System-oriented conception for the testing and assessment of the slip resistance of safety, protective and occupational footwear

Size: px
Start display at page:

Download "System-oriented conception for the testing and assessment of the slip resistance of safety, protective and occupational footwear"

Transcription

1 System-oriented conception for the testing and assessment of the slip resistance of safety, protective and occupational footwear Southlake / Texas, July 8 th 2008

2 Structure The friction system and standard testing Protection concept Action value and limit value of the friction coefficient while walking Wuppertal research project, conversion model and results Transferability of different test devices Strategy to join friction results of shoes and floors

3 Friction system parameter - material properties - surface parameter - condition (concerning e.g. abrasion ) - cleaning - after-treatment parameter - climate - human factors - further influencing factors ambient parameters floor covering shoe (slider) lubricant - constitution - quantity - material properties parameter - form - material properties - profile

4 Standard test slip resistance of floor coverings (reference method pren ) Floor for calibration E-tile α S = 10,7 ± 3,7 P-tile α S = 18,2 ± 2,7 [origin: pren ] Lubricant Reference shoe Limit values: R-tile α S = 26,8 ± 2,3 Engine oil (SAE 10 W-30) Sole Picasso assessment group acceptance angle R13 >35 R R R R < 6

5 Handling the R-groups operational area number in BGR 181, annex 1 classification R-group / V-group ( pren ) foyer (indoor) **with remaining wetness from the outside (e.g. rain) 0.1** R9 rest rooms (e.g. toilets, bathroom, washroom, locker room) 0.5 R10 area behind sales counter in bakeries/bread shops 11.4 R10 reconditioning and maintenance 23.1 R11 work places with heightened pollution with oil and lubrication solvent (e.g. metal working industrie) 22.3 R11 - V4 production and wrapping of margarine 1.3 R12 bottling of edible oil 1.4 R12 scullery (gastronomy, canteen kitchen, etc.) R12 - V4 storage room (for oils and fats) 20.1 R12 - V6 production of mayonnaise 6.3 R13 - V4 production of sausage 5.5 R13 - V8 segmentation of meat 5.3 R13 - V8

6 Standard test slip resistance of shoes (EN 13287) twelve different combinations Reference floors and steel lubricants water + SDS and glycerol Positions +7 - heel test mode [origin: EN 13287]

7 Standard test slip resistance of shoes (EN 13287) twelve different combinations Reference floors and steel lubricants water + SDS and glycerol Positions +7 - heel test mode 0 - flat test mode [origin: EN 13287]

8 Standard test slip resistance of shoes (EN 13287) twelve different combinations Reference floors and steel lubricants water + SDS and glycerol Positions +7 - heel test mode 0 - flat test mode -7 - forepart test mode [origin: EN 13287]

9 Standard test slip resistance of shoes (EN 13287) twelve different combinations Reference floors and steel lubricants water + SDS and glycerol Positions [origin: EN 13287] Limit values +7 - heel test mode 0 - flat test mode -7 - forepart test mode requirement / symbol friction coefficient with water+sds and steel with glycerol C 0,28 0,32 ( )* : accepted for 2009; source pren ISO / A1 etc. +7 : heel test mode 0 : flat test mode with water+sds steel with glycerol 0,12 (0,13)* 0,16 (0,18)*

10 Standard test slip resistance of shoes (EN 13287)

11 Video

12 Structure The friction system and standard testing Wuppertal Protection research concept Action project, value and conversion limit value of the friction model coefficient while and walking results Wuppertal research project, conversion model and results Transferability of different test devices Transferability of different test devices Strategy to join friction results of shoes and floors Strategy to join friction results of shoes and floors

13 Methodical reduction of the health hazard slipping while walking analysis (measurements) accurate testings (low uncertainty of measurement) in consideration of parameters of real situations in the work area

14 Methodical reduction of the health hazard slipping while walking analysis (measurements) accurate testings (low uncertainty of measurement) in consideration of parameters of real situations in the work area assessment protection concept action value and limit value of the friction coefficient while walking - similar to the European guidelines 2003/10/EG and 2002/44/EG - values which are derivated from the biomechanical process

15 Action value and limit value of the friction coefficient while walking falling friction coefficient (µ) action value (µ = 0,45) limit value (µ = 0,30)

16 Action value and limit value of the friction coefficient while walking safe above the action value there is no slip hazard as long as all parameters of the friction-system are not significantly changed falling friction coefficient (µ) action value (µ = 0,45) limit value (µ = 0,30)

17 Action value and limit value of the friction coefficient while walking safe above the action value there is no slip hazard as long as all parameters of the friction-system are not significantly changed falling friction coefficient (µ) action value (µ = 0,45) acceptable, yet additional protective arrangements have do be made Appropriate steps if the action value is not met: - Heightened accuracy concerning cleaning - Provision / Usage of adequate safety footwear - Briefing of employees - Warning notices periodical control measurements (If a higher walking speed can be expected, the measurement must be done under higher speed-conditions) limit value (µ = 0,30)

18 Action value and limit value of the friction coefficient while walking safe above the action value there is no slip hazard as long as all parameters of the friction-system are not significantly changed falling friction coefficient (µ) action value (µ = 0,45) acceptable, yet additional protective arrangements have do be made Appropriate steps if the action value is not met: - Heightened accuracy concerning cleaning - Provision / Usage of adequate safety footwear - Briefing of employees - Warning notices periodical control measurements (If a higher walking speed can be expected, the measurement must be done under higher speed-conditions) limit value (µ = 0,30) unsafe If the coefficient of friction goes below the limit value there is a heightened slip hazard! It must be guaranteed that the minimum permissible value of the friction coefficient will not go below the limit value in the real situation in the workplace.

19 Methodical reduction of the health hazard slipping while walking analysis (measurements) accurate testings (low uncertainty of measurement) in consideration of parameters of real situations in the work area assessment protection concept action value and limit value of the friction coefficient while walking - similar to the European guidelines 2003/10/EG and 2002/44/EG - values which are derivated from the biomechanical process creation (measures) based on the European guideline 98/24/EG - Substitution - Technical - Organisational - Personal

20 Protective measures: S-T-O-P-method

21 Structure The friction system and standard testing Protection concept Action value and limit value of the friction coefficient while walking Wuppertal research project, conversion model and results Transferability of different test devices Strategy to join friction results of shoes and floors

22 Transferability to typical parameters in practice Question: Does the result of EN allow a statement of the protection-level of a shoe in the appropriate field of application? / water+sds (0,5%) EN steel / glycerol Analysis of transferability of test results from the standard test (according to EN 13287) to typical parameters in practice

23 Research program shoe products over 50 shoe products to reflect the shoe market discounter to branded products different qualities and fields of application real situations in the work area (practice conditions) different floor materials (concrete, natural stone, tiles, industry floor etc.) slip resistance classes from R 9 R 13 (BGR 181) with and without space for (lubricants-)displacement (V4, V6, V8, V10 [cm³/dm²]) lubricants: water, oil, fats, mayonnaise, leftovers of meat,

24 Floor in work areas operational area number in BGR 181, annex 1 classification R-group / V-group ( pren ) practical lubricant foyer (indoor) **with remaining wetness from the outside (e.g. rain) rest rooms (e.g. toilets, bathroom, washroom, locker room) 0.5 R10 dry (without lubricant) remaining wetness, thin liquid film (remaining quantity of detergent: SLS 0,1%) remaining wetness, thin liquid film (remaining quantity of detergent: SLS 0,1%) area behind sales counter in bakeries/bread shops 11.4 R10 grains of bread rolls, crumbs, etc. reconditioning and maintenance 23.1 R11 oil work places with heightened pollution with oil and lubrication solvent (e.g. metal working industrie) 0.1** R R11 - V4 oil production and wrapping of margarine 1.3 R12 margarine bottling of edible oil 1.4 R12 oil scullery (gastronomy, canteen kitchen, etc.) R12 - V4 storage room (for oils and fats) 20.1 R12 - V6 oil production of mayonnaise 6.3 R13 - V4 mayonnaise a lot of water; liquid film > 3 mm (remaining quantity of detergent: SLS 0,1%) production of sausage 5.5 R13 - V8 sausage meat + water segmentation of meat 5.3 R13 - V8 leftovers of meat

25 Influence of footwear on the friction system friction coefficient (µ) 1,30 1,20 1,10 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 EN tile BGR 181: R9/R10 with water P-tile BGR 181: R10/R11 with engine Oil R-tile BGR 181: R11/R12 with engine oil BGR 181: R9 dry average value of tested shoes (and range min. - max.) BGR 181: R9 with remaining wetness floor made of concrete BGR 181: R9 dry floor made of concrete BGR 181: R9 with remaining wetness testcombinations BGR 181: R10 with grains of bread rolls BGR 181: R10 with remaining wetness slider: SBR range of shoes at test combinations and in real situations in the work area BGR 181: R12 with margarine BGR 181: R12-V4 with a lot of water granite (polished) with remaining wetness PVC BGR 181: - with wooden dust

26 Conversion model 1,00 0,90 test results of a real situation in the work area friction coefficient µ(y) Reibungskoeffizient µ(y) 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Reibungskoeffizient µ(x) friction coefficient µ(x) F02WoG _ F09RoG (n=46; r=0,842) test results of the standard test

27 Conversion model 1,00 test results of a real situation in the work area friction coefficient µ(y) Reibungskoeffizient µ(y) 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 Straight confidence-line of regression 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Reibungskoeffizient µ(x) friction coefficient µ(x) test results of the standard test F02WoG _ F09RoG F02WoG (n=46; r=0,842) _ F09RoG (n=46; r=0,842) y(x)=0,117 +0,713 x (s_xy:0,031)

28 Conversion model 1,00 test results of a real situation in the work area friction coefficient µ(y) Reibungskoeffizient µ(y) 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 confidence-line 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Reibungskoeffizient µ(x) friction coefficient µ(x) F02WoG _ F09RoG (n=46; r=0,842) K.-Streifen (90%) F02WoG _ F09RoG F02WoG (n=46; r=0,842) _ F09RoG (n=46; r=0,842) y(x)=0,117 +0,713 x (s_xy:0,031) y(x)=0,117 test +0,713 results x (s_xy:0,031) of the standard test

29 Conversion model 1,00 test results of a real situation in the work area friction coefficient µ(y) Reibungskoeffizient µ(y) 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 Straight confidence-line prediction-line of regression 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Reibungskoeffizient µ(x) friction coefficient µ(x) F02WoG F09RoG (n=46; r=0,842) K.-Streifen (90%) F02WoG _ F09RoG F02WoG (n=46; r=0,842) _ F09RoG (n=46; r=0,842) y(x)=0,117 +0,713 x (s_xy:0,031) y(x)=0,117 test +0,713 results x x (s_xy:0,031) of the standard P.-Streifen test (90%)

30 Conversion model 1,00 test results of a real situation in the work area friction coefficient µ(y) Reibungskoeffizient µ(y) 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 Straight confidence-line prediction-line of regression 0,30 0,28 to 0,38 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Reibungskoeffizient µ(x) friction coefficient µ(x) F02WoG F09RoG (n=46; r=0,842) K.-Streifen (90%) F02WoG _ F09RoG F02WoG (n=46; r=0,842) _ F09RoG (n=46; r=0,842) y(x)=0,117 +0,713 x (s_xy:0,031) y(x)=0,117 test +0,713 results x x (s_xy:0,031) of the standard P.-Streifen test (90%)

31 Model for evaluation of the derived limit value (agw) 1,00 0,90 test results of a real situation in the work area friction coefficient µ(y) 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 friction coefficient µ(x) F01WoG _ F13OoG (n=27; r=0,839) c.-line (90%) test results of the standard test y(x)=0,021+0,807 x (s_xy:0,053) p.-line (90%)

32 Model for evaluation of the derived limit value (agw) 1,00 0,90 test results of a real situation in the work area friction coefficient µ(y) 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 agw µ = 0,46 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 friction coefficient µ(x) F01WoG _ F13OoG (n=27; r=0,839) c.-line (90%) test results of the standard test y(x)=0,021+0,807 x (s_xy:0,053) p.-line (90%)

33 Derived limit value (agw) for EN / water+sds Praxis EN tile BGR 181: R9/R10 with water pren : P-tile BGR 181: R10/R11 with engine Oil pren : R-tile BGR 181: R11/R12 with engine oil BGR 181: R9 dry BGR 181: R9 with remaining wetness agw 0,52 0,63 0,38-0,47 EN Keramikfliese mit Wasser+NaLS Praxis floor made of concrete BGR 181: R9 dry floor made of concrete BGR 181: R9 with remaining wetness BGR 181: R10 with grains of bread rolls BGR 181: R10 with remaining wetness BGR 181: R11 with engine oil agw ,42 0,43 Praxis BGR 181: R11-V4 with engine oil BGR 181: R12 with margarine BGR 181: R12 with engine oil BGR 181: R12-V4 with sausage meat + water BGR 181: R12-V4 with a lot of water agw 0,46 0,42 0,41 0,47 0,33 Praxis BGR 181: R12-V4 with engine oil BGR 181: R13-V10 with mayonnaise BGR 181: R13-V10 with leftovers of meat BGR 181: R13-V10 with engine oil industrial floor BGR 181: R13-V10 with mayonnaise agw 0,46 0,25 0,38 0,32 0,30 Praxis industrial floor BGR 181: R13-V10 with leftovers of meat industrial floor BGR 181: R13-V10 with engine oil granite (polished) with remaining wetness granite (sand-streamed) with enigne oil PVC BGR 181: - with wooden dust agw 0,31 0,34-0,33 -

34 Derived limit value (agw) for EN / water+sds Praxis EN tile BGR 181: R9/R10 with water pren : P-tile BGR 181: R10/R11 with engine Oil pren : R-tile BGR 181: R11/R12 with engine oil BGR 181: R9 dry BGR 181: R9 with remaining wetness agw 0,52 0,63 0,38-0,47 EN Keramikfliese mit Wasser+NaLS Praxis floor made of concrete BGR 181: R9 dry floor made of concrete BGR 181: R9 with remaining wetness BGR 181: R10 with grains of bread rolls BGR 181: R10 with remaining wetness BGR 181: R11 with engine oil agw ,42 0,43 Praxis BGR 181: R11-V4 with engine oil BGR 181: R12 with margarine BGR 181: R12 with engine oil BGR 181: R12-V4 with sausage meat + water BGR 181: R12-V4 with a lot of water agw 0,46 0,42 0,41 0,47 0,33 Praxis BGR 181: R12-V4 with engine oil BGR 181: R13-V10 with mayonnaise BGR 181: R13-V10 with leftovers of meat BGR 181: R13-V10 with engine oil industrial floor BGR 181: R13-V10 with mayonnaise agw 0,46 0,25 0,38 0,32 0,30 Praxis industrial floor BGR 181: R13-V10 with leftovers of meat industrial floor BGR 181: R13-V10 with engine oil granite (polished) with remaining wetness granite (sand-streamed) with enigne oil PVC BGR 181: - with wooden dust agw 0,31 0,34-0,33 - EN / water+sds 0,46

35 Derived limit value (agw) for EN / water+sds Praxis EN tile pren : P-tile pren : R-tile BGR 181: R9/R10 BGR 181: R10/R11 BGR 181: R11/R12 BGR 181: R9 BGR 181: R9 with water with engine Oil with engine oil dry with remaining wetness agw 0,52 0,63 0,38-0,47 EN Keramikfliese mit Wasser+NaLS Praxis floor made of concrete floor made of concrete BGR 181: R9 BGR 181: R9 BGR 181: R10 BGR 181: R10 BGR 181: R11 dry with remaining wetness with grains of bread rolls with remaining wetness with engine oil agw ,42 0,43 Praxis BGR 181: R11-V4 BGR 181: R12 BGR 181: R12 BGR 181: R12-V4 BGR 181: R12-V4 with engine oil with margarine with engine oil with sausage meat + water with a lot of water agw 0,46 0,42 0,41 0,47 0,33 Praxis industrial floor BGR 181: R12-V4 BGR 181: R13-V10 BGR 181: R13-V10 BGR 181: R13-V10 BGR 181: R13-V10 with engine oil with mayonnaise with leftovers of meat with engine oil with mayonnaise agw 0,46 0,25 0,38 0,32 0,30 Praxis industrial floor industrial floor granite PVC granite (polished) BGR 181: R13-V10 BGR 181: R13-V10 (sand-streamed) BGR 181: - with remaining wetness with leftovers of meat with engine oil with enigne oil with wooden dust agw 0,31 0,34-0,33 - EN / water+sds 0,46

36 Evaluation of round-robin-test water+sls(0,5%) steel glycerol uncertainty of measurement laboratory Wuppertal ± 0,068 ± 0,057 ± 0,024 ± 0,021 U 95% repeatability standard deviation round-robin-test of the project ± 0,080 ± 0,078 ± 0,023 ± 0,023 s r (95%) reproducibility standard deviation round-robin-test of the project ± 0,116 ± 0,122 ± 0,079 ± 0,093 s R (95%) range of the shoes in the project (% reproducibility standard deviation) 0,46 (50,4%) 0,46 (53,0%) 0,46 (34,3%) 0,49 (38,0%)

37 Structure The friction system and standard testing Protection concept Action value and limit value of the friction coefficient while walking Wuppertal research project, conversion model and results Transferability of different test devices Strategy to join friction results of shoes and floors

38 Transferability between BST and ramp test (SE) person 1 (S25) person 2 (S25) BST (S25) person 1 (S24) person 2 (S24) BST (S24) acceptance angle α F01 / 02 F05 E (F06) P (F07) R (F08) F09 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 tested floor coverings - floor coverings tested according DIN and pren different samples of reference-shoe Picasso (S 24 und S 25) - with 2 persons on the ramp test and with these shoes on BST

39 Transferability to mobile test instruments (water+sds) 0,9 0,8 SE BST GMG BOT Pendel (Gleiter: S 20) SBR Reibungskoeffizient (µ) 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 F01 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Bodenflächen

40 Transferability to mobile test instruments (water+sds) 0,9 0,8 SE BST GMG BOT Pendel (Gleiter: S 25) Picasso Reibungskoeffizient (µ) 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 F01 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Bodenflächen

41 Transferability to mobile test instruments (water+sds) 1 SE BST GMG BOT Pendel (Gleiter: S 04) H-Bereich 0,9 Reibungskoeffizient (µ) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 F01 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Bodenflächen

42 Transferability to mobile test instruments (water+sds) Gleiter / Schuh S20 (SBR) Gleiter / Schuh S25 (Picasso) BST (Position 0 ) GMG BOT Pendel BST (Position 0 ) GMG BOT Pendel SE (µ = tan α) BST (Position 0 ) GMG BOT SE (µ = tan α) BST (Position 0 ) GMG BOT (r xy ) 0,817** 0,893** 0,879** 0,687** 0,765** 0,584* 0,695** (n) (r xy ) 0,892** 0,788** 0,738** 0,843** 0,809** (n) (r xy ) 0,926** 0,618* 0,884** (n) (r xy ) 0,614* (n) 12 BST (Position 0 ) Gleiter / Schuh S4 (H-Bereich) GMG BOT Pendel BST (Position 0 ) alle 3 Gleiter GMG BOT Pendel (r xy ) 0,894** 0,826** 0,857** 0,651** 0,823** 0,788** 0,812** 0,686** (n) (r xy ) 0,871** 0,928** 0,822** 0,865** 0,863** 0,803** (n) (r xy ) 0,844** 0,635* 0,887** 0,65** (n) (r xy ) 0,812** 0,748** (n) 12 24

43 Transferability to mobile test instruments (oil) 1 0,9 SE BST GMG BOT Pendel (Gleiter: S 20) SBR Reibungskoeffizient (µ) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 F01 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Bodenflächen

44 Transferability to mobile test instruments (oil) 1 0,9 SE BST GMG BOT Pendel (Gleiter: S 25) Picasso Reibungskoeffizient (µ) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 F01 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Bodenflächen

45 Transferability to mobile test instruments (oil) 1 SE BST GMG BOT Pendel (Gleiter: S 04) H-Bereich 0,9 Reibungskoeffizient (µ) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 F01 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Bodenflächen

46 Transferability to mobile test instruments (oil) Gleiter / Schuh S20 (SBR) Gleiter / Schuh S25 (Picasso) BST (Position 0 ) GMG BOT Pendel BST (Position 0 ) GMG BOT Pendel SE (µ = tan α) BST (Position 0 ) GMG BOT SE (µ = tan α) BST (Position 0 ) GMG BOT (r xy ) 0,985** 0,966** 0,989** 0,927** 0,989** 0,949** 0,962** (n) (r xy ) 0,987** 0,99** 0,942** 0,956** 0,966** (n) (r xy ) 0,988** 0,956* 0,948** (n) (r xy ) 0,947** (n) 12 BST (Position 0 ) Gleiter / Schuh S04 (H-Bereich) GMG BOT Pendel BST (Position 0 ) alle 3 Gleiter GMG BOT Pendel (r xy ) 0,944** 0,896** 0,955** 0,799** 0,968** 0,941** 0,964** 0,768** (n) (r xy ) 0,954** 0,98** 0,932** 0,944** 0,96** 0,893** (n) (r xy ) 0,967** 0,912** 0,971** 0,834** (n) (r xy ) 0,9** 0,837** (n) 12 24

47 Transferability between BOT and RAMP conversion model: BOT_DF <> RAMP 1,00 pair of values: 0,90 BOT_DF <> RAMP friction coefficient (µ): RAMP 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 (n = 72; r = 0,931**) straight line of regression: y(x) = 0, ,948 x (standard deviation of values of the straight line of regression: ±0,08) confidence-line (level of probability: 95%) prediction-line (level of probability: 95%) friction coefficient (µ): BOT_DF

48 Transferability between BOT and RAMP conversion model: RAMP_SBR_NaLS <> BOT_DF_SBR_NaLS 1,00 pair of values: 0,90 RAMP_SBR_NaLS <> BOT_DF_SBR_NaLS friction coefficient (µ): BOT_DF_SBR_NaLS 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 (n = 20; r = 0,861**) straight line of regression: y(x) = 0, ,824 x (standard deviation of values of the straight line of regression: ±0,083) confidence-line (level of probability: 95%) prediction-line (level of probability: 95%) friction coefficient (µ): RAMP_SBR_NaLS

49 Transferability between GMG and RAMP conversion model: Ramp_SBR_NaLS <> GMG_SBR_NaLS 1,00 pair of values: 0,90 Ramp_SBR_NaLS <> GMG_SBR_NaLS friction coefficient (µ): GMG_SBR_NaLS 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 (n = 20; r = 0,857**) straight line of regression: y(x) = 0, ,9 x (standard deviation of values of the straight line of regression: ±0,092) confidence-line (level of probability: 95%) prediction-line (level of probability: 95%) friction coefficient (µ): Ramp_SBR_NaLS

50 Transferability between BOT and GMG conversion model: BOT_SBR_NaLS <> GMG_SBR_NaLS 1,00 pair of values: 0,90 BOT_SBR_NaLS <> GMG_SBR_NaLS friction coefficient (µ): GMG_SBR_NaLS 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 (n = 20; r = 0,928**) straight line of regression: y(x) = 0, ,019 x (standard deviation of values of the straight line of regression: ±0,066) confidence-line (level of probability: 95%) prediction-line (level of probability: 95%) friction coefficient (µ): BOT_SBR_NaLS

51 Structure The friction system and standard testing Protection concept Action value and limit value of the friction coefficient while walking Wuppertal research project, conversion model and results Transferability of different test devices Strategy to join friction results of shoes and floors

52 Strategies to join friction results of shoes and floors Floors with very high anti-slip properties Classification of floors friction matrix Floors with increased anti-slip properties Floors with adequate anti-slip properties Floors without adequate anti-slip properties Footwear without Footwear with adequate anti-slip adequate anti-slip properties properties Footwear with Footwear with increased anti-slip very high anti-slip properties properties Classification of footwear