AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA

Size: px
Start display at page:

Download "AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA"

Transcription

1 AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA Encodes hereditary information Used to specify the amino acid sequences of proteins DNA and the proteins encoded by DNA determine metabolic functions RNA Ø Composed of nucleotides which consist of three component Nitrogen containing base Three phosphate groups A pentose sugar v Nucleotides Ø Pyrimidine single ring structure Ø Purine double ring structure Ø The pentose sugar and the phosphate provide the hydroxyl function groups for the linkage of one nucleotide to the next Done through condensation reaction the resulting bond is a phosphodiester linkage Ø Oligonucleotides Include RNA molecules that function as primers to begin the duplication of DNA RNA molecules that regulate the expression of genes and synthetic DNA molecules used for amplifying and analyzing other longer nucleotide sequences Ø Polynucleotides More commonly referred to as nucleic acids DNA and most RNA Can be very long and indeed are the longest polymers in the living world Some DNA molecules in humans contain hundreds of millions of nucleotides v DNA Ø Hydroxyl group makes DNA less flexible than RNA Ø Four bases Adenine Thymine Cytosine Guanine RNA has Uracil instead of thymine Ø Complementary base pairing A + T C + G Ø Bonds are relatively easy to break when energy is applied Ø Usually double stranded

2 DNA carries genetic information in its sequence to determine structure Ø Informational molecule Ø Can be reproduced exactly done through polymerization using and existing strand as a base pairing template Ø DNA to RNA called transcription Then can specify sequence of amino acids in polypeptide chain this is translation Process of transcription and translation is called gene expression Ø DNA replication and transcription depends on the base paring properties of nucleic acids Ø DNA replication usually involves the entire DNA molecule Ø DNA base sequence reveals evolutionary relationships closely related living species should have more similar base sequences than species that are more distantly related v RNA Ø Usually single strand, but can still fold into three dimensional structures because of hydrogen bonds Folding occurs because of complimentary base pairing and structure thus depends on the order of the pairing v Amino acids Ø Building blocks of proteins Two functional groups nitrogen containing amine group and the carboxylic acid group Ø Only 20 amino acids occur extensively in the proteins of all organisms Ø Can form short polymers of 20 or less amino acids called oligopeptides or peptides Longer = polypeptide/protein Proteins and peptides form via the sequential addition of new amino acids at the end of the chain condensation reaction forms a peptide linkage (peptide bond) Ø The precise sequence of amino acids in a polypeptide chain constitutes the primary structure of a protein Ø Higher level protein structure is determined by primary structure Primary structure or a protein is established by covalent bonds but higher levels of structure are determined by weaker forces including hydrogen bonds and hydrophobic and hydrophilic interactions Ø Secondary structure Consists of regular repeated patterns in different regions of a polypeptide chain Two types The (a) alpha helix is a right handed coil The R groups extend outward from the peptide backbone of the helix

3 Coiling results from the hydrogen bonds that form between the N- H group on one amino acid and the C=O group on another within the same turn of the helix The (b) beta pleated sheet Formed from two or more polypeptide chains that are extended and aligned Stabilized by hydrogen bonds between N- H groups and the C=O groups on the two chain May form between spate polypeptide chains or between different regions of a single polypeptide chain that is bent back on itself Tertiary structure In many proteins the polypeptide chain is bent at specific sites and then folded back and forth resulting in this structure Results in the polypeptide s definitive 3- D shape including buried interior as well as surface that is exposed to the environment Proteins exposed outer surfaces present functional groups capable of interacting with other molecules in the cell. These molecules might be other proteins or smaller chemical reactants The interactions between R groups determine tertiary structure Ø Tertiary and secondary structures derive from primary structure Quaternary structure Many functional proteins contain two or more polypeptide chains called subunits each folded into its own unique tertiary structure Results form the ways in which these subunits bind together and interact Ø Increase in temperature cause more rapid molecular movements and thus can break hydrogen bonds and hydrophobic interactions Ø Alterations in the concentration of H+ can change the patterns of ionization of the exposed carboxyl group and amino groups thus disrupting the patterns of ionic attractions and repulsions Ø High concentrations of polar substances such as urea can disrupt the hydrogen bonding that is crucial to protein structure Ø Nonpolar substances may also denature a protein incases where hydrophobic groups are essential for maintaining the proteins structure Ø Denaturing can be irreversible when amino acids that were buried in the interior od the protein become exposed at the surface of vice versa causing new structure to form or causing different molecules to bind to the protein v Catalysts Ø Substances that speed up a reaction without themselves being permanently altered Ø Does not cause a reaction to occur that would not proceed without it but it increases the rate of reaction Ø No catalyst can make a reaction that would not otherwise occur Ø Most are enzymes

4 Ø Ribozyme provides a molecular structure that binds the reactants and can participate in the reaction itself Ø To speed up a reaction an energy barrier must be overcome Exergonic reaction releases energy Energy input required to reach transition state is activation energy Ø Enzymes bind specific reactants at their active sites Catalysts increase the rates of chemical reactions Most non- biological catalysts are nonspecific An enzyme usually binds to only one or a few closely related reactants and it catalyzes only a single chemical reaction In enzyme- catalyzed reaction the reactants are called substrates Substrate molecules bind to a particular site on the enzyme called the active site where catalysis takes place The specificity of an enzyme results from the exact 3- D shape and chemical properties of its active site The binding of the substrate to the active site of an enzyme produced an enzyme substrate complex Gives rise to product and free enzyme Ø During and after the formation of the enzyme substrate complex chemical interactions occur and contribute directly to the breaking of old bonds and the formation of new ones Ø Enzymes may Induce strain Once the substrate has bound to the active site the enzyme causes bonds in the substrate to stretch putting it in an unstable transition state Substrate orientation When free in solution substrates are moving from place to place randomly while at the same time vibrating rotating and tumbling they only rarely have the orientation to react when they collide The enzyme lowers the activation energy needed to start the reaction by brining together specific atoms so that bonds can form Adding chemical groups The R groups of an enzymes amino acids may be directly involved in the reaction Ø The binding of the substrate to the active site depends on the same relatively weak forces that maintain the tertiary structure of the enzyme, hydrogen bonds the attraction and repulsion of electrically charged groups and hydrophobic interactions Ø The rest of the macromolecules has three other roles It provides a framework so the amino acids of the active site are properly positioned in relations to the substrates It participates in the changes in protein shape and structure that result in induced fit It provide binding sites for regulatory molecules

5 Ø Some enzymes require ions or other molecules in order to function Cofactors inorganic ions that bind to certain enzymes Coenzyme carbon containing molecule that is required for the action of one ore more enzymes Relatively small compared to the enzyme it bonds with Does not permanently bind to the enzyme it binds to the active site changed chemically during the reaction and then separates from the enzyme to participate in other reactions Can participate in many different reactions with different enzymes Prosthetic group non- amino acid atoms or molecular groups that are permanently bound to their enzymes Ø Rate of reaction Directly proportional to the concentration of the substrate When all the enzyme molecules re bound to substrate molecules the enzyme is working at its maximum rate and active sites are said to be saturated The maximum rate of a catalyzed reaction can be used to measure how efficient the enzyme is v Metabolic processes Ø Enzymes may participate in anabolic pathways, producing complex molecules from simpler ones Ø Cell can regulate metabolism by amounts or activity of enzymes Ø Enzymes can be regulated by inhibitors Chemical inhibitors can bind to enzyme slowing down the rates of the reactions they catalyze Some occur naturally in cells, which regulate metabolism, artificial, ones can treat disease etc. The inhibitor can bind to the enzyme irreversible and the enzyme becomes permanently inactivated Reversible inhibition The competitive inhibitor is similar enough to the substrate that it can bind to the enzymes active site but different enough that the chemical reaction cannot occur Noncompetitive inhibitor binds to the enzyme at a site distinct from the active site and causes a change in the enzymes shape making the enzyme inactive, either the substrate cant bind or it reduces the reaction rate Ø Allosteric enzyme Occurs when the non- substrate molecule binds or modifies a site other than the active site or an enzyme inducing the enzyme to change its shape Covalent modification amino acid can be covalently modified by the addition of a phosphate (phosphorylation) if it occurs in a hydrophobic region it makes the region hydrophilic

6 Non- covalent bonding a regulatory molecule may bind non- covalently to an allosteric site which can either activate or inhibit the enzymes function Protein kinases enzymes that regulate responses to the environment by organisms Ø First step of metabolic processes is usually the commitment step Ø Feedback/end product inhibition a mechanism for regulating a metabolic pathway in which the end product of the pathway can bind to and inhibit the enzyme that catalyzes the first committed step in the pathway Ø Enzymes affected by their environments ph Generate H+ become anions Attract H+ become cations Reactions often reversible Law of mass action Implies that the higher of the H+ concentration the more the reaction will be driven to the left Changes in the H+ concentration can alter the level of hydrophobicity of some regions of a protein and affect shape Each enzyme has a tertiary structure and amino acid sequence that makes is optimally active at a particular ph Temperature Generally warming increases the rate of chemical reaction because of greater proportion of the reactant molecules have a enough kinetic energy to provide the activation energy for the reaction Temperatures that are too high inactivate enzymes can cause covalent bonds break Isozymes catalyze the same reaction but have different chemical compositions and physical properties Different isozymes within a given group may have different optimal temperatures

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

What Are the Chemical Structures and Functions of Nucleic Acids?

What Are the Chemical Structures and Functions of Nucleic Acids? THE NUCLEIC ACIDS What Are the Chemical Structures and Functions of Nucleic Acids? Nucleic acids are polymers specialized for the storage, transmission, and use of genetic information. DNA = deoxyribonucleic

More information

Chemistry 1050 Exam 4 Study Guide

Chemistry 1050 Exam 4 Study Guide Chapter 19 Chemistry 1050 Exam 4 Study Guide 19.1 and 19.2 Know there are 20 common amino acids that can polymerize into proteins. Know why amino acids are called alpha amino acids. Identify the charges

More information

Chemistry 1120 Exam 3 Study Guide

Chemistry 1120 Exam 3 Study Guide Chemistry 1120 Exam 3 Study Guide Chapter 9 9.1 and 9.2 Know there are 20 common amino acids that can polymerize into proteins. Know why amino acids are called alpha amino acids. Identify the charges of

More information

Gene and DNA structure. Dr Saeb Aliwaini

Gene and DNA structure. Dr Saeb Aliwaini Gene and DNA structure Dr Saeb Aliwaini 2016 DNA during cell cycle Cell cycle for different cell types Molecular Biology - "Study of the synthesis, structure, and function of macromolecules (DNA, RNA,

More information

Unit 6: Biomolecules

Unit 6: Biomolecules Unit 6: Biomolecules Name: Period: Test 1 Table of Contents Title of Page Page Number Due Date Unit 6 Warm-Ups 3-4 Unit 6 KUDs 5-6 Biomolecules Cheat Sheet 7 Biomolecules Sorting Review 8-9 Unit 6 Vocabulary

More information

DNA and RNA are both made of nucleotides. Proteins are made of amino acids. Transcription can be reversed but translation cannot.

DNA and RNA are both made of nucleotides. Proteins are made of amino acids. Transcription can be reversed but translation cannot. INFORMATION TRANSFER Information in cells Properties of information Information must be able to be stored, accessed, retrieved, transferred, read and used. Information is about order, it is basically the

More information

PROTEINS & NUCLEIC ACIDS

PROTEINS & NUCLEIC ACIDS Chapter 3 Part 2 The Molecules of Cells PROTEINS & NUCLEIC ACIDS Lecture by Dr. Fernando Prince 3.11 Nucleic Acids are the blueprints of life Proteins are the machines of life We have already learned that

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Chapter 5 Guided Reading Chapter 5: The Structure and Function of Large Biological Molecules Section 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 4 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge In this chapter you will learn that Nucleic acids store the

More information

Nucleic Acids and the RNA World. Pages Chapter 4

Nucleic Acids and the RNA World. Pages Chapter 4 Nucleic Acids and the RNA World Pages 74-89 Chapter 4 RNA vs. Protein Chemical Evolution stated that life evolved from a polymer called a protein. HOWEVER, now many scientists question this. There is currently

More information

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari Introduction to Cellular Biology and Bioinformatics Farzaneh Salari Outline Bioinformatics Cellular Biology A Bioinformatics Problem What is bioinformatics? Computer Science Statistics Bioinformatics Mathematics...

More information

From Gene to Protein

From Gene to Protein 8.2 Structure of DNA From Gene to Protein deoxyribonucleic acid - (DNA) - the ultimate source of all information in a cell This information is used by the cell to produce the protein molecules which are

More information

DNA and RNA Structure. Unit 7 Lesson 1

DNA and RNA Structure. Unit 7 Lesson 1 Unit 7 Lesson 1 Students will be able to: Explain the structure and function of the DNA and RNA. Illustrate the structure of nucleotide. Summarize the differences between DNA and RNA. Identify the different

More information

The Structure and Func.on of Macromolecules Nucleic Acids

The Structure and Func.on of Macromolecules Nucleic Acids The Structure and Func.on of Macromolecules Nucleic Acids The FOUR Classes of Large Biomolecules All living things are made up of four classes of large biological molecules: Carbohydrates Lipids Protein

More information

Nucleic Acids. OpenStax College. 1 DNA and RNA

Nucleic Acids. OpenStax College. 1 DNA and RNA OpenStax-CNX module: m44403 1 Nucleic Acids OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be

More information

Nucleic Acids. By Sarah, Zach, Joanne, and Dean

Nucleic Acids. By Sarah, Zach, Joanne, and Dean Nucleic Acids By Sarah, Zach, Joanne, and Dean Basic Functions Carry genetic information (DNA storing it) Protein synthesis Helps in cell division (DNA replicates itself) RNA- numerous functions during

More information

DNA and RNA Structure Guided Notes

DNA and RNA Structure Guided Notes Nucleic acids, especially DNA, are considered as the key biomolecules that guarantee the continuity of life. DNA is the prime genetic molecule which carry all the hereditary information that's passed from

More information

Concept 5.5: Nucleic acids store and transmit hereditary information

Concept 5.5: Nucleic acids store and transmit hereditary information Concept 5.5: Nucleic acids store and transmit hereditary information The amino acid sequence of a polypeptide is programmed by a unit of inheritance called a gene Genes are made of DNA, a nucleic acid

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Living organisms are complex systems. Hundreds of thousands of proteins exist inside each one of us to help carry out our daily functions. These proteins are produced locally,

More information

Molecular Genetics. The flow of genetic information from DNA. DNA Replication. Two kinds of nucleic acids in cells: DNA and RNA.

Molecular Genetics. The flow of genetic information from DNA. DNA Replication. Two kinds of nucleic acids in cells: DNA and RNA. Molecular Genetics DNA Replication Two kinds of nucleic acids in cells: DNA and RNA. DNA function 1: DNA transmits genetic information from parents to offspring. DNA function 2: DNA controls the functions

More information

X-Sheet 1 The Nucleus and DNA

X-Sheet 1 The Nucleus and DNA X-Sheet 1 The Nucleus and DNA 1 Key Concepts: In this session we will focus on summarising what you need to know about: the Nucleus, genes, nucleic acids, RNA, DNA Terminology & definitions: Chromatin

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

Exam: Structure of DNA and RNA 1. Deoxyribonucleic Acid is abbreviated: a. DRNA b. DNA c. RNA d. MRNA

Exam: Structure of DNA and RNA 1. Deoxyribonucleic Acid is abbreviated: a. DRNA b. DNA c. RNA d. MRNA Exam: Structure of DNA and RNA 1. Deoxyribonucleic Acid is abbreviated: a. DRNA b. DNA c. RNA d. MRNA 2. Which two scientists discovered DNA? a. Mendel and Newton b. Bohr and Crick c. Watson and Crick

More information

BASIC MOLECULAR GENETIC MECHANISMS Introduction:

BASIC MOLECULAR GENETIC MECHANISMS Introduction: BASIC MOLECULAR GENETIC MECHANISMS Introduction: nucleic acids. (1) contain the information for determining the amino acid sequence & the structure and function of proteins (1) part of the cellular structures:

More information

Nucleic acids. How DNA works. DNA RNA Protein. DNA (deoxyribonucleic acid) RNA (ribonucleic acid) Central Dogma of Molecular Biology

Nucleic acids. How DNA works. DNA RNA Protein. DNA (deoxyribonucleic acid) RNA (ribonucleic acid) Central Dogma of Molecular Biology Nucleic acid chemistry and basic molecular theory Nucleic acids DNA (deoxyribonucleic acid) RNA (ribonucleic acid) Central Dogma of Molecular Biology Cell cycle DNA RNA Protein Transcription Translation

More information

A. Incorrect! A sugar residue is only part of a nucleotide. Go back and review the structure of nucleotides.

A. Incorrect! A sugar residue is only part of a nucleotide. Go back and review the structure of nucleotides. Organic Chemistry - Problem Drill 24: ucleic Acids o. 1 of 10 1. What are the components of a nucleotide? (A) A sugar residue (B) A sugar residue + a nitrogenous base (C) A sugar residue + a nitrogenous

More information

NUCLEIC ACID. Subtitle

NUCLEIC ACID. Subtitle NUCLEIC ACID Subtitle NUCLEIC ACID Building blocks of living organisms One of the four important biomolecule 1 st isolated from the nuclei of white blood cells by Friedrich Miescher (1860) Came from the

More information

Molecular Biology. IMBB 2017 RAB, Kigali - Rwanda May 02 13, Francesca Stomeo

Molecular Biology. IMBB 2017 RAB, Kigali - Rwanda May 02 13, Francesca Stomeo Molecular Biology IMBB 2017 RAB, Kigali - Rwanda May 02 13, 2017 Francesca Stomeo Molecular biology is the study of biology at a molecular level, especially DNA and RNA - replication, transcription, translation,

More information

Proteins Amides from Amino Acids

Proteins Amides from Amino Acids Chapter 26 and Chapter 28 Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl group Joined as amides between the ¾NH 2 of one amino acid and the ¾CO 2 H to the

More information

9/3/2009. DNA RNA Proteins. DNA Genetic program RNAs Ensure synthesis of proteins Proteins Ensure all cellular functions Carbohydrates (sugars) Energy

9/3/2009. DNA RNA Proteins. DNA Genetic program RNAs Ensure synthesis of proteins Proteins Ensure all cellular functions Carbohydrates (sugars) Energy Structure Properties Functions of the cell Chemical organization of the cell Based on molecular substrate : DNA contains information RNA ensures protein synthesis Proteins ensure vitality Relations between

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions.

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions. Biochemistry - Problem Drill 23: RNA No. 1 of 10 1. Which of the following statements best describes the structural highlights of RNA? (A) RNA can be single or double stranded. (B) G-C pairs have 3 hydrogen

More information

Fundamentals of Organic Chemistry. CHAPTER 10: Nucleic Acids

Fundamentals of Organic Chemistry. CHAPTER 10: Nucleic Acids Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 10: Nucleic Acids 2 o Nucleic

More information

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells

CH 4 - DNA. DNA = deoxyribonucleic acid. DNA is the hereditary substance that is found in the nucleus of cells CH 4 - DNA DNA is the hereditary substance that is found in the nucleus of cells DNA = deoxyribonucleic acid» its structure was determined in the 1950 s (not too long ago).» scientists were already investigating

More information

Nucleic Acids: How Structure Conveys Information 1. What Is the Structure of DNA? 2. What Are the Levels of Structure in Nucleic Acids? 3.

Nucleic Acids: How Structure Conveys Information 1. What Is the Structure of DNA? 2. What Are the Levels of Structure in Nucleic Acids? 3. Fig. 9-CO, p.215 Nucleic Acids: How Structure Conveys Information 1. What Is the Structure of DNA? 2. What Are the Levels of Structure in Nucleic Acids? 3. What Is the Covalent Structure of Polynucleotides?

More information

The nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).

The nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic acids are macromolecules composed of chains of mononucleotides joined by phosphodiester bonds. The nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic acids are universal

More information

Nucleic Acids and Proteins

Nucleic Acids and Proteins DNA Structure 7.1 Nucleic Acids and Proteins Topic 7 DNA is composed of subunits called nucleotides The four types of bases on nucleotides are: Adenine, Guanine, Cytosine, and Thyamine Purines: two ring

More information

Nucleic acids. The building blocks. Phosphates

Nucleic acids. The building blocks. Phosphates Nucleic acids Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are made up of nucleic acids found in the nuclei of living cells. They are the vehicles of genetic inheritance. Nucleic acids are condensation

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Lecture 8. Chromosome. The Nuclei. Two Types of Nucleic Acids. Genes. Information Contained Within Each Cell

Lecture 8. Chromosome. The Nuclei. Two Types of Nucleic Acids. Genes. Information Contained Within Each Cell Information Contained Within Each Cell Lecture 8 Nucleic Acids and Protein Synthesis Chapter 23: Section 1-5 Most higher organisms reproduce sexually! Sperm cell + Egg cell! Fertilized egg The wondrous

More information

Name: Date: Period:

Name: Date: Period: Name: Date: Period: 1 2 3 4 5 The Structure of DNA Mind Map Using the words from our class brainstorm, categorize these ideas into clusters and create a mind map displaying what you already know about

More information

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words).

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words). 1 Quiz1 Q1 2011 Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words) Value Correct Answer 1 noncovalent interactions 100% Equals hydrogen bonds (100%) Equals H-bonds

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

DNA, RNA, Replication and Transcription

DNA, RNA, Replication and Transcription Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College DNA, RNA, Replication and Transcription The metabolic processes described earlier (glycolysis, cellular respiration, photophosphorylation,

More information

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base DNA,, RNA,, AND PROTEIN SYNTHESIS DNA Deoxyribonucleic Acid Enables cells to have different forms and perform different functions Primary functions of DNA: Store and transmit genetic information that tells

More information

Four Levels of Protein Structure

Four Levels of Protein Structure Primary structure (1 ) Four Levels of Protein Structure sequence of amino acids Secondary structure (2 ) ini8al folding alpha(α) helices or beta(β) sheets in the polypep8de chain Ter8ary structure (3 )

More information

BIOLOGY 111. CHAPTER 6: DNA: The Molecule of Life

BIOLOGY 111. CHAPTER 6: DNA: The Molecule of Life BIOLOGY 111 CHAPTER 6: DNA: The Molecule of Life Chromosomes and Inheritance Learning Outcomes 6.1 Describe the structure of the DNA molecule and how this structure allows for the storage of information,

More information

1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1

1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 1 From the syllabus: 1.5 Nucleic Acids and Their Functions Page 1 S. Preston 1 l. Nucleic

More information

Egg Whites. Spider Webs

Egg Whites. Spider Webs Put down pencils! Muscles Nails Horns Enzymes Hair Egg Whites Spider Webs What do proteins do? Transport Make Provide up Antibodies Structural in Support your Immune System Example: Hemoglobin carries

More information

Replication Transcription Translation

Replication Transcription Translation Replication Transcription Translation A Gene is a Segment of DNA When a gene is expressed, DNA is transcribed to produce RNA and RNA is then translated to produce proteins. Genotype and Phenotype Genotype

More information

Components of DNA. Components of DNA. Aim: What is the structure of DNA? February 15, DNA_Structure_2011.notebook. Do Now.

Components of DNA. Components of DNA. Aim: What is the structure of DNA? February 15, DNA_Structure_2011.notebook. Do Now. Aim: What is the structure of DNA? Do Now: Explain the Hershey Chase experiment and what was its conclusion? Homework Read pp. 298 299 P.299 3,4,6.7 Do Now Paperclip Combos Material: 8 paperclips, 2 each

More information

Dina Al-Tamimi. Faisal Nimri. Ma amoun Ahram. 1 P a g e

Dina Al-Tamimi. Faisal Nimri. Ma amoun Ahram. 1 P a g e 1 Dina Al-Tamimi Faisal Nimri Ma amoun Ahram 1 P a g e **Difference between Molecular Biology and Genetics: Molecular Biology: is a fancy term of biochemistry. It is the science that deals with DNA, RNA

More information

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O NUCLEIC ACID METABOLISM Omidiwura, B.R.O Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid

More information

Structural Bioinformatics (C3210) DNA and RNA Structure

Structural Bioinformatics (C3210) DNA and RNA Structure Structural Bioinformatics (C3210) DNA and RNA Structure Importance of DNA/RNA 3D Structure Nucleic acids are essential materials found in all living organisms. Their main function is to maintain and transmit

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. 2. True or False? The sequence of

More information

1-Microbial Taxonomy: classification nomenclature identification

1-Microbial Taxonomy: classification nomenclature identification Part 1 Basic Medical Microbiology 1-Microbial Taxonomy: Taxonomy is the area of biologic science comprising three distinct, but highly interrelated, disciplines that include classification, nomenclature,

More information

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Bioinformatics ONE Introduction to Biology Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Biology Review DNA RNA Proteins Central Dogma Transcription Translation

More information

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism Metabolism represents the sum total of ALL chemical reactions within the cell. These reactions can be regarded as either catabolic or anabolic

More information

Unit 2 Review: DNA, Protein Synthesis & Enzymes

Unit 2 Review: DNA, Protein Synthesis & Enzymes 1. One of the functions of DNA is to A. secrete vacuoles.. make copies of itself.. join amino acids to each other. D. carry genetic information out of the nucleus. 2. Two sugars found in nucleic acids

More information

A nucleotide consists of: an inorganic phosphate group (attached to carbon 5 of the sugar) a 5C sugar (pentose) a Nitrogenous (N containing) base

A nucleotide consists of: an inorganic phosphate group (attached to carbon 5 of the sugar) a 5C sugar (pentose) a Nitrogenous (N containing) base Nucleic Acids! Nucleic acids are found in all living cells and viruses and the two main types are DNA and RNA. They are macromolecules made of chains of nucleotides bonded together. They carry genetic

More information

Molecular biology WID Masters of Science in Tropical and Infectious Diseases-Transcription Lecture Series RNA I. Introduction and Background:

Molecular biology WID Masters of Science in Tropical and Infectious Diseases-Transcription Lecture Series RNA I. Introduction and Background: Molecular biology WID 602 - Masters of Science in Tropical and Infectious Diseases-Transcription Lecture Series RNA I. Introduction and Background: DNA and RNA each consists of only four different nucleotides.

More information

From Gene to Protein. Making Sense of DNA

From Gene to Protein. Making Sense of DNA From Gene to Protein Making Sense of DNA The 4 th Macromolecule DNA (deoxyribonucleic acid) carbohydrates lipids The 4 major organic macromolecules nucleic acids proteins the building blocks of organisms

More information

DNA and Biotechnology

DNA and Biotechnology DNA and Biotechnology What makes us human? Our DNA! It codes for our genes. (Gene = a piece of DNA that codes for a protein) What is DNA and why is it so important? DNA is the blueprint for an organism.

More information

Hole s Essentials of Human Anatomy & Physiology

Hole s Essentials of Human Anatomy & Physiology Hole s Essentials of Human Anatomy & Physiology David Shier Jackie Butler Ricki Lewis Created by Dr. Melissa Eisenhauer Head Athletic Trainer/Assistant Professor Trevecca Nazarene University Amended by

More information

Nucleic Acid Structure:

Nucleic Acid Structure: Genetic Information In Microbes: The genetic material of bacteria and plasmids is DNA. Bacterial viruses (bacteriophages or phages) have DNA or RNA as genetic material. The two essential functions of genetic

More information

Lecture Overview. Overview of the Genetic Information. Chapter 3 DNA & RNA Lecture 6

Lecture Overview. Overview of the Genetic Information. Chapter 3 DNA & RNA Lecture 6 Visual Anatomy & Physiology First Edition Martini & Ober Chapter 3 DNA & RNA Lecture 6 Lecture Overview What is the cell s genetic information? How/where is the genetic information stored in eukaryotic

More information

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules:

CELL BIOLOGY: DNA. Generalized nucleotide structure: NUCLEOTIDES: Each nucleotide monomer is made up of three linked molecules: BIOLOGY 12 CELL BIOLOGY: DNA NAME: IMPORTANT FACTS: Nucleic acids are organic compounds found in all living cells and viruses. Two classes of nucleic acids: 1. DNA = ; found in the nucleus only. 2. RNA

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

Chapter 12: Molecular Biology of the Gene

Chapter 12: Molecular Biology of the Gene Biology Textbook Notes Chapter 12: Molecular Biology of the Gene p. 214-219 The Genetic Material (12.1) - Genetic Material must: 1. Be able to store information that pertains to the development, structure,

More information

Four levels of protein Structure

Four levels of protein Structure Proteins (polypeptides) Four levels of protein Structure Primary Structure (1 structure): Secondary Structure (2 structure): Tertiary Structure (3 structure): Quaternary Structure (4 structure): Proteins

More information

The Structure of Proteins The Structure of Proteins. How Proteins are Made: Genetic Transcription, Translation, and Regulation

The Structure of Proteins The Structure of Proteins. How Proteins are Made: Genetic Transcription, Translation, and Regulation How Proteins are Made: Genetic, Translation, and Regulation PLAY The Structure of Proteins 14.1 The Structure of Proteins Proteins - polymer amino acids - monomers Linked together with peptide bonds A

More information

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA RNA PROTEIN Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA Molecule of heredity Contains all the genetic info our cells inherit Determines

More information

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze.

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze. CLEP Biology - Problem Drill 04: Enzymes and Cellular Metabolism No. 1 of 10 1. Which of the following statements about enzymes is correct? (A) Enzymes are consumed in a reaction. (B) Enzymes act by lowering

More information

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein Chapter 16 DNA: The Genetic Material The Nature of Genetic Material Chromosomes - DNA and protein Genes are subunits DNA = 4 similar nucleotides C(ytosine) A(denine) T(hymine) G(uanine) Proteins = 20 different

More information

Outline. Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage

Outline. Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage Genetics Outline Structure of DNA DNA Functions Transcription Translation Mutation Cytogenetics Mendelian Genetics Quantitative Traits Linkage Chromosomes are composed of chromatin, which is DNA and associated

More information

Honors Biology Reading Guide Chapter 10 v Fredrick Griffith Ø When he killed bacteria and then mixed the bacteria remains with living harmless

Honors Biology Reading Guide Chapter 10 v Fredrick Griffith Ø When he killed bacteria and then mixed the bacteria remains with living harmless Honors Biology Reading Guide Chapter 10 v Fredrick Griffith Ø When he killed bacteria and then mixed the bacteria remains with living harmless bacteria some living bacteria cells converted to disease causing

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

Lecture Overview. Overview of the Genetic Information. Marieb s Human Anatomy and Physiology. Chapter 3 DNA & RNA Protein Synthesis Lecture 6

Lecture Overview. Overview of the Genetic Information. Marieb s Human Anatomy and Physiology. Chapter 3 DNA & RNA Protein Synthesis Lecture 6 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 3 DNA & RNA Protein Synthesis Lecture 6 Lecture Overview The Genetic Information Structure of DNA/RNA DNA Replication Overview of protein synthesis

More information

Unit 5 DNA, RNA, and Protein Synthesis

Unit 5 DNA, RNA, and Protein Synthesis 1 Biology Unit 5 DNA, RNA, and Protein Synthesis 5:1 History of DNA Discovery Fredrick Griffith-conducted one of the first experiment s in 1928 to suggest that bacteria are capable of transferring genetic

More information

Nucleic acids. AP Biology

Nucleic acids. AP Biology Nucleic acids 2006-2007 Nucleic Acids Information storage Nucleic Acids: Function: u genetic material stores information w genes w blueprint for building proteins n DNA DNA RNA proteins transfers information

More information

NUCLEIC ACIDS AND PROTEIN SYNTHESIS

NUCLEIC ACIDS AND PROTEIN SYNTHESIS NUCLEIC ACIDS AND PROTEIN SYNTHESIS DNA Cell Nucleus Chromosomes is a coiled double helix carrying hereditary information of the cell Contains the instructions for making from 20 different amino acids

More information

DNA - DEOXYRIBONUCLEIC ACID

DNA - DEOXYRIBONUCLEIC ACID DNA - DEOXYRIBONUCLEIC ACID blueprint of life (has the instructions for making an organism) established by James Watson and Francis Crick codes for your genes shape of a double helix made of repeating

More information

Enzymes, ATP and Bioenergetics

Enzymes, ATP and Bioenergetics Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Enzymes, ATP and Bioenergetics Bioenergetics Bioenergetics can be defined as energy transfer mechanisms occurring within living organisms.

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

The Double Helix. DNA and RNA, part 2. Part A. Hint 1. The difference between purines and pyrimidines. Hint 2. Distinguish purines from pyrimidines

The Double Helix. DNA and RNA, part 2. Part A. Hint 1. The difference between purines and pyrimidines. Hint 2. Distinguish purines from pyrimidines DNA and RNA, part 2 Due: 3:00pm on Wednesday, September 24, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy The Double Helix DNA, or deoxyribonucleic

More information

Genetics. Chapter 9 - Microbial Genetics. Chromosome. Genes. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Genetics. Chapter 9 - Microbial Genetics. Chromosome. Genes. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 - Microbial Genetics Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Genetics Genome (The sum total of genetic material of a cell is referred to as the genome.) Chromosome

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

Adv Biology: DNA and RNA Study Guide

Adv Biology: DNA and RNA Study Guide Adv Biology: DNA and RNA Study Guide Chapter 12 Vocabulary -Notes What experiments led up to the discovery of DNA being the hereditary material? o The discovery that DNA is the genetic code involved many

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 10 Nucleic Acids 2 3 DNA vs RNA DNA RNA deoxyribose ribose A, C, G, T A, C, G, U 10 3 10 8 nucleotides 10 2 10 4 nucleotides nucleus cytoplasm double-stranded

More information

Section 14.1 Structure of ribonucleic acid

Section 14.1 Structure of ribonucleic acid Section 14.1 Structure of ribonucleic acid The genetic code Sections of DNA are transcribed onto a single stranded molecule called RNA There are two types of RNA One type copies the genetic code and transfers

More information

Nucleic Acids. Information specifying protein structure

Nucleic Acids. Information specifying protein structure Nucleic Acids Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats) Genome - the genetic information of an organism Information

More information

3.A.1 DNA and RNA: Structure and Replication

3.A.1 DNA and RNA: Structure and Replication 3.A.1 DNA and RNA: Structure and Replication Each DNA polymer is made of Nucleotides (monomer) which are made of: a) Phosphate group: Negatively charged and polar b) Sugar: deoxyribose- a 5 carbon sugar

More information

Name: Period: Date: BIOLOGY HONORS DNA REVIEW GUIDE (extremely in detail) by Trung Pham. 5. What two bases are classified as purines? pyrimidine?

Name: Period: Date: BIOLOGY HONORS DNA REVIEW GUIDE (extremely in detail) by Trung Pham. 5. What two bases are classified as purines? pyrimidine? BIOLOGY HONORS DNA REVIEW GUIDE (extremely in detail) by Trung Pham 1. What is the base pair rule for DNA? RNA? 2. What is the sugar found in RNA called? 3. is replaced by the base uracil in RNA? 4. What

More information

Information specifying protein structure. Chapter 19 Nucleic Acids Nucleotides Are the Building Blocks of Nucleic Acids

Information specifying protein structure. Chapter 19 Nucleic Acids Nucleotides Are the Building Blocks of Nucleic Acids Chapter 19 Nucleic Acids Information specifying protein structure Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats)

More information

Structure and Function of Nucleic Acids

Structure and Function of Nucleic Acids Structure and Function of Nucleic Acids E T Nyahangare Class Assignment 1. Write notes and outline the role of the following in protein biosynthesis a. DNA replication b. Transcription c. Genetic code

More information

UNIT 3 GENETICS LESSON #41: Transcription

UNIT 3 GENETICS LESSON #41: Transcription UNIT 3 GENETICS LESSON #41: Transcription Objective: Explain how transcription converts a gene into a singlestranded RNA molecule. Suppose you want to play a game but you need tokens and you only have

More information

Notes: (Our Friend) DNA. DNA Structure DNA is composed of 2 chains of repeating. A nucleotide = + +

Notes: (Our Friend) DNA. DNA Structure DNA is composed of 2 chains of repeating. A nucleotide = + + Notes: (Our Friend) DNA Some DNA Basics DNA stands for DNA functions to & genetic info. This information tells an organism s cells what to make and when to make them. Proteins form cell structures and

More information