scheduling problems Item Type Conference paper Authors Dahal, Keshav P.; McDonald, J.R. Citation Dahal, K. P. and McDonald, J.

More information

Genetic Algorithm: A Search of Complex Spaces

Genetic Algorithm: A Search of Complex Spaces Genetic Algorithm: A Search of Complex Spaces Namita Khurana, Anju Rathi, Akshatha.P.S Lecturer in Department of (CSE/IT) KIIT College of Engg., Maruti Kunj, Sohna Road, Gurgaon, India ABSTRACT Living

More information

Genetic algorithms and code optimization. A quiet revolution

Genetic algorithms and code optimization. A quiet revolution Genetic algorithms and code optimization Devika Subramanian Rice University Work supported by DARPA and the USAF Research Labs A quiet revolution (May 1997) Deep Blue vs Kasparaov first match won against

More information

Genetic Algorithms and Shape Grammars

Genetic Algorithms and Shape Grammars Genetic Algorithms and Shape Grammars Technical report Author Manuela Ruiz Montiel Date October 18, 2011 Version 1.1 1 Contents 1. Introduction... 3 2. Genetic algorithm... 4 3. Genotype... 7 4. Experiments...

More information

CHAPTER 4 PROPOSED HYBRID INTELLIGENT APPROCH FOR MULTIPROCESSOR SCHEDULING

CHAPTER 4 PROPOSED HYBRID INTELLIGENT APPROCH FOR MULTIPROCESSOR SCHEDULING 79 CHAPTER 4 PROPOSED HYBRID INTELLIGENT APPROCH FOR MULTIPROCESSOR SCHEDULING The present chapter proposes a hybrid intelligent approach (IPSO-AIS) using Improved Particle Swarm Optimization (IPSO) with

More information

Computational Modeling and Simulation of the Immune System

Computational Modeling and Simulation of the Immune System Computational Modeling and Simulation of the Immune System Jugal Kalita, Kaushal Chandrashekar, Ankur Deshmukh, Reena Hans and Priyadarshini Selvam Department of Computer Science, University of Colorado,

More information

5/18/2009. CS6800 Presentation I Thap Panitanarak. Three branches of natural computing

5/18/2009. CS6800 Presentation I Thap Panitanarak. Three branches of natural computing CS6800 Presentation I Thap Panitanarak Usefulness of computers in many applications/area Most computers are static do whatever the order is Decades of research Evolve in time In past 2-3 decades, nature

More information

Artificial Evolution. FIT3094 AI, A-Life and Virtual Environments Alan Dorin

Artificial Evolution. FIT3094 AI, A-Life and Virtual Environments Alan Dorin Artificial Evolution FIT3094 AI, A-Life and Virtual Environments Alan Dorin Copyrighted imagery used in the preparation of these lecture notes remains the property of the credited owners and is included

More information

Genetic'Algorithms'::' ::'Algoritmi'Genetici'1

Genetic'Algorithms'::' ::'Algoritmi'Genetici'1 Genetic'Algorithms'::' ::'Algoritmi'Genetici'1 Prof. Mario Pavone Department of Mathematics and Computer Sciecne University of Catania v.le A. Doria 6 95125 Catania, Italy mpavone@dmi.unict.it http://www.dmi.unict.it/mpavone/

More information

A Genetic Algorithm on Inventory Routing Problem

A Genetic Algorithm on Inventory Routing Problem A Genetic Algorithm on Inventory Routing Problem Artvin Çoruh University e-mail: nevin.aydin@gmail.com Volume 3 No 3 (2014) ISSN 2158-8708 (online) DOI 10.5195/emaj.2014.31 http://emaj.pitt.edu Abstract

More information

Deterministic Crowding, Recombination And Self-Similarity

Deterministic Crowding, Recombination And Self-Similarity Deterministic Crowding, Recombination And Self-Similarity Bo Yuan School of Information Technology and Electrical Engineering The University of Queensland Brisbane, Queensland 4072 Australia E-mail: s4002283@student.uq.edu.au

More information

Neural Networks and Applications in Bioinformatics. Yuzhen Ye School of Informatics and Computing, Indiana University

Neural Networks and Applications in Bioinformatics. Yuzhen Ye School of Informatics and Computing, Indiana University Neural Networks and Applications in Bioinformatics Yuzhen Ye School of Informatics and Computing, Indiana University Contents Biological problem: promoter modeling Basics of neural networks Perceptrons

More information

Available online at International Journal of Current Research Vol. 9, Issue, 07, pp , July, 2017

Available online at   International Journal of Current Research Vol. 9, Issue, 07, pp , July, 2017 z Available online at http://www.journalcra.com International Journal of Current Research Vol. 9, Issue, 07, pp.53529-53533, July, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH ISSN: 0975-833X RESEARCH

More information

Genetic Algorithm and Application in training Multilayer Perceptron Model

Genetic Algorithm and Application in training Multilayer Perceptron Model Genetic Algorithm and Application in training Multilayer Perceptron Model Tuan Dung Lai Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Email:

More information

Artificial Immune Systems Tutorial

Artificial Immune Systems Tutorial Artificial Immune Systems Tutorial By Dr Uwe Aickelin http://www.aickelin.com Overview Biological Immune System. Artificial Immune System (AIS). Comparison to other Algorithms. Applications of AIS: Data

More information

Neural Networks and Applications in Bioinformatics

Neural Networks and Applications in Bioinformatics Contents Neural Networks and Applications in Bioinformatics Yuzhen Ye School of Informatics and Computing, Indiana University Biological problem: promoter modeling Basics of neural networks Perceptrons

More information

Machine learning in neuroscience

Machine learning in neuroscience Machine learning in neuroscience Bojan Mihaljevic, Luis Rodriguez-Lujan Computational Intelligence Group School of Computer Science, Technical University of Madrid 2015 IEEE Iberian Student Branch Congress

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications Machine Learning: Algorithms and Applications Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2011-2012 Lecture 4: 19 th March 2012 Evolutionary computing These

More information

Analysis of NEAT and application in swarm intelligence

Analysis of NEAT and application in swarm intelligence Bachelor Informatica Informatica Universiteit van Amsterdam Analysis of NEAT and application in swarm intelligence Frank van Beem June 9, 2017 Supervisor(s): Rein van den Boomgaard 2 Abstract In this paper

More information

Genetic Algorithms for Optimizations

Genetic Algorithms for Optimizations Genetic Algorithms for Optimizations 1. Introduction Genetic Algorithms (GAs) are developed to mimic some of the processes observed in natural evolution. GAs use the concept of Darwin's theory of evolution

More information

Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, Problem 1: Genetic Drift as a Force of Evolution

Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, Problem 1: Genetic Drift as a Force of Evolution Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, 2018 1 Problem 1: Genetic Drift as a Force of Evolution 1.1 Simulating the processes of evolution In class we learned about the mathematical

More information

Repeated Sequences in Genetic Programming

Repeated Sequences in Genetic Programming Repeated Sequences in Genetic Programming W. B. Langdon Computer Science 29.6.2012 1 Introduction Langdon + Banzhaf in Memorial University, Canada Emergence: Repeated Sequences Repeated Sequences in Biology

More information

1.2 Geometry of a simplified two dimensional model molecule Discrete flow of empty space illustrated for two dimensional disks.

1.2 Geometry of a simplified two dimensional model molecule Discrete flow of empty space illustrated for two dimensional disks. 1.1 Geometric models of protein surfaces. 3 1.2 Geometry of a simplified two dimensional model molecule. 5 1.3 The family of alpha shapes or dual simplicial complexes for a two-dimensional toy molecule.

More information

Genetic drift. 1. The Nature of Genetic Drift

Genetic drift. 1. The Nature of Genetic Drift Genetic drift. The Nature of Genetic Drift To date, we have assumed that populations are infinite in size. This assumption enabled us to easily calculate the expected frequencies of alleles and genotypes

More information

Intelligent Techniques Lesson 4 (Examples about Genetic Algorithm)

Intelligent Techniques Lesson 4 (Examples about Genetic Algorithm) Intelligent Techniques Lesson 4 (Examples about Genetic Algorithm) Numerical Example A simple example will help us to understand how a GA works. Let us find the maximum value of the function (15x - x 2

More information

Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction

Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction Structural Bioinformatics (C3210) Conformational Analysis Protein Folding Protein Structure Prediction Conformational Analysis 2 Conformational Analysis Properties of molecules depend on their three-dimensional

More information

Journal of Global Research in Computer Science PREMATURE CONVERGENCE AND GENETIC ALGORITHM UNDER OPERATING SYSTEM PROCESS SCHEDULING PROBLEM

Journal of Global Research in Computer Science PREMATURE CONVERGENCE AND GENETIC ALGORITHM UNDER OPERATING SYSTEM PROCESS SCHEDULING PROBLEM Volume, No. 5, December 00 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info PREMATURE CONVERGENCE AND GENETIC ALGORITHM UNDER OPERATING SYSTEM PROCESS SCHEDULING

More information

/00/$10.00 (C) 2000 IEEE

/00/$10.00 (C) 2000 IEEE Synthesis of Self-Replication Cellular Automata using Genetic Algorithms Hiroshi Kajisha and Toshimichi Saito EEE Dept., HOSEI Univ., Tokyo, 184-8584, JAPAN Abstract: This paper presents an efficient searching

More information

PREDICTING EMPLOYEE ATTRITION THROUGH DATA MINING

PREDICTING EMPLOYEE ATTRITION THROUGH DATA MINING PREDICTING EMPLOYEE ATTRITION THROUGH DATA MINING Abbas Heiat, College of Business, Montana State University, Billings, MT 59102, aheiat@msubillings.edu ABSTRACT The purpose of this study is to investigate

More information

Genetic Algorithms. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Genetic Algorithms. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Genetic Algorithms Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Slides credit: Ozalp Babaoglu History Pioneered by John Henry Holland

More information

SINCE the introduction of cellular automata (CA) in [1],

SINCE the introduction of cellular automata (CA) in [1], IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 On Routine Evolution of Complex Cellular Automata Michal Bidlo Abstract The paper deals with a special technique, called conditionally matching rules, for

More information

Evolutionary Algorithms - Population management and popular algorithms Kai Olav Ellefsen

Evolutionary Algorithms - Population management and popular algorithms Kai Olav Ellefsen INF3490 - Biologically inspired computing Lecture 3: Eiben and Smith, chapter 5-6 Evolutionary Algorithms - Population management and popular algorithms Kai Olav Ellefsen Repetition: General scheme of

More information

Multi-objective Evolutionary Optimization of Cloud Service Provider Selection Problems

Multi-objective Evolutionary Optimization of Cloud Service Provider Selection Problems Multi-objective Evolutionary Optimization of Cloud Service Provider Selection Problems Cheng-Yuan Lin Dept of Computer Science and Information Engineering Chung-Hua University Hsin-Chu, Taiwan m09902021@chu.edu.tw

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Aickelin, Uwe (2003) Artificial Immune System and Intrusion Detection Tutorial. In: Introduction Tutorials in Optimization, Search and Decision Support Methodologies, Nottingham, UK. Access from the University

More information

A Protein Secondary Structure Prediction Method Based on BP Neural Network Ru-xi YIN, Li-zhen LIU*, Wei SONG, Xin-lei ZHAO and Chao DU

A Protein Secondary Structure Prediction Method Based on BP Neural Network Ru-xi YIN, Li-zhen LIU*, Wei SONG, Xin-lei ZHAO and Chao DU 2017 2nd International Conference on Artificial Intelligence: Techniques and Applications (AITA 2017 ISBN: 978-1-60595-491-2 A Protein Secondary Structure Prediction Method Based on BP Neural Network Ru-xi

More information

Processor Scheduling Algorithms in Environment of Genetics

Processor Scheduling Algorithms in Environment of Genetics Processor Scheduling Algorithms in Environment of Genetics Randeep Department of Computer Science and Engineering R.N. College of Engg. & Technology Haryana, India randeepravish@gmail.com Abstract The

More information

Logistics. Final exam date. Project Presentation. Plan for this week. Evolutionary Algorithms. Crossover and Mutation

Logistics. Final exam date. Project Presentation. Plan for this week. Evolutionary Algorithms. Crossover and Mutation Logistics Crossover and Mutation Assignments Checkpoint -- Problem Graded -- comments on mycourses Checkpoint --Framework Mostly all graded -- comments on mycourses Checkpoint -- Genotype / Phenotype Due

More information

CHAPTER 3 RESEARCH METHODOLOGY

CHAPTER 3 RESEARCH METHODOLOGY 72 CHAPTER 3 RESEARCH METHODOLOGY Inventory management is considered to be an important field in Supply chain management. Once the efficient and effective management of inventory is carried out throughout

More information

An Implementation of genetic algorithm based feature selection approach over medical datasets

An Implementation of genetic algorithm based feature selection approach over medical datasets An Implementation of genetic algorithm based feature selection approach over medical s Dr. A. Shaik Abdul Khadir #1, K. Mohamed Amanullah #2 #1 Research Department of Computer Science, KhadirMohideen College,

More information

PERFORMANCE EVALUATION OF GENETIC ALGORITHMS ON LOADING PATTERN OPTIMIZATION OF PWRS

PERFORMANCE EVALUATION OF GENETIC ALGORITHMS ON LOADING PATTERN OPTIMIZATION OF PWRS International Conference Nuclear Energy in Central Europe 00 Hoteli Bernardin, Portorož, Slovenia, September 0-3, 00 www: http://www.drustvo-js.si/port00/ e-mail: PORT00@ijs.si tel.:+ 386 588 547, + 386

More information

10. Lecture Stochastic Optimization

10. Lecture Stochastic Optimization Soft Control (AT 3, RMA) 10. Lecture Stochastic Optimization Genetic Algorithms 10. Structure of the lecture 1. Soft control: the definition and limitations, basics of epert" systems 2. Knowledge representation

More information

A formal description of the population genetics model to study the spread of drug resistant malaria

A formal description of the population genetics model to study the spread of drug resistant malaria A formal description of the population genetics model to study the spread of drug resistant malaria October 22, 2010 Simulations were run varying drug usage (i.e., proportion of infections treated) and

More information

Evolutionary Computation. James A. Foster Prof., Biological Sciences Initiative for Bioinformatics & Evol. Studies University of Idaho

Evolutionary Computation. James A. Foster Prof., Biological Sciences Initiative for Bioinformatics & Evol. Studies University of Idaho Evolutionary Computation James A. Foster Prof., Biological Sciences Initiative for Bioinformatics & Evol. Studies University of Idaho Outline Evolution: process, not material Case study: symbolic discriminant

More information

Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche

Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche Algoritmi stocastici Parte 3 Artificial Immune Systems M. Repetto Dipartimento Ingegneria Elettrica Industriale - Politecnico

More information

What is an Evolutionary Algorithm? Presented by: Faramarz Safi (Ph.D.) Faculty of Computer Engineering Islamic Azad University, Najafabad Branch

What is an Evolutionary Algorithm? Presented by: Faramarz Safi (Ph.D.) Faculty of Computer Engineering Islamic Azad University, Najafabad Branch Presented by: Faramarz Safi (Ph.D.) Faculty of Computer Engineering Islamic Azad University, Najafabad Branch Chapter 2 Contents Recap of Evolutionary Metaphor Basic scheme of an EA Basic Components: Representation

More information

Railroad Yard Location Optimization Using A Genetic Algorithm

Railroad Yard Location Optimization Using A Genetic Algorithm Railroad Yard Location Optimization Using A Genetic Algorithm AVIJIT MAJI Office of Traffic and Safety Maryland State Highway Administration 7491 Connelley Drive, Hanover, MD 2176 USA avit.maji@gmail.com

More information

Introduction Evolutionary Algorithm Implementation

Introduction Evolutionary Algorithm Implementation Introduction Traditional optimization methods fail when there are complex, nonlinear relationships between the parameters and the value to be optimized, the goal function has many local extrema, and resources

More information

CSE /CSE6602E - Soft Computing Winter Lecture 9. Genetic Algorithms & Evolution Strategies. Guest lecturer: Xiangdong An

CSE /CSE6602E - Soft Computing Winter Lecture 9. Genetic Algorithms & Evolution Strategies. Guest lecturer: Xiangdong An CSE3 3./CSE66E - Soft Computing Winter Lecture 9 Genetic Algorithms & Evolution Strategies Guest lecturer: Xiangdong An xan@cs.yorku.ca Genetic algorithms J. Holland, Adaptation in Natural and Artificial

More information