TECHNICAL INFORMATION MANUAL

Size: px
Start display at page:

Download "TECHNICAL INFORMATION MANUAL"

Transcription

1 TECHNICAL INFORMATION MANUAL EVOSAN PP utility sewerage systems EVORAIN PP stormwater sewerage systems

2 Contents

3 Corrugated double-wall pp evosan and evorain piping system 5 EVOSAN utility sewerage system and EVORAIN stormwater drainage system EVOSAN and EVORAIN fittings for external sewerage networks 8 6 EVOSAN and EVORAIN system hydraulic calculations 11 Choosing roughness coefficient for gravity sewerage for EVORAIN/EVOSAN PP systems 13 EVOSAN and EVORAIN minimum pipeline slope 14 Pipeline turns, connections and depth of installation 16 EVOSAN and EVORAIN transportation and storage 19 Factors causing pipeline deformations 22 EVOSAN and EVORAIN sewerage system installation 25 Main principles of EVOSAN and EVORAIN system installation 33 EVOSAN and EVORAIN pressure testing with water or air in accordance with EN Hydraulic parameter table 39 Conformity certificates 49 Product standards 54 Notes 56 Resistance of plastic materials to chemical matters 59

4 SECTION 1 Corrugated double-wall pp evosan and evorain piping system 5 Constructive advantages of the EVOSAN and EVORAIN piping system 5 EVOSAN utility sewerage system and EVORAIN stormwater drainage system 6 Technical information 6 Quality control selection parameters 7 EVOSAN and EVORAIN fittings for external sewerage networks 8 4

5 Corrugated double-wall pp evosan and EVORAIN piping system EVOSAN and EVORAIN is a comprehensive innovative stormwater and utility sewerage piping system. EVOSAN and EVORAIN are the most advanced high-quality double-wall pipes with excellent usage and functional properties ensuring good flow and reliability. EVOSAN and EVORAIN pipes conform to the quality requirements and standards of the utility sewerage and stormwater piping systems and are recommended for use in gravity piping systems. Pipes are designed for long-term use under normal load. Constructive advantages of the EVOSAN and EVORAIN piping system EVOSAN and EVORAIN are structured-wall pipes: their external side is corrugated and the profile properties guarantee high mechanical strength. Smooth internal walls of the pipes ensure excellent hydraulic properties required for the pressure-free (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic soil conditions, are resistant to deformation when installed under roads with heavy load. Due to their special structural properties, the pipes are lighter and at the same time stronger than conventional smoothwalled pipes. Transportation, storage and installation of the corrugated pipelines is much faster, easier and cheaper. Piping system consists of the DN 110 to DN 500 mm pipes (DN=OD, nominal outer diameter) and unified pipeline system connection pieces. EVOSAN and EVORAIN pipes can be connected to all types of inspection wells, inspection manholes and sumps. PP is an environmentally friendly material and 100% recyclable. The pipes are equipped with welded on solid polypropylene coupling. Tolerance between the pipe and the coupling is adjusted to ensure: easier installation complete pipelines water tightness uniform strength of the connection and the pipe the system is equipped with a new type sealing ring ensuring higher pipeline running parameters pipes are available in six-metre pieces (other lengths upon request) standard colour of the outer side of the utility sewerage is reddish brown (EVOSAN) and of stormwater pipes - black (EVORAIN), but the inside of both pipes is white for better visibility during inspection or filming Use of PP and special design allow high-pressure rinsing of the EVOSAN and EVORAIN pipelines. The pipes are made of polypropylene (PP), which ensures high modulus of elasticity (Young) and ring stiffness SN 8 in accordance with EN ISO PP materials have : excellent long-term strength properties high resistance to corrosion perfect resistance to abrasion chemical and biological inertness 5

6 EVOSAN utility sewerage system and EVORAIN stormwater drainage system EVOSAN and EVORAIN are the most advanced high-quality double-wall pipes with excellent usage and functional properties. EVOSAN and EVORAIN piping systems fully conform to the quality requirements and standards of the utility and storm water piping systems. Technical information Standards Conformity EN Wall profile conforms to the series 3 in accordance with DIN = 8 kn/m² PP ensures high modulus of elasticity (Young) and ring stiffness SN 8 in accordance with EN ISO 9969 Suitable for all materials in accordance with EN 1610 Suitable for pressure tests in accordance with EN 1610 Thermal stress resistance EVOSAN and EVORAIN pipes and connecting pieces are made for utility sewerage and storm water drainage. Requirements of the EN 476 standard in respect of the thermal effect levels should be observed: up to +45ºC for diameters up to DN 200 and up to +35ºC for larger diameters. The system is designed for use at temperatures between -40ºC and +95ºC. Identification Pipe identification in accordance with EN Nominal dimensions (DN) Dimensions of outer diameter (OD) in millimetres: 110, 160, 200, 250, 315, 400, 500 mm. Lengths Standard pipe length is 6000 mm (without polypropylene coupling). Spacial lengths are available upon request. Connection Welded on solid polypropylene coupling ensures uniform strength of the connection places and the pipe, owing to which water tightness of the pipeline will remain unchanged for many years fully conforming to EN Sealing ring The pipes and connecting pieces have a patented new sealing ring, which makes connections of the system components completely watertight. Material Pipe and connecting pieces are made of polypropylene (PP). PP properties: density kg/m³ modulus of elasticity MPa thermal conductivity 0.2 W/m ºC linear expansion 0.1 W/m ºC heat capacity 2000 J/kg ºC tensile strength 30 MPa Chemical resistance With chemical resistance to ph2 (acid) and ph12 (alkali) EVOSAN and EVORAIN pipes are resistant to all substances contained in wastewaters soils in accordance with DIN Colour EVOSAN Outer profile - reddish brown Smooth inner side - RAL white (for inspection) EVORAIN Outer profile - RAL black Smooth inner side - RAL white (for inspection) Marking EVOSAN and EVORAIN pipe marking includes: standard number (for example, EN ) manufacturer identification (EVOPIPES) diameter series (D nom/d in, for example, OD 200/175) trademark, (for example,evosan/sewer Pipe or EVORAIN/Rainwater Pipe) material marking (for example, PP) hardness class (for example, SN 8) period of manufacture (date or code) Watertightness Conforms to EN 476, EN 681 and EN All pipes and connection pieces must be watertight. Quality control There is a quality supervision control of the production process at the company. It criteria are summarised in table

7 EVOSAN utility sewerage system and EVORAIN stormwater drainage system Quality control selection parameters Table Properties Frequency Number of samples Outer layer appearance, colour Continuous inspection process for entire batch Profile At least once every 4 hours 1 Outer diameter DN/OD, mm Once every 4 hours 1 Wall thickness, mm Once every 4 hours 1 Inside layer appearance Colour conformity Layer surface Continuous process during the entire batch production period Continuous process during the entire batch production period Continuous process during the entire batch production period Inner diameter DI, mm Once every 4 hours 1 Weight, kg/m Once every 4 hours 1 Pipeline marking Once per batch 1 Pipeline testing Ring rigidity Once per batch 3 Ring elasticity Once per batch 3 7

8 EVOSAN and EVORAIN fittings for external sewerage networks EVOSAN and EVORAIN piping system fittings OD/DN from 110 to 500 mm. Components: sealing ring on one end, coupling on the other. EVOSAN and EVORAIN elbows EVOSAN and EVORAIN elbow Elbow DN/OD DN/OD DN/OD DN/OD DN/OD DN/OD DN/OD EVOSAN and EVORAIN equal tees EVOSAN and EVORAINequal tee Angle DN/OD , , , , , , EVOSAN and EVORAIN reducing tees EVOSAN and EVORAIN reducing tee Angle 45 DN/OD b DN/OD a EVOSAN and EVORAIN double coupling EVOSAN and EVORAIN double coupling DN/OD EVOSAN and EVORAIN sleeve fitting EVOSAN and EVORAIN sleeve fitting DN/OD EVOSAN and EVORAIN protection fitting EVOSAN and EVORAIN protection fitting DN/OD Product images are for information only. Actual dimensions and colours may differ from the image.

9 EVOSAN and EVORAIN fittings for external sewerage networks EVOSAN and EVORAIN reducer EVOSAN and EVORAIN reducer DN/OD b DN/OD a EVOSAN and EVORAIN double-wall pipe pvc reducing sleeve EVOSAN un EVORAIN double-wall pipe- PVC reducing sleeve DN/OD EVOSAN and EVORAIN sleeve plug DN/OD EVOSAN and EVORAIN sleeve plug EVOSAN and EVORAIN sealing ring DN/OD EVOSAN and EVORAIN sealing ring For the drawings of EVOSAN pipe dimensions see Figure 1.3.1, and EVOSAN and EVORAIN pipe and welded on coupling dimensions are given in Table EVOSAN and EVORAIN pipeline and welded on solid coupling sizes and dimensions Table DN/OD mm ID mm L mm M mm , , , , , , , Figure Product images are for information only. Actual dimensions and colours may differ from the image. 9

10 SECTION 2 EVOSAN and EVORAIN system hydraulic calculations 11 Full pipeline 11 Throughflow for full pipe 11 Partially full pipeline 12 Throughflow for partially full pipe 12 Choosing roughness coefficient for gravity sewerage EVOSAN/EVORAIN PP systems 13 EVOSAN/EVORAIN PP minimum pipeline slope 14 Pipeline turns, connections and depth of installation 16 10

11 EVOSAN and EVORAIN system hydraulic calculations Sewerage pipelines are designed with account of necessary flow of the (utility or storm) wastewater, relation of trench slope to pipeline filling and flow rate including hydraulic losses in the pipeline. When choosing sewerage pipeline diameter, it is taken into account that the pipe must carry the maximum flow without sewerage overflow. Moreover, at the time of minimum flow one every 24 hours self-cleaning must take place, which depends on minimum slope the pipeline installation. Pipeline diameter is determined in hydraulic the calculation of the sewerage network. The calculation begins with determining rated flow of a network part, calculating average flow rate and hydraulic slope for each part individually.. From the point of view of hydraulics, the sewerage pipelines are considered covered free flow passage, which usually operates with partial flow. Stormwater sewerage networks are usually calculated with full pipelines, but for utility sewerage pipelines partial fill is assumed. Average flow rate of the sewerage pipeline can be determined by EN 752 standard; it is recommended to use Colebrook-White and Manning equation. For full round pipelines (H/ID), mean flow rate (v) is calculated by Colebrook-White formula. FOR FULL PIPELINE: where v mean flow rate in the pipeline (); g free fall acceleration (); g=9.81 (2); ID pipeline inner diameter (m); I pipeline hydraulic slope (m/m); k pipeline roughness coefficient (m); γ fluid kinematic viscosity factor (water at +100C is 1.308x10-6 m2/s); γ =1, 308x10-6 (m²/s). Flow volume or throughflow (Q) for full pipe (H/ID) is calculated by formula. THROUGHFLOW FOR FULL PIPE: where Q throughflow (m³/s); v mean flow rate in the pipeline (); ID pipeline inner diameter (m); π mathematical constant; π =3,14. 4 For partly full round pipelines (H/ID) mean flow rate (v) is calculated by Manning equation, replacing (ID) with (4R), where R is hydraulic radius (flow cross-sectional area divided by wetted perimeter). 11

12 EVOSAN and EVORAIN system hydraulic calculations FOR PARTLY FULL: where v mean flow rate in the pipeline (); K Manning's coefficient (m 1/3 /s); R pipeline hydraulic radius (m); I pipeline hydraulic slope (m/m). Hydraulic pipeline roughness (k) or (Manning's) flow coefficient (K) allows pressure loss depending on pipe materials, broken connections and sediments on the pipe surface under water level. There are methods of calculation of full pressure losses: - by adding local pressure losses to the pipeline pressure losses; - local pressure losses calculation assuming the top hydraulic pipeline roughness value in calculation of the of the pipeline pressure losses. Using the recommended hydraulic pipeline roughness value, it is necessary to determine whether the allowed norm is included in the local pressure losses. Currently the following values are used from k=0,03 mm 3,00 mm and K=70 90 m 1/3 /s. Approximate Manning's coefficient can be calculated by formulas: where K Manning's coefficient (m 1/3 /s); g free fall acceleration ; g = 9,81 ( 2 ); ID pipeline inner diameter (m); k pipeline roughness coefficient (m). Flow volume or throughflow (Q) for partly full pipe (H/ID) is calculated by formula. THROUGHFLOW FOR PARTLY FULL PIPE: where v mean flow rate in the pipeline (); A pipeline filling area (m 2 ). Roughness coefficient (k) includes hydraulic losses with account of pipeline material properties and sediment forming at the connection points from the wastewaters in the bottom part of the pipeline. With forming sedimentations in the pipelines, its cross-section is reduced, which must be taken into account when performing hydraulic pipeline calculations. Hydraulic losses occur at the connections, pipeline diameter change, in wells and at fitting connections. That is why it is necessary to take into account local resistance occurring in the pipelines, assuming higher roughness coefficient value including in it the aforesaid factors. The most frequently used roughness coefficient values (k) are given in Table

13 Choosing roughness coefficient for gravity sewerage for EVORAIN/EVOSAN PP systems Recommended roughness coefficient (k) for sewerage pipelines EVOSAN/EVORAIN Table mm pipeline roughness coefficient including hydraulic losses 0, 25 for main discharge pipes without special structural accessories and without or with little inflow rate from the sides 0, 40 for discharge pipes with many inflow pipes and structures (where it is necessary to take into account small losses at connections) 0, 75 for discharge pipes with many inflow pipes and structures (where it is necessary to take into account significant losses at connections) Maximum allowed fill for EVOSAN utility sewerage pipelines are given in Table Maximum fill for EVOSAN utility sewerage pipelines depending on diameter Table EVOSAN pipeline OD/DN (mm) ID (mm) 93,8 138,9 174,6 215,9 274,1 349,8 439,6 Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75 Marking: OD/DN pipeline outer diameter (mm); ID pipeline inner diameter (m); H/ID gravity pipeline fill, dimension-free value. 13

14 EVOSAN and EVORAIN minimum pipeline slope In gravity sewerage networks the water flows under effect of gravitation, therefore the minimum slope of the gravity sewerage pipeline must ensure pipeline self-cleaning depending on its diameter. For the pipeline to self-clean, correct minimum slope is to be chosen; depending on hydraulic conditions of the flow each diameter has its own minimum installation slope. Pipeline slope depends on pipe diameter. With increase of diameter, the flow rate in the pipeline increases. It means that the condition can be satisfied calculating the minimum pipeline slope by the following formula: where imin minimum slope; ID pipeline inner diameter (m). Minimum hydraulic slope satisfying the pipeline self-cleaning conditions can be calculated by the following formula: where Imin pipeline minimum hydraulic slope (m/m); ρ wastewater ratio; ρ =1000 (kg/m3); g free fall acceleration(); g = 9,81 (²); R pipeline fill hydraulic radius (m); τ flow pressure (N/m2); τ =2,25 N/m2 for plastic pipelines of utility and production sewerage; τ =1,35 N/m2 for plastic pipelines of stormwater sewerage. Hydraulic radius of full pipe is calculated as follows: where R pipe hydraulic radius (m); ID pipe inner diameter (m). Hydraulic radius of full pipe OD/DN mm ID, m 0,0938 0,1389 0,1746 0,2159 0,2741 0,3498 0,4396 H/ID R 0,023 0,035 0,044 0,054 0,069 0,087 0,11 Hydraulic radius of partly full pipe is calculated as follows: where R pipe hydraulic radius (m); A pipe filling area (m2); P pipe wetted perimeter (m). Marking: OD/DN ID pipe outer diameter (mm); pipe inner diameter (m); H/ID gravity pipeline fill has dimension-free value; R pipe hydraulic radius (m). 14

15 EVOSAN and EVORAIN minimum pipeline slope Hydraulic radius of partly full pipe OD/DN, mm ID, m 0,0938 0,1389 0,1746 0,2159 0,2741 0,3498 0,4396 H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75 A 0,003 0,009 0,015 0,023 0,044 0,072 0,122 P 0,15 0,25 0,31 0,38 0,54 0,69 0,92 R 0,02 0,04 0,05 0,06 0,08 0,1 0,13 Minimum allowed EVORAIN/EVOSAN PP sewerage pipe installation slope (m/m) Fill H/ID EVORAIN pipelines Stormwater sewerage Flow pressure τ=1,35n/m2 I min (m/m) Fill H/D EVOSAN pipelines Utility and production sewerage Flow pressure τ=2,25n/m2 OD/DN (mm) OD/DN (mm) ID (mm) ID (mm) ,0059 0,5 93,8 93, ,0040 0,6 138,9 138, ,0032 0,6 174,6 174, ,0025 0,6 215,9 215, ,0020 0,7 274,1 274, ,0016 0,7 349,8 349, ,0013 0,75 439,6 439,6 I min (m/m) 0,0098 0,0059 0,0047 0,0038 0,0028 0,0022 0,0017 For pipeline self-cleaning to take place once every 24 h, mean flow rate (v) must be at least: - v = 0,6 0,8 8 for utility sewerage; - v = 0,7 1,0 0 stormwater sewerage. At lower flow rates, rotting /fermentation of the wastewater may begin and methane H2S development, which are not at all desirable processes. In such cases, it is advisable to rinse the system. When choosing the hydraulic pipeline slope it is recommended not to exceed the rate over 5,0. In pipeline structures with higher hydraulic slopes, it is necessary to take into account that the following factors may occur in case of higher flow rates: air draw into the system, H2S emission into the environment, increase of erosion in the pipelines, increase of pipeline maintenance risk. Designing and construction of the utility and stormwater sewerage is carried out in accordance with the country's existing construction design standards and other regulations. Marking: OD/DN ID pipe outer diameter (mm); pipe inner diameter (m); H/ID gravity pipeline fill has dimension-free value; R pipe hydraulic radius (m); A pipe filling area (m 2 ); P pipe wetted perimeter (m). 15

16 Pipeline turns, connections and depth of installation All points of connection of sewerage pipeline branches must be in wells. The angle between intake and discharge pipelines must be at least 90. If approved by the customer, the sewerage pipeline branches may be designed outside wells. In such case, the angle between intake and discharge pipelines must be at least 135. Note: any angle between intake and discharge pipelines is allowed if a drop is provided in the well or if stormwater sewer well is connected with a drop. Connection of pipelines with different diameter must be carried out in the wells so that top points of inner surfaces of the pipes were at the same level. In presence of sufficient reasons, pipeline connection at wastewater calculation levels is allowed. Pipeline installation depth depends on possible frost line, which may vary in different geographic locations. Usually pipeline installation depth is determined by adding 0,2 m on top of the pipe surface to the frost line. For large diameter pipelines, there can be deviations from the installation depth, which cannot be less than 0,7 m from the surface of soil to the pipeline surface. Pipelines installed at 0,7 m depth and less (from the pipeline surface) must be protected from penetration of frost. Inspection manholes In sewerage networks of all systems, the inspection wells are installed: at connection of branches; in places where pipeline direction, slope or diameter changes; on straight pipeline stages at the following distances (depending on pipeline diameter): 35 m if pipeline diameter is 160 mm; 50 m if pipeline diameter is mm, 75 m if pipeline diameter is 500 mm. Inspection manhole hatches are installed: on traffic ways - at the same level with road surface in accordance with technical regulations of the road administration; in green zones mm above the ground surface; in undeveloped areas mm above the ground surface; on roads without hard surface - with 0,5 m wide protection rim around manhole hatch. If necessary, manholes shall have lockable lids. SEWERAGE INSPECTION WELL CSB 400/315 connection OD160 STORMWATER WELLS CRS 400/315 Sedimentation chamber height=0.7 m, volume =67 l connection OD160 NOTE: SOLUTION WITH ANGLED LID IS POSSIBLE 16 Product images are for information only. Actual dimensions and colours may differ from the image.

17 Pipeline turns, connections and depth of installation Drop wells Drop wells should be designed: to reduce pipeline installation depth; to prevent surpassing maximum wastewater flow rate or change of colour; when crossing underground structures; discharge of overflow in the last well before the water reservoir. Stormwater wells Stormwater wells should be designed: on street stages; at crossroads and pedestrian crossings at the side of overground water inlet; at the lowest point at the end of slopes; at the lowest point if street gutters have varying longitudinal profile; in places where there is no overground wastewater drains (for example in the streets, squares, parks, yards). Length of connection between the stormwater well to the sewer manhole cannot exceed 40 m; maximum one more stormwater well should be installed on the connection. The connection diameter should be less than 160 mm if the slope is 2%. Stormwater well can have roof drains and drainage pipelines connected. Stormwater wells need 0,3-0,5 m deep recess for sediment collection. Ditches can be connected to the sewerage network only through wells with sedimentation chamber. At the end of the ditches there should be grilles with at least 50 mm between bars; diameter of the connection pipeline should be determined by calculation, but should be at least 250 mm. 17

18 SECTION 3 EVOSAN and EVORAIN transportation and storage 19 Instructions for transportation 19 Instructions for storage 20 Instructions for handling 21 Factors causing pipeline deformations 22 Choosing pipeline strength class 23 18

19 EVOSAN and EVORAIN transportation and storage Instructions for transportation (see Figure 3.1.1) : 1) use cargo vehicles with flat platforms, 2) the transportation platform must be free from sharp objects that can damage pipes, 3) if possible, use wooden frames for the protection of the pipes, 4) fix the pipes securely before the transportation, 5, 6) pipes with couplings cannot be placed under load. Figure

20 EVOSAN and EVORAIN transportation and storage Instructions for storage (see Figure 3.1.2): 1) pipe bundles or individual pipes shall be stored on a flat surface free from stones and sharp objects, 2) pipes shall be stored at least on wooden planks, 3) pipes must not remain constantly bended for a long time, 4) if stored in piles, pipe couplings cannot rest directly on each other. Figure When stored packaged at a construction site, the pipes can be stacked as follows: for DN/OD 100, 160 and 200 mm pipes, maximum recommended stacking height on top of one another is four packs; for DN/OD 250, 315 mm pipes, maximum recommended stacking height on top of one another is five packs; for DN/OD 400 mm pipes, maximum recommended stacking height on top of one another is eight packs; for DN/OD 500 mm pipes, maximum recommended stacking height on top of one another is six packs. Couplings of the packaged pipe should not rest directly on each other (see Figure 3.1.3). Figure

21 EVOSAN and EVORAIN transportation and storage For loading instructions, see (Figure 3.1.4): 1) pipes can be loaded by hand, but they must not be thrown or dragged, 2) if pipes are moved by a mechanical lifting device, ropes and other accessories that do not damage the pipes must be used. Figure At the production facility, the pipes are packaged and labelled with a sticker (for the sticker see Figure 3.1.5). Number of pipes in a packaging depends on pipe diameter. The above information is given in Table Figure Number of evosan and evorain pipes in the packaging Table DN/OD mm ID mm L m Pieces inpackaging ,8 6, ,9 6, ,6 6, ,9 6, ,1 6, ,8 6, ,6 6,0 2 The pipes from DN/OD mm are packaged using wooden frames, but from DN/OD mm using planks and wire. Marking: OD/DN ID pipe outer diameter (mm); pipe inner diameter (m); L pipe length in packaging (m). 21

22 Factors causing pipeline deformations Pipes can have two types of deformation: 1) general deformation; 2) local deformation. General deformation is caused by filling layer sagging. Local deformation is caused by poor quality of installation material. Factors affecting general deformation: soil density at the installation site. It means that the less is soil density as compared with the optimum density, the more likely deformation may occur; the lower is shape strength grade SN, the more likely deformation may occur; when compacting soil around the pipe edges it is necessary to ensure filling and uniform compacting around the pipe supports and pipe sides. The aim is to achieve the conditions when the groundwater and soil pressure on the pipe surface is as uniformly distributed as possible (see Figure 3.0.1). The deformation is minimum if at the installation site the soil is well compacted so that future settlement would be negligible. For the best result, it is recommended to use dense that does not need much additional compacting (sand or stone chips) or can be easily compacted. Supports placed under the pipes must withstand the load without deformations.. Figure Allowed deformation of just installed EVOSAN and EVORAIN PP pipelines is 10%. This condition is possible due to EVOSAN and EVORAIN pipe profile and special sealing ring dimensions, which can take and absorb greater soil loads. As local deformation loads are not regulated by EN, construction regulations of a country where the construction takes place shall be observed. RECOMMENDATION! To avoid deformations exceeding the allowed, the conditions of installation set out in EN 1610 and Section 4 are to be adhered to. Main principles of EVOSAN and EVORAIN system installation. General deformation of pipe installed in the ground can continue until the vertical and horisontal forces affecting the pipe balance. Pipe deformation studies have proved that usually those deformations stop within one to two years after their installation provided the external forces affecting the pipes have not changes over that time. The allowed deformation is determined by the fact that over the planned period of service (50 years) it cannot exceed 15% (see Figure 3.2.2). Factors affecting local deformation: 1) large sharp stones in the bottom layer of the soil, 2) thin layer of filling material over the pipes. 22

23 Factors causing pipeline deformations Figure Figure If local deformation is caused by a stone above the pipe (see Figure 3.2.3), it is apparent that any its downward movement will only increase deformation. Allowed local deformation values are not defined in the EN regulations. EVOPIPES recommends the following actions in case of local deformation: if local deformation of the pipes exceeds 10% and it has been discovered immediately after installation of a new pipeline, we recommend excavating and removing the factor causing the deformation if local deformation of the pipes is less than 10%, the location shall be marked and inspected again before the end of the warranty period. If the deformation has exceeded 10%, we recommend excavating and removing the factor causing the deformation Pipe deformation detection Objective of the deformation tests is to determine whether there is deformation of smaller inner diameter or relative deformation. Basic principle of determining relative deformation. Relative deformation (see Figure 3.2.4). Figure Relative deformation can be calculated by the following formula: where δ IDvid IDvid min maximum deformation mm; mean inner pipe diameter mm; the smallest measured inner diameter of the installed pipeline, mm. Choosing pipeline strength class Choice of strength grade of pipes used in gravity pipelines mainly depends on their initial enclosing material, its density and loads affecting the pipe (surface layer thickness and traffic load). EVOSAN and EVORAIN strength grade is SN8 (8 kn/m²), but to customer's special order EVOSAN and EVORAIN pipes can be manufactured with up to SN 31.5 (31.5 kn/m²). In areas free from traffic load the installation depth is 0,7 m, but in the streets, parking lots, etc., where there is traffic load, the installation depth is 1,0 m with SN8 pipes. The installation depth can be reduced to 0,5 m if the loads affecting the pipes are distributed by protective structures with higher strength grade pipes are used. In such case, see information provided in Section 2 Pipeline bends, connections and depth of installation. 23

24 SECTION 4 EVOSAN and EVORAIN sewerage system installation 25 Trench 25 Trench stability 26 Trench bedding 26 Water removal 26 Fastening and support 27 Types of bedding structures 27 Special bedding or support methods 28 Delivery, moving and transportation at the construction site 29 Storage at the site 29 Evosan and evorain installation in construction trench 30 Main principles of EVOSAN and EVORAIN system installation 33 Inspection of materials before installation 34 Pipe installation 34 Pipe cutting to size 35 Crossing reinforced concrete wells and walls 36 Installation of fittings 36 EVOSAN and EVORAIN pressure testing with water or air in accordance saskaņā with en

25 EVOSAN and EVORAIN sewerage system installation As the safety of the gravity sewerage piping systems depends on all parts of the pipeline, special attention should be paid to compatibility of pipes, trench foundation and initial filling material. In case of PP pipes it is essential to ensure mechanically stable system where unifirm force affects pipes from all sides. If the soil and trench bedding have reached maximum resistance to load (soil and vehicles), the system is considered mechanically stable. Trench Minimum required trench width (depending on pipe dimensions and installation depth) should comply with the regulations for sewerage pipeline installation and testing to EN Trenches should be designed and excavated to ensure correct and safe pipeline installation. If during the construction access to the external underground structure surface is required, for example, to sewerage holes, at least 0,50 m wide working space should be provided. If two or more pipes are installed in the same trench or fill, the distance between the pipelines should include minimum horizontal working space. Unless stated otherwise, it should be 0,35 m for pipes up to DN/OD 700 mm and 0,50 m for pipes over DN/OD 700 mm. If necessary, for all other supply pipelines, drain pipes and sewerage pipes, structures and surfaces appropriate safety measures should be provided to protect them from harmful effects. Fastening materials should not contain parts exceeding the following dimensions: 22 mm DN 200; 40 mm DN>200 līdz DN 600. Trench width Maximum trench width: trench width cannot exceed the maximum width specified in the structural design; if it is not possible, this matter should be agreed with design engineer. Minimum trench width ration to rated DN/OD Table DN/OD mm Trench with supports Minimum trench width (OD+X) m Trench without supports β> OD+0,40 OD+0, OD+0,40 OD+0, OD+0,40 OD+0,40 β OD+0,50 OD+0,50 OD+0, OD+0,50 OD+0,50 OD+0, OD+0,70 OD+0,70 OD+0, OD+0,70 OD+0,70 OD+0,40 Symbols: OD outer diameter in metres; β angle of the trench edge without support measured horizontally. 25

26 EVOSAN and EVORAIN sewerage system installation Minimum trench width ratio to trench depth Table Minimum trench width can have exceptions Minimum trench width obtained based on Tables and can be changed in the following circumstances: if staff will never need to step into the trench, for example, automated installation technologies are used; if the staff will never need to stand between the pipeline and the trench wall; in case of unavoidable restricting circumstances. NOTE: any of those cases will require special changes to be introduced in the design and structure. Trench stability Trench stability should be ensured either by support system of the trench sides or using other applicable methods. Trench support systems are removable in accordance with the structural design planning so as not to loosen or damage the pipeline. Trench bedding Trench bedding slope and trench bedding material must conform to the technical parameters of the design. Trench bedding material cannot be disturbed. If it has been, the initial load bearing capacity should be restored. If the pipes are to be installed on the trench bedding, it should be levelled to the required slope and shape to ensure the support of pipe cylinder. Recesses for pipe couplings in the trench bedding should be done as necessary. In freezing conditions, the bedding may need to be protected, so that the frozen layers do not remain below or above the pipes. Water removal Trench depth m During the installation, excavation site should be free from water, for example, rain water, leakages, spring water or water from pipeline leaks. Water removal methods cannot interfere with fastening parts and pipelines. During water removal, safety measure should be taken to avoid loss of expensive materials. Moreover, effect of water removal on groundwater movement and surrounding area stability should be taken into account. After completion of water removal, all discharge pipes should be properly closed. Minimum trench width m <1,00 Nav minimālā platuma prasību 1,00 1,75 0,80 >1,75 4,00 0,90 >4,00 1,00 26

27 EVOSAN and EVORAIN sewerage system installation Fastening and support General information Thickness of materials, beddings, supports and fastening should conform to the design requirements. Fastening materials and their connections with any support should be chosen taking into account: pipe size; pipe material and wall thickness; soil properties. Width of the fastening should correspond to the trench width, unless specified otherwise. Width of pipeline bases installed in the fills should be four times OD, unless specified otherwise. Minimum thickness of the initial filling layer c (see Figure 4.1.2) will be 150 mm above the pipe and 100 mm above the connection. When using materials c value specified in the design should be taken. Any amount of soft soil under the trench bedding should be removed and replaced with an appropriate bedding material. If a substantial amount of soft soil is discovered, it will be necessary to revise the structural design. Types of bedding structures Type 1 of bedding structure Type 1 of the bedding structure (Figure 4.1.1) can be used with any fastening ensuring support of the pipes along their entire length applying a and b layer thickness requirements It applies to all sizes and shapes of the pipes. Unless specified otherwise, thickness of bottom bedding a measured under the pipe cannot be less than: 100 mm in normal soil conditions; 150 mm in rocky or heavy soil conditions. Thickness of top bedding b will be as specified in the structural design. Type 2 of bedding structure Type 2 of the bedding structure (Figure 4.1.2) can be used with homogenous, relatively soft, grainy soil ensuring support of the pipes along their entire length. Pipes can be laid directly on the properly formed and levelled trench bedding. Thickness of top bedding b will be as specified in the structural design. Type 1 of bedding structure Figure Type 2 of bedding Figure structure 27

28 EVOSAN and EVORAIN sewerage system installation Type 3 of bendding structure Type 3 of the bedding structure (Figure 4.1.3) can be used with homogenous, relatively soft, grainy soil ensuring support of the pipes along their entire length. Pipes can be laid directly on the levelled trench bedding. Thickness of top bedding b will be as specified in the structural design. Type 3 of bedding structure Figure Special bedding or support methods If trench bedding has too low load bearing capacity to support of the pipe base materials, it is necessary to apply special measures. Such situation may be due to unstable soil, for example, peat, shifting sands. Examples of possible measures may be replacement of soil with other materials, for example, sand, gravel and hydraulic binding materials, or resting the pipelines on pile supports, for example, using cross beams or swing mounts, longitudinal beams or reinforced concrete slabs connecting the piles. The same way during designing and construction attention should be paid to transfers from one kind of soil conditions to other, which would require different solutions. Special bedding or pipeline support methods can be used only if their suitability has been confirmed by structural design calculations. NOTE: Pipelines resting on piles under ground can be subjected to extremely high loads. 28

29 EVOSAN and EVORAIN sewerage system installation Delivery, moving and transportation at the construction site Control of received materials The supplied pipes, pipeline elements and connection fittings should be inspected to make sure that the materials are properly labelled and conform to the customer's requirements. Manufacturer's instructions should be observed. All parts should be carefully inspected before both adjustment and installaiton to make sure that they have no damage. If the parts are damaged, they should be sent back making respective notes in the waybills. Delivery to the site Pipes and fittings should always be moved by specially designed vehicles and their loading and unloading should be supervised by a competent person. During transportation the pipes should rest on maximum possible surface area. Unloading from vehicles Always use hoisting belts (for example, made of fabric or similar). Use of chains or cable wires is not allowed. In any circumstances avoid falls or hard hits of the pallets against one another during lifting. Hoisting belts should be fixed in the middle of pallets at 3.5 m distance. During pallet movement they should be handdirected to the right position. Do not use crowbars or sticks for the movement of pallets on the vehicle. The pallets should be placed on the lift truck forks perpendicularly making sure there is a sufficient distance between the forks. Storage at the site Pipelines packs and pallets should be handled avoiding sharp blows. Pipe packs and pallets should be placed on sufficiently rigid and level surface to avoid sagging of the pipe packs and pallets or their bottom beams. Pipes and fittings can be stored outdoors, however, in such case the storage period cannot be longer than one year. Pipes should be stored in compliance with the following conditions: place the pipes so that they rest on a perfect level surface; height of piles of individual pipes cannot exceed 1 m. Pile sides should be supported.; packaged pipe pallets can be placed on top of each other. Stack height cannot exceed that set out in SECTION 3 EVOSAN and EVORAIN TRANSPORTATION AND STORAGE; in very hot summers plastic pipes should be protected from overheating. In such circumstances, it is recommended to find a place in the shadow or cover the pipes with light-coloured opaque tenth-cloth. 29

30 EVOSAN and EVORAIN pipe installation in construction trench EVOSAN and EVORAIN pipe installation in construction trench General information If the work is interrupted, it is advisable to cover the pipe ends temporarily. End protection caps should be taken just before the connection of the pipes. Avoid getting soil from the trench to the pipes. Remove the soil that has fallen into the pipe (the pipe should be clean). Routing and installation slope Pipes should be laid straight and at the slope specified in the design. And necessary adjustments and slopes shall be done by rasing or lowering the bedding always ensuring pipeline support along its entire length; see (Figure 4.1.4). Never make permanent adjustments with narrow support surface. Figure Evorain PP DN/OD 400 mm installation process

31 EVOSAN and EVORAIN pipe installation in construction trench Levelling course At the bottom of the construction trench on the filling layer or the bedding, the levelling course should be made with the distance from the bottom of the straight pipe section of at least mm (at least 100 mm under the coupling), see (Figure 4.1.5). In the design does not specify otherwise, in the traffic zone the levelling course is formed by sand, gravel or crushed stones. Size of particles of the levelling course material should be as close as possible to the bedding and primary filling (and surrounding natural soil) material to avoid risk of mixing. Primary filling (installation layer, side filling) The requirements are almost identical to those to the levelling course. Primary filling material (installation material) is a material around the pipe on the bedding or bottom layer, which can be the same as the levelling course material. Primary filling height should be at least 150 mm. Installation material should be compacted by layers. Maximum first layer height is half of the pipe diameter. If necessary, during compacting the pipelines can be filled with water. The installation material directly above the pipes can be compacted using special equipment only if thickness of the layer is at least 150 mm. For use of other compacting methods layer thickness should be at least 150 mm. Final filling (backfill) In the traffic area backfill is formed by the organic compactible soil (sand or stone chippings). The excavated soil can be used for backfilling provided it complies with the following requirements: 150 mm packing layer above the pipe (E layer in the Figure 4.1.5) should be of organic compactible soil (sand or stone chippings), backfill layer on top of it (C and D layers in Figure 4.1.5) cannot contain stones or hardened pieces with diameter exceeding 300 mm; packing material should be compactible and its maximum particle size should not exceed 2/3 of the packing layer thickness; backfill material should have variable grain size to prevent formation of voids. Compacting Density depends on compacting method, type of soil, equipment, backfilling technologies and backfill thickness. In the traffic area the backfill material should be compactible and compacted to at least 90% of the standard density by Proctor Density method EN If a trench is excavated in the green zone immediately next to a road, backfilling and compacting should nevertheless be carried out in accordance with the traffic area requirements. In other cases backfill should be compacted to the density of surrounding soil. The trench should be filled in such way so that during the subsequent compacting it reaches the design height and is at the level with the ground surface. 31

32 EVOSAN and EVORAIN pipe installation in construction trench Pipe installation in construction trenches with and without supports in accordance with Table Figure Marking: Dr standard density according to Proctor (%) DN/OD outer diameter A green zone (no traffic load) B under traffic way C filling with soil, compacting to Dr 85% D filling with soil, compacting to Dr 95% F filling with soil, compacting to Dr 95% G levelling course >100 līdz 150 mm E EVOSAN and EVORAIN (PP) pipelines without mechanical compaction I with support II without support NOTES 1. Levelling course under the pipelines is made of all existing soil types. 2. In places of pipeline connections recesses should be made in the levelling course to accommodate the couplings. 3. Pipeline installation, creation of levelling course and backfilling should be carried out in dry trenches. 4. x un β value can be determined using Table

33 Main principles of EVOSAN and EVORAIN system installation Main principles of EVOSAN and EVORAIN system installation General information EVOSAN and EVORAIN pipes are supplied complete with solid welded on polypropylene coupling and rubber sealing ring. Structured-wall sealing ring should be placed into the first complete corrugation groove in accordance with EN standard, see (Figure A, B). EVOSAN and EVORAIN sealing ring is made of highly slippery flexible and soft rubber, which allows connecting pipes without lubrication. Lubrication can be used for easier connection of large diameter pipes. Unique shape of the sealing ring allows the pipe to adjoin the coupling to create a watertight joint, see (Figure A, B). Figure A Figure B Marking 1 welded on solid polypropylene coupling 2 RAL white, smooth inner surface 3 EVOSAN (reddish brown) and EVORAIN (RAL black) structured surface 4 EVOPIPES patented new type sealing ring RECOMMENDATION Figure Connection of DN/OD 110, 160, 200, 250, 315 mm pipes does not require lubricant. Connection of DN/OD 400, 500 mm pipes may require lubricant for easier joining process. Before applying the lubricant make sure that inside of the solid coupling is clean. Only outer joint parts of the solid couplings or double couplings can be smeared with lubricant, see (Figure 4.2.2). Lubricant must be applied uniformly over the entire surface. Only special lubricants designed for this purpose should be used. Do not use oils or grease. 33

34 Main principles of EVOSAN and EVORAIN system installation Inspection of materials before installation Before the installation, the pipes and fittings should be inspected to make sure they have not been damaged during transportation and/or storage. Do not install damaged parts. Pipe installation Before the installation, make sure that the pipes and connection pieces are not damaged, then clean the pipe ends, coupling and sealing thoroughly. During intervals in the installation work, it is advisable to cover the pipe ends with protection plug to protect them from dirt (soil, debris). Place pipes onto the levelled trench bedding or levelling course so that the pipe would rest on the surface with its entire length. Wherever possible, protect pipe ends so that the joints to reduce the deformation by ongoing installation work as much as possible. Connect the pipes gradually using axis rotation method avoiding application of irregular load on the parts. Brief description of processes is given in Figure Measurement procedure and size marking on the pipe for cutting to size. When marking, take into account that the pipes can be cut only along the corrugation recesses. 2. After marking the size remove sealing ring. 3. After the sealing ring is removed, you can begin cutting. 4. After the pipe is cut, place the sealing ring back on the pipe. It shall be carefully placed into the first complete corrugation recess. 5. Just before joining the pipe coupling and the pipe end, check again and remove foreign objects, if necessary. 6. Place the coupling parallel to the pipe. Push into the joint as far as it can go. Force applied during connection should be uniformly distributed. Figure

35 Main principles of EVOSAN and EVORAIN system installation Pipe cutting to size Pipes can be cut to size using fine saw or other suitable tool by making cut in the corrugation groove vertically to the pipe axis. Smooth the edge roughness using sandpaper, file or knife. When cutting the pipe to size, remember that it has coupling on the other end and its length (M), see Figure A, B. Inner coupling lengths (M) depending on the diameter are given in Table Figure A Figure B Coupling joint inner length (m). depending on diameter Table Pipe outer diameter, mm M, mm

36 Main principles of EVOSAN and EVORAIN system installation Crossing reinforced concrete wells and walls EVOSAN and EVORAIN can be connected to reinforced concrete wells. In places where sewerage pipes enter reinforced concrete wells or cross wall structures, protection grommets should be used. Place the profiled sealing ring in the first complete corrugation groove (if the pipe has been cut to size make sure the cut is in the middle of the corrugation groove and the edges are not damaged in any way). Push the pipe to the drain through the protection grommet. Brief description of processes is given in Figure Make aperture of the required diameter in the reinforced concrete well and place the protection grommet, after that fill the gaps between the protection grommet and the aperture in the reinforced concrete well. After sealing the gaps, wait until the sealant hardens and only after that insert the pipe into the protection grommet. 2. Push the pipe into the protection grommet as far as it can go. 3. Pipe joined with the protection grommet. Figure Flexible connection with sewerage pipes If sewerage pipes are correctly connected to the reinforced concrete well (paying special attention to creation of sand bend in the place of connection), installation is possible without flexible joint. However, if mandatory design requirements at a particular site demand flexible connection, it can be easily done ion accordance with EN 1610; If needed, short pipe sections L 1.0 can be cut to size on site or specially ordered. Double couplings conforming to standards and appropriate sealing rings ensure the required flexibility. Installation of fittings Fittings have couplings on all ends and should be installed same as other sewerage pipes. Sealing ring are places in the first complete corrugation groove on the end of the pipe. 36

37 EVOSAN and EVORAIN pressure testing with water or air in accordance with EN 1610 Pressure tests of the system can be done using both compressed air or liquid in accordance with EN When pressure testing the system with water or air it is necessary to make sure that all the pipes and and connection points are closed and properly sealed. When filling the system with water make sure to arrange air vent at the highest point. Pressure tests of pipelines, shafts and inspection hatches should be performed with air or water. If pneumatic test is performed, number of correction measures and repeat tests in case of non-conformity to the requirements is not limited. If the pneumatic pressure test has been failed one or more times, it is allowed to perform hydraulic pressure test and only the result of that test will be decisive. Hydraulic pressure test Hydraulic pressure test of the system 0,5 bar. System filling time 30 min. Stabilisation time (including perspiration and similar processes) 1 hour. Test duration (30±1) min. As a result of the pressure test of the system during 30 min allowed pressure drop in the system is up to 0,01 bar. Conditions to be satisfied during the test with a particular volume of water depending on type of the sewerage system: if the sewerage system consists of pipelines only: 0,15 l/m2 wetted inner surface, test pressure 0,5 bar and test duration 30 min; if the sewerage system consists of pipelines and wells (UTILITY SEWERAGE NETWORKS): 0,20 l/m2 wetted inner surface, test pressure 0,5 bar and test duration 30 min; if the sewerage system consists of pipelines, wells and gullies (STORMWATER NETWORKS): 0,30 l/m2 wetted inner surface, test pressure 0,5 bar and test duration 30 min. Pneumatic pressure test Initially the air is supplied at the pressure 10% higher than the test pressure, then the system is adjusted for the respective testing method. Stabilisation time: 5 min. Test method LA LB LC LD Test pressure 0,01 bar 0,05 bar 0,1 bar 0,2 bar Allowed pressure drop, mbar 2, Test duration, min DN/OD ,5 DN/OD ,5 DN/OD ,5 DN/OD DN/OD DN/OD ,5 DN/OD

38 SECTION 5 Hydraulic parameter table 39 EVORAIN PP throughflow at roughness coefficient 0,25 mm 39 EVORAIN PP throughflow at roughness coefficient 0,40 mm 40 EVORAIN PP throughflow at roughness coefficient 0,75 mm 41 EVOSAN PP throughflow at roughness coefficient 0,25 mm 42 EVOSAN PP throughflow at roughness coefficient 0,40 mm 44 EVOSAN PP throughflow at roughness coefficient 0,75 mm 46 38

39 EVORAIN PP throughflow at roughness coefficient 0,25 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVORAIN PP (gravity stormwater sewerage networks) FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,25 mm) Fill (H/ID = 1,0) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6 I % I I Q v Q v Q v Q v Q v Q v Q v cm/m m/m mm/m m/km 0,1 0, ,7 0,24 4,8 0,32 8,8 0,37 15,5 0,42 29,3 0,50 55,9 0,58 102,4 0,67 0,13 0,0013 1,3 1,9 0,28 5,5 0,36 10,1 0,42 17,9 0,49 33,6 0,57 64,2 0,67 117,3 0,77 0,16 0,0016 1,6 2,1 0,31 6,2 0,41 11,3 0,47 19,9 0,54 37,5 0,64 71,5 0,74 130,6 0,86 0,2 0, ,4 0,35 6,9 0,46 12,7 0,53 22,4 0,61 42,1 0,71 80,2 0,84 146,6 0,97 0,25 0,0025 2,5 2,7 0,39 7,8 0,51 14,3 0,60 25,1 0,69 47,3 0,80 90,1 0,94 164,5 1,08 0,3 0, ,0 0,43 8,6 0,57 15,7 0,66 27,6 0,76 52,0 0,88 98,9 1,03 180,6 1,19 0,32 0,0032 3,2 3,1 0,45 8,9 0,58 16,3 0,68 28,6 0,78 53,7 0,91 102,3 1,06 186,7 1,23 0,4 0, ,5 0,51 10,0 0,66 18,3 0,76 32,1 0,88 60,3 1,02 114,7 1,19 209,3 1,38 0,5 0, ,9 0,57 11,2 0,74 20,5 0,86 36,0 0,98 67,6 1,15 128,6 1,34 234,6 1,55 0,59 0,0059 5,9 4,3 0,62 12,2 0,80 22,4 0,93 39,2 1,07 73,7 1,25 140,0 1,46 255,3 1,68 0,6 0, ,3 0,63 12,3 0,81 22,6 0,94 39,6 1,08 74,3 1,26 141,2 1,47 257,5 1,70 0,7 0, ,7 0,68 13,3 0,88 24,4 1,02 42,8 1,17 80,4 1,36 152,8 1,59 278,6 1,84 0,8 0, ,0 0,73 14,3 0,94 26,2 1,09 45,9 1,25 86,1 1,46 163,6 1,70 298,2 1,96 0,9 0, ,3 0,77 15,2 1,00 27,8 1,16 48,7 1,33 91,4 1,55 173,7 1,81 316,6 2,09 1 0, ,6 0,82 16,0 1,06 29,3 1,23 51,4 1,40 96,5 1,64 183,3 1,91 334,1 2,20 1,5 0, ,0 1,01 19,7 1,30 36,1 1,51 63,3 1,73 118,7 2,01 225,3 2,34 410,4 2,70 2 0, ,1 1,17 22,9 1,51 41,8 1,75 73,3 2,00 137,3 2,33 260,7 2,71 474,8 3,13 2,5 0, ,1 1,31 25,6 1,69 46,9 1,96 82,1 2,24 153,8 2,61 291,9 3,04 531,5 3,50 3 0, ,9 1,44 28,1 1,86 51,4 2,15 90,0 2,46 168,7 2,86 320,1 3,33 582,8 3,84 3,5 0, ,8 1,56 30,4 2,01 55,6 2,32 97,4 2,66 182,4 3,09 346,0 3,60 629,9 4,15 4 0, ,5 1,67 32,6 2,15 59,5 2,49 104,2 2,85 195,2 3,31 370,2 3,85 673,8 4,44 4,5 0, ,2 1,77 34,6 2,28 63,2 2,64 110,6 3,02 207,1 3,51 392,9 4,09 715,1 4,71 5 0, ,9 1,87 36,5 2,41 66,7 2,78 116,6 3,19 218,5 3,70 414,3 4,31 754,1 4,97 5,5 0, ,5 1,96 38,3 2,53 70,0 2,92 122,4 3,34 229,2 3,88 434,7 4,52 791,2 5,21 6 0, ,2 2,05 40,0 2,64 73,1 3,05 127,9 3,49 239,5 4,06 454,2 4,73 6,5 0, ,8 2,13 41,7 2,75 76,2 3,18 133,2 3,64 249,4 4,23 472,9 4,92 7 0, ,3 2,22 43,3 2,85 79,1 3,30 138,3 3,78 258,9 4,39 490,9 5,11 7,5 0, ,9 2,30 44,8 2,96 81,9 3,42 143,2 3,91 268,1 4,54 8 0, ,4 2,37 46,3 3,05 84,6 3,53 147,9 4,04 276,9 4,69 8,5 0, ,9 2,45 47,7 3,15 87,2 3,64 152,5 4,17 285,5 4,84 9 0, ,4 2,52 49,1 3,24 89,8 3,75 157,0 4,29 293,9 4,98 9,5 0, ,9 2,59 50,5 3,33 92,3 3,85 161,3 4,41 302,0 5, , ,4 2,66 51,8 3,42 94,7 3,95 165,5 4, , ,3 2,79 54,4 3,59 99,3 4,15 173,7 4, , ,5 3,26 63,6 4,20 116,2 4, , ,1 3,77 73,5 4,85 Symbols used in the tabels are given on page 47* 39

40 EVORAIN PP throughflow at roughness coefficient 0,40 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVORAIN PP (gravity stormwater sewerage networks) FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,40 mm) Fill (H/ID = 1,0) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6 I % I I Q v Q v Q v Q v Q v Q v Q v mm/m cm/m m/m m/km 0,1 0, ,6 0,23 4,6 0,30 8,5 0,35 14,9 0,41 28,2 0,48 53,7 0,56 98,3 0,65 0,13 0,0013 1,3 1,8 0,27 5,3 0,35 9,7 0,41 17,1 0,47 32,3 0,55 61,5 0,64 112,5 0,74 0,16 0,0016 1,6 2,1 0,30 5,9 0,39 10,8 0,45 19,1 0,52 35,9 0,61 68,5 0,71 125,2 0,82 0,2 0, ,3 0,34 6,6 0,44 12,2 0,51 21,4 0,58 40,3 0,68 76,8 0,80 140,3 0,92 0,25 0,0025 2,5 2,6 0,38 7,4 0,49 13,7 0,57 24,0 0,66 45,2 0,77 86,1 0,90 157,3 1,04 0,3 0, ,9 0,41 8,2 0,54 15,0 0,63 26,4 0,72 49,6 0,84 94,5 0,98 172,6 1,14 0,32 0,0032 3,2 3,0 0,43 8,5 0,56 15,5 0,65 27,3 0,75 51,3 0,87 97,7 1,02 178,4 1,18 0,4 0, ,3 0,48 9,5 0,63 17,4 0,73 30,6 0,84 57,5 0,97 109,5 1,14 199,8 1,32 0,5 0, ,7 0,54 10,6 0,70 19,5 0,82 34,3 0,94 64,5 1,09 122,6 1,28 223,8 1,47 0,59 0,0059 5,9 4,1 0,59 11,6 0,76 21,3 0,89 37,3 1,02 70,1 1,19 133,4 1,39 243,4 1,60 0,6 0, ,1 0,59 11,7 0,77 21,5 0,90 37,6 1,03 70,7 1,20 134,6 1,40 245,5 1,62 0,7 0, ,4 0,64 12,7 0,84 23,2 0,97 40,7 1,11 76,5 1,30 145,5 1,51 265,5 1,75 0,8 0, ,8 0,69 13,5 0,89 24,9 1,04 43,6 1,19 81,9 1,39 155,7 1,62 284,0 1,87 0,9 0, ,1 0,73 14,4 0,95 26,4 1,10 46,3 1,26 86,9 1,47 165,3 1,72 301,5 1,99 1 0, ,3 0,77 15,2 1,00 27,9 1,16 48,8 1,33 91,7 1,55 174,4 1,81 318,0 2,10 1,5 0, ,6 0,95 18,7 1,23 34,2 1,43 60,0 1,64 112,6 1,91 214,1 2,23 390,3 2,57 2 0, ,6 1,10 21,6 1,43 39,6 1,65 69,4 1,90 130,3 2,21 247,5 2,58 451,2 2,97 2,5 0, ,5 1,24 24,2 1,60 44,4 1,85 77,7 2,12 145,8 2,47 277,0 2,88 504,9 3,33 3 0, ,4 1,36 26,6 1,75 48,7 2,03 85,2 2,33 159,9 2,71 303,7 3,16 553,5 3,65 3,5 0, ,1 1,47 28,7 1,90 52,6 2,20 92,1 2,52 172,8 2,93 328,2 3,42 598,1 3,94 4 0, ,8 1,57 30,7 2,03 56,3 2,35 98,6 2,69 184,8 3,13 351,1 3,65 639,7 4,21 4,5 0, ,5 1,67 32,6 2,15 59,7 2,49 104,6 2,86 196,1 3,32 372,5 3,88 678,7 4,47 5 0, ,1 1,76 34,4 2,27 63,0 2,63 110,3 3,01 206,8 3,51 392,8 4,09 715,7 4,72 5,5 0, ,7 1,84 36,1 2,38 66,1 2,76 115,7 3,16 217,0 3,68 412,1 4,29 750,8 4,95 6 0, ,3 1,93 37,7 2,49 69,0 2,88 120,9 3,30 226,7 3,84 430,5 4,48 784,3 5,17 6,5 0, ,9 2,01 39,3 2,59 71,9 3,00 125,9 3,44 236,0 4,00 448,2 4,66 7 0, ,4 2,08 40,8 2,69 74,6 3,12 130,7 3,57 245,0 4,15 465,2 4,84 7,5 0, ,9 2,16 42,2 2,79 77,3 3,23 135,3 3,70 253,7 4,30 481,6 5,01 8 0, ,4 2,23 43,6 2,88 79,8 3,33 139,8 3,82 262,0 4,44 8,5 0, ,9 2,30 45,0 2,97 82,3 3,44 144,1 3,94 270,1 4,58 9 0, ,4 2,37 46,3 3,05 84,7 3,54 148,3 4,05 278,0 4,71 9,5 0, ,8 2,43 47,6 3,14 87,0 3,64 152,4 4,16 285,7 4, , ,2 2,50 48,8 3,22 89,3 3,73 156,4 4,27 293,1 4, , ,1 2,62 51,2 3,38 93,7 3,91 164,0 4,48 307,5 5, , ,2 3,06 59,9 3,95 109,5 4,57 191,7 5, , ,5 3,54 69,2 4,57 126,6 5,29 40 Symbols used in the tabels are given on page 47*

41 EVORAIN PP throughflow at roughness coefficient 0,75 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVORAIN PP (gravity stormwater sewerage networks) FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,75 mm) Fill (H/ID = 1,0) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6 I % I I Q v Q v Q v Q v Q v Q v Q v mm/m cm/m m/m m/km 0,1 0, ,5 0,22 4,3 0,28 7,9 0,33 14,0 0,38 26,4 0,45 50,3 0,52 92,1 0,61 0,13 0,0013 1,3 1,7 0,25 4,9 0,33 9,1 0,38 16,0 0,44 30,1 0,51 57,5 0,60 105,3 0,69 0,16 0,0016 1,6 1,9 0,28 5,5 0,36 10,1 0,42 17,8 0,49 33,5 0,57 63,9 0,67 117,0 0,77 0,2 0, ,1 0,31 6,2 0,41 11,3 0,47 19,9 0,54 37,6 0,64 71,6 0,75 131,0 0,86 0,25 0,0025 2,5 2,4 0,35 6,9 0,46 12,7 0,53 22,3 0,61 42,1 0,71 80,2 0,83 146,7 0,97 0,3 0, ,6 0,38 7,6 0,50 13,9 0,58 24,5 0,67 46,2 0,78 88,0 0,92 160,9 1,06 0,32 0,0032 3,2 2,7 0,40 7,8 0,52 14,4 0,60 25,3 0,69 47,7 0,81 90,9 0,95 166,2 1,10 0,4 0, ,1 0,44 8,8 0,58 16,1 0,67 28,4 0,78 53,4 0,91 101,8 1,06 186,1 1,23 0,5 0, ,4 0,50 9,8 0,65 18,1 0,76 31,8 0,87 59,8 1,01 114,0 1,19 208,3 1,37 0,59 0,0059 5,9 3,7 0,54 10,7 0,71 19,7 0,82 34,6 0,94 65,0 1,10 123,9 1,29 226,4 1,49 0,6 0, ,8 0,55 10,8 0,71 19,8 0,83 34,9 0,95 65,6 1,11 125,0 1,30 228,4 1,50 0,7 0, ,1 0,59 11,7 0,77 21,4 0,90 37,7 1,03 70,9 1,20 135,1 1,41 246,8 1,63 0,8 0, ,4 0,63 12,5 0,82 23,0 0,96 40,3 1,10 75,9 1,29 144,5 1,50 264,0 1,74 0,9 0, ,7 0,67 13,3 0,88 24,4 1,02 42,8 1,17 80,5 1,36 153,3 1,60 280,1 1,85 1 0, ,9 0,71 14,0 0,92 25,7 1,07 45,1 1,23 84,9 1,44 161,7 1,68 295,4 1,95 1,5 0, ,0 0,87 17,2 1,13 31,5 1,32 55,4 1,51 104,2 1,77 198,3 2,06 362,2 2,39 2 0, ,0 1,01 19,9 1,31 36,5 1,52 64,0 1,75 120,4 2,04 229,2 2,39 418,6 2,76 2,5 0, ,8 1,13 22,2 1,47 40,8 1,70 71,6 1,96 134,7 2,28 256,4 2,67 468,2 3,09 3 0, ,6 1,24 24,4 1,61 44,7 1,87 78,5 2,15 147,6 2,50 281,0 2,92 513,1 3,38 3,5 0, ,3 1,34 26,3 1,74 48,3 2,02 84,9 2,32 159,5 2,70 303,6 3,16 554,4 3,65 4 0, ,9 1,43 28,2 1,86 51,7 2,16 90,8 2,48 170,6 2,89 324,7 3,38 592,8 3,91 4,5 0, ,5 1,52 29,9 1,97 54,9 2,29 96,3 2,63 181,0 3,07 344,5 3,58 628,9 4,14 5 0, ,1 1,60 31,5 2,08 57,9 2,42 101,5 2,77 190,8 3,23 363,2 3,78 663,0 4,37 5,5 0, ,6 1,68 33,1 2,18 60,7 2,53 106,5 2,91 200,2 3,39 381,0 3,96 695,5 4,58 6 0, ,1 1,76 34,6 2,28 63,4 2,65 111,3 3,04 209,1 3,54 398,0 4,14 726,5 4,79 6,5 0, ,6 1,83 36,0 2,37 66,0 2,76 115,8 3,16 217,7 3,69 414,3 4,31 756,3 4,98 7 0, ,1 1,90 37,3 2,46 68,5 2,86 120,2 3,28 225,9 3,83 430,0 4,47 784,9 5,17 7,5 0, ,6 1,97 38,7 2,55 70,9 2,96 124,5 3,40 233,9 3,96 445,1 4,63 8 0, ,0 2,03 39,9 2,64 73,3 3,06 128,6 3,51 241,6 4,09 459,7 4,78 8,5 0, ,5 2,10 41,2 2,72 75,5 3,15 132,5 3,62 249,1 4,22 473,9 4,93 9 0, ,9 2,16 42,4 2,80 77,7 3,25 136,4 3,73 256,3 4,34 487,7 5,08 9,5 0, ,3 2,22 43,5 2,87 79,9 3,34 140,1 3,83 263,3 4, , ,7 2,27 44,7 2,95 82,0 3,42 143,8 3,93 270,2 4, , ,5 2,39 46,9 3,09 86,0 3,59 150,8 4,12 283,4 4, , ,3 2,79 54,8 3,61 100,4 4,20 176,2 4, , ,3 3,22 63,3 4,17 116,0 4,85 Symbols used in the tabels are given on page 47* 41

42 EVOSAN PP throughflow at roughness coefficient 0,25 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) PARTLY FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,25 mm) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) Manning's coefficient K s 1/3 /m Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75 OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6 I % I I Q v Q v Q v Q v Q v Q v Q v cm/m m/m mm/m m/km 0,1 0, ,8 0,22 2,8 0,30 5,1 0,34 8,8 0,38 20,3 0,46 38,2 0,53 75,0 0,61 0,17 0,0017 1,7 1,0 0,29 3,7 0,39 6,6 0,44 11,5 0,50 26,5 0,60 49,7 0,69 97,8 0,80 0,2 0, ,1 0,31 4,0 0,42 7,2 0,48 12,4 0,54 28,7 0,65 54,0 0,75 106,0 0,87 0,22 0,0022 2,2 1,1 0,33 4,2 0,44 7,5 0,50 13,1 0,57 30,1 0,68 56,6 0,79 111,2 0,91 0,28 0,0028 2,8 1,3 0,37 4,7 0,50 8,5 0,57 14,7 0,64 34,0 0,77 63,8 0,89 125,5 1,03 0,3 0, ,3 0,38 4,9 0,51 8,8 0,59 15,2 0,66 35,2 0,80 66,1 0,92 129,9 1,06 0,38 0,0038 3,8 1,5 0,43 5,5 0,58 9,9 0,66 17,2 0,75 39,6 0,90 74,4 1,04 146,2 1,20 0,4 0, ,5 0,44 5,6 0,59 10,2 0,68 17,6 0,77 40,6 0,92 76,3 1,06 150,0 1,23 0,47 0,0047 4,7 1,6 0,48 6,1 0,64 11,0 0,74 19,1 0,83 44,1 1,00 82,7 1,15 162,6 1,33 0,5 0, ,7 0,49 6,3 0,66 11,4 0,76 19,7 0,86 45,4 1,03 85,3 1,19 167,7 1,37 0,59 0,0059 5,9 1,8 0,53 6,8 0,72 12,4 0,82 21,4 0,93 49,4 1,12 92,7 1,29 182,1 1,49 0,6 0, ,9 0,54 6,9 0,73 12,5 0,83 21,6 0,94 49,8 1,13 93,5 1,30 183,7 1,50 0,7 0, ,0 0,58 7,5 0,78 13,5 0,90 23,3 1,02 53,8 1,22 100,9 1,40 198,4 1,62 0,8 0, ,2 0,62 8,0 0,84 14,4 0,96 24,9 1,09 57,5 1,30 107,9 1,50 212,1 1,74 0,9 0, ,3 0,66 8,4 0,89 15,3 1,02 26,4 1,15 61,0 1,38 114,5 1,59 225,0 1,84 0,98 0,0098 9,8 2,4 0,69 8,8 0,93 15,9 1,06 27,6 1,20 63,6 1,44 119,4 1,66 234,7 1,92 1 0, ,4 0,70 8,9 0,94 16,1 1,07 27,8 1,21 64,3 1,46 120,6 1,68 237,1 1,94 1,5 0, ,9 0,85 10,9 1,15 19,7 1,31 34,1 1,49 78,7 1,78 147,8 2,06 290,4 2,38 2 0, ,4 0,98 12,6 1,33 22,7 1,52 39,4 1,72 90,9 2,06 170,6 2,37 335,3 2,75 2,5 0, ,8 1,10 14,1 1,48 25,4 1,70 44,0 1,92 101,6 2,30 190,8 2,65 374,9 3,07 3 0, ,2 1,21 15,4 1,63 27,9 1,86 48,2 2,10 111,3 2,52 209,0 2,91 410,7 3,36 3,5 0, ,5 1,30 16,7 1,76 30,1 2,01 52,1 2,27 120,2 2,72 225,7 3,14 443,6 3,63 4 0, ,8 1,39 17,8 1,88 32,2 2,14 55,7 2,43 128,5 2,91 241,3 3,36 474,2 3,88 4,5 0, ,1 1,48 18,9 1,99 34,1 2,27 59,0 2,57 136,3 3,09 255,9 3,56 503,0 4,12 5 0, ,4 1,56 19,9 2,10 36,0 2,40 62,2 2,71 143,7 3,26 269,8 3,75 530,2 4,34 5,5 0, ,6 1,63 20,9 2,20 37,7 2,51 65,3 2,85 150,7 3,42 282,9 3,94 556,1 4,55 6 0, ,9 1,70 21,8 2,30 39,4 2,63 68,2 2,97 157,4 3,57 295,5 4,11 580,8 4,76 6,5 0, ,1 1,77 22,7 2,39 41,0 2,73 71,0 3,09 163,8 3,71 307,6 4,28 604,5 4,95 7 0, ,4 1,84 23,6 2,48 42,5 2,84 73,6 3,21 170,0 3,85 319,2 4,44 627,4 5,14 7,5 0, ,6 1,91 24,4 2,57 44,0 2,94 76,2 3,32 176,0 3,99 330,4 4,60 8 0, ,8 1,97 25,2 2,65 45,5 3,03 78,7 3,43 181,7 4,12 341,2 4,75 8,5 0, ,0 2,03 26,0 2,74 46,9 3,13 81,1 3,54 187,3 4,25 351,7 4,90 9 0, ,2 2,09 26,7 2,81 48,2 3,22 83,5 3,64 192,8 4,37 361,9 5,04 9,5 0, ,4 2,14 27,5 2,89 49,6 3,30 85,8 3,74 198,0 4, , ,6 2,20 28,2 2,97 50,9 3,39 88,0 3,84 203,2 4,61 42 Symbols used in the tabels are given on page 47*

43 EVOSAN PP throughflow at roughness coefficient 0,25 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) PARTLY FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,25 mm) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) Manning's coefficient K s 1/3 /m Fill H/ID 0,5 0,6 0,6 0,6 0,7 OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 I % I I Q v Q v Q v Q v Q v mm/m cm/m m/m m/km 11 0, ,0 2,31 29,5 3,11 53,3 3,56 92,3 4,02 213,1 4, , ,3 2,41 30,9 3,25 55,7 3,71 96,4 4,20 222,6 5, , ,7 2,51 32,1 3,38 58,0 3,87 100,4 4, , ,0 2,60 33,3 3,51 60,2 4,01 104,1 4, , ,3 2,69 34,5 3,63 62,3 4,15 107,8 4, , ,6 2,78 35,6 3,75 64,3 4,29 111,3 4, , ,9 2,87 36,7 3,87 66,3 4,42 114,8 5, , ,2 2,95 37,8 3,98 68,2 4, , ,5 3,03 38,8 4,09 70,1 4, , ,8 3,11 39,8 4,20 71,9 4, , ,0 3,19 40,8 4,30 73,7 4, , ,3 3,26 41,8 4,40 75,4 5, , ,5 3,34 42,7 4, , ,8 3,41 43,6 4, , ,0 3,48 44,5 4, , ,3 3,55 45,4 4, , ,5 3,62 46,3 4, , ,7 3,68 47,1 4, , ,9 3,75 48,0 5, , ,2 3, , ,4 3, , ,6 3, , ,8 4, , ,0 4, , ,2 4, , ,4 4, , ,6 4, , ,8 4, , ,0 4, , ,2 4,40 Symbols used in the tabels are given on page 47* 43

44 EVOSAN PP throughflow at roughness coefficient 0,40 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) PARTLY FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,40 mm) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) Manning's coefficient K s 1/3 /m Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75 OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6 I % I I Q v Q v Q v Q v Q v Q v Q v cm/m m/m mm/m m/km 0,1 0, ,7 0,21 2,7 0,28 4,8 0,32 8,4 0,36 19,3 0,44 36,3 0,50 71,3 0,58 0,17 0,0017 1,7 0,9 0,27 3,5 0,37 6,3 0,42 10,9 0,48 25,2 0,57 47,3 0,66 93,0 0,76 0,2 0, ,0 0,30 3,8 0,40 6,8 0,46 11,8 0,52 27,3 0,62 51,3 0,71 100,9 0,83 0,22 0,0022 2,2 1,1 0,31 4,0 0,42 7,2 0,48 12,4 0,54 28,7 0,65 53,8 0,75 105,8 0,87 0,28 0,0028 2,8 1,2 0,35 4,5 0,47 8,1 0,54 14,0 0,61 32,3 0,73 60,7 0,84 119,3 0,98 0,3 0, ,3 0,36 4,6 0,49 8,4 0,56 14,5 0,63 33,5 0,76 62,8 0,87 123,5 1,01 0,38 0,0038 3,8 1,4 0,41 5,2 0,55 9,4 0,63 16,3 0,71 37,7 0,85 70,7 0,98 139,0 1,14 0,4 0, ,4 0,42 5,4 0,56 9,7 0,64 16,7 0,73 38,6 0,88 72,6 1,01 142,6 1,17 0,47 0,0047 4,7 1,6 0,45 5,8 0,61 10,5 0,70 18,1 0,79 41,9 0,95 78,7 1,09 154,6 1,27 0,5 0, ,6 0,47 6,0 0,63 10,8 0,72 18,7 0,82 43,2 0,98 81,1 1,13 159,5 1,31 0,59 0,0059 5,9 1,8 0,51 6,5 0,69 11,7 0,78 20,3 0,89 46,9 1,06 88,1 1,23 173,2 1,42 0,6 0, ,8 0,51 6,6 0,69 11,8 0,79 20,5 0,89 47,3 1,07 88,9 1,24 174,7 1,43 0,7 0, ,9 0,55 7,1 0,75 12,8 0,85 22,1 0,97 51,1 1,16 96,0 1,34 188,7 1,55 0,8 0, ,0 0,59 7,6 0,80 13,7 0,91 23,7 1,03 54,7 1,24 102,6 1,43 201,7 1,65 0,9 0, ,2 0,63 8,0 0,85 14,5 0,97 25,1 1,09 58,0 1,31 108,9 1,51 213,9 1,75 0,98 0,0098 9,8 2,3 0,66 8,4 0,88 15,1 1,01 26,2 1,14 60,5 1,37 113,6 1,58 223,2 1,83 1 0, ,3 0,66 8,5 0,89 15,3 1,02 26,5 1,15 61,1 1,39 114,7 1,60 225,5 1,85 1,5 0, ,8 0,81 10,4 1,09 18,7 1,25 32,4 1,41 74,8 1,70 140,5 1,96 276,2 2,26 2 0, ,2 0,94 12,0 1,26 21,6 1,44 37,4 1,63 86,4 1,96 162,3 2,26 318,9 2,61 2,5 0, ,6 1,05 13,4 1,41 24,2 1,61 41,9 1,82 96,6 2,19 181,4 2,52 356,6 2,92 3 0, ,0 1,15 14,7 1,55 26,5 1,77 45,8 2,00 105,8 2,40 198,7 2,77 390,6 3,20 3,5 0, ,3 1,24 15,8 1,67 28,6 1,91 49,5 2,16 114,3 2,59 214,7 2,99 421,9 3,46 4 0, ,6 1,32 16,9 1,78 30,6 2,04 52,9 2,31 122,2 2,77 229,5 3,19 451,0 3,69 4,5 0, ,9 1,40 18,0 1,89 32,4 2,16 56,2 2,45 129,6 2,94 243,4 3,39 478,4 3,92 5 0, ,1 1,48 18,9 2,00 34,2 2,28 59,2 2,58 136,6 3,10 256,6 3,57 504,3 4,13 5,5 0, ,4 1,55 19,9 2,09 35,9 2,39 62,1 2,71 143,3 3,25 269,1 3,74 528,9 4,33 6 0, ,6 1,62 20,7 2,19 37,5 2,50 64,8 2,83 149,7 3,39 281,1 3,91 552,4 4,52 6,5 0, ,8 1,69 21,6 2,27 39,0 2,60 67,5 2,94 155,8 3,53 292,5 4,07 574,9 4,71 7 0, ,0 1,75 22,4 2,36 40,5 2,70 70,0 3,05 161,7 3,66 303,6 4,22 596,6 4,89 7,5 0, ,3 1,81 23,2 2,44 41,9 2,79 72,5 3,16 167,4 3,79 314,2 4,37 617,6 5,06 8 0, ,5 1,87 24,0 2,52 43,3 2,88 74,9 3,26 172,8 3,92 324,5 4,52 8,5 0, ,7 1,93 24,7 2,60 44,6 2,97 77,2 3,36 178,2 4,04 334,5 4,66 9 0, ,9 1,99 25,4 2,68 45,9 3,06 79,4 3,46 183,3 4,16 344,2 4,79 9,5 0, ,0 2,04 26,1 2,75 47,1 3,14 81,6 3,56 188,4 4,27 353,7 4, , ,2 2,09 26,8 2,82 48,4 3,22 83,7 3,65 193,2 4,38 362,8 5,05 44 Symbols used in the tabels are given on page 47*

45 EVOSAN PP throughflow at roughness coefficient 0,40 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) PARTLY FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,40 mm) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) Manning's coefficient K s 1/3 /m Fill H/ID 0,5 0,6 0,6 0,6 0,7 OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 I % I I Q v Q v Q v Q v Q v mm/m cm/m m/m m/km 11 0, ,6 2,19 28,1 2,96 50,7 3,38 87,8 3,83 202,7 4, , ,9 2,29 29,3 3,09 53,0 3,53 91,7 4,00 211,7 4, , ,2 2,39 30,5 3,22 55,1 3,68 95,4 4,16 220,3 4, , ,6 2,48 31,7 3,34 57,2 3,82 99,0 4,32 228,7 5, , ,9 2,56 32,8 3,46 59,2 3,95 102,5 4, , ,1 2,65 33,9 3,57 61,2 4,08 105,9 4, , ,4 2,73 34,9 3,68 63,1 4,20 109,1 4, , ,7 2,81 35,9 3,79 64,9 4,33 112,3 4, , ,0 2,88 36,9 3,89 66,7 4,44 115,4 5, , ,2 2,96 37,9 3,99 68,4 4, , ,5 3,03 38,8 4,09 70,1 4, , ,7 3,10 39,7 4,19 71,7 4, , ,0 3,17 40,6 4,28 73,4 4, , ,2 3,24 41,5 4,37 74,9 5, , ,4 3,31 42,4 4, , ,7 3,37 43,2 4, , ,9 3,44 44,0 4, , ,1 3,50 44,8 4, , ,3 3,56 45,6 4, , ,5 3,62 46,4 4, , ,7 3,68 47,2 4, , ,9 3,74 47,9 5, , ,1 3, , ,3 3, , ,5 3, , ,7 3, , ,9 4, , ,1 4, , ,3 4, , ,5 4,19 Symbols used in the tabels are given on page 47* 45

46 EVOSAN PP throughflow at roughness coefficient 0,75 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) PARTLY FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,75 mm) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) Manning's coefficient K s 1/3 /m Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75 OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6 I % I I Q v Q v Q v Q v Q v Q v Q v cm/m m/m mm/m m/km 0,1 0, ,7 0,19 2,5 0,26 4,5 0,30 7,8 0,34 18,0 0,41 33,8 0,47 66,4 0,54 0,17 0,0017 1,7 0,9 0,25 3,3 0,34 5,9 0,39 10,2 0,44 23,5 0,53 44,1 0,61 86,6 0,71 0,2 0, ,0 0,28 3,5 0,37 6,4 0,42 11,0 0,48 25,4 0,58 47,8 0,66 93,9 0,77 0,22 0,0022 2,2 1,0 0,29 3,7 0,39 6,7 0,45 11,6 0,50 26,7 0,60 50,1 0,70 98,5 0,81 0,28 0,0028 2,8 1,1 0,33 4,2 0,44 7,5 0,50 13,0 0,57 30,1 0,68 56,5 0,79 111,1 0,91 0,3 0, ,2 0,34 4,3 0,46 7,8 0,52 13,5 0,59 31,2 0,71 58,5 0,81 115,0 0,94 0,38 0,0038 3,8 1,3 0,38 4,9 0,51 8,8 0,59 15,2 0,66 35,1 0,80 65,9 0,92 129,4 1,06 0,4 0, ,3 0,39 5,0 0,53 9,0 0,60 15,6 0,68 36,0 0,82 67,6 0,94 132,8 1,09 0,47 0,0047 4,7 1,5 0,42 5,4 0,57 9,8 0,65 16,9 0,74 39,0 0,88 73,2 1,02 144,0 1,18 0,5 0, ,5 0,44 5,6 0,59 10,1 0,67 17,4 0,76 40,2 0,91 75,5 1,05 148,5 1,22 0,59 0,0059 5,9 1,6 0,47 6,1 0,64 10,9 0,73 18,9 0,83 43,7 0,99 82,1 1,14 161,3 1,32 0,6 0, ,6 0,48 6,1 0,64 11,0 0,74 19,1 0,83 44,1 1,00 82,8 1,15 162,7 1,33 0,7 0, ,8 0,52 6,6 0,70 11,9 0,79 20,6 0,90 47,6 1,08 89,4 1,24 175,7 1,44 0,8 0, ,9 0,55 7,1 0,74 12,7 0,85 22,0 0,96 50,9 1,15 95,6 1,33 187,8 1,54 0,9 0, ,0 0,58 7,5 0,79 13,5 0,90 23,4 1,02 54,0 1,22 101,4 1,41 199,2 1,63 0,98 0,0098 9,8 2,1 0,61 7,8 0,82 14,1 0,94 24,4 1,06 56,3 1,28 105,8 1,47 207,9 1,70 1 0, ,1 0,62 7,9 0,83 14,2 0,95 24,6 1,07 56,9 1,29 106,8 1,49 210,0 1,72 1,5 0, ,6 0,75 9,7 1,02 17,4 1,16 30,2 1,32 69,7 1,58 130,9 1,82 257,2 2,11 2 0, ,0 0,87 11,2 1,18 20,1 1,34 34,9 1,52 80,5 1,82 151,1 2,10 297,0 2,43 2,5 0, ,4 0,97 12,5 1,31 22,5 1,50 39,0 1,70 90,0 2,04 168,9 2,35 332,0 2,72 3 0, ,7 1,07 13,7 1,44 24,7 1,64 42,7 1,86 98,6 2,23 185,1 2,58 363,7 2,98 3,5 0, ,0 1,15 14,8 1,55 26,6 1,78 46,1 2,01 106,5 2,41 199,9 2,78 392,9 3,22 4 0, ,3 1,23 15,8 1,66 28,5 1,90 49,3 2,15 113,8 2,58 213,7 2,97 420,0 3,44 4,5 0, ,5 1,31 16,7 1,76 30,2 2,01 52,3 2,28 120,7 2,74 226,6 3,15 445,5 3,65 5 0, ,8 1,38 17,6 1,86 31,8 2,12 55,1 2,40 127,2 2,88 238,9 3,32 469,6 3,85 5,5 0, ,0 1,45 18,5 1,95 33,4 2,23 57,8 2,52 133,5 3,02 250,6 3,49 492,5 4,03 6 0, ,2 1,51 19,3 2,04 34,9 2,33 60,4 2,63 139,4 3,16 261,7 3,64 514,4 4,21 6,5 0, ,4 1,57 20,1 2,12 36,3 2,42 62,8 2,74 145,1 3,29 272,4 3,79 535,4 4,38 7 0, ,6 1,63 20,9 2,20 37,7 2,51 65,2 2,84 150,6 3,41 282,7 3,93 555,6 4,55 7,5 0, ,8 1,69 21,6 2,28 39,0 2,60 67,5 2,94 155,8 3,53 292,6 4,07 575,1 4,71 8 0, ,0 1,74 22,3 2,35 40,3 2,69 69,7 3,04 160,9 3,65 302,2 4,21 593,9 4,86 8,5 0, ,2 1,80 23,0 2,42 41,5 2,77 71,9 3,13 165,9 3,76 311,5 4,34 612,2 5,01 9 0, ,4 1,85 23,7 2,49 42,7 2,85 73,9 3,22 170,7 3,87 320,5 4,46 9,5 0, ,6 1,90 24,3 2,56 43,9 2,93 76,0 3,31 175,4 3,98 329,3 4, , ,7 1,95 24,9 2,63 45,0 3,00 77,9 3,40 179,9 4,08 337,9 4,70 46 Symbols used in the tabels are given on page 47*

47 EVOSAN PP throughflow at roughness coefficient 0,75 mm HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) PARTLY FULL (in accordance with Colebrook-White and Manning's equations) Roughness coefficient (k = 0,75 mm) Temperature (t = 100C) Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s) Manning's coefficient K s 1/3 /m Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 OD/DN mm ID mm 93,8 138,9 174,6 215,9 274,1 349,8 I % I I Q v Q v Q v Q v Q v Q v cm/m m/m mm/m m/km 11 0, ,1 2,04 26,2 2,76 47,2 3,15 81,7 3,56 188,7 4,28 354,4 4, , ,4 2,13 27,3 2,88 49,3 3,29 85,4 3,72 197,1 4,47 370,1 5, , ,7 2,22 28,4 3,00 51,4 3,42 88,9 3,87 205,2 4, , ,0 2,31 29,5 3,11 53,3 3,55 92,2 4,02 212,9 4, , ,2 2,39 30,5 3,22 55,2 3,68 95,5 4,16 220,4 5, , ,5 2,46 31,6 3,32 57,0 3,80 98,6 4, , ,8 2,54 32,5 3,43 58,7 3,91 101,6 4, , ,0 2,61 33,5 3,53 60,4 4,03 104,6 4, , ,3 2,69 34,4 3,62 62,1 4,14 107,4 4, , ,5 2,76 35,3 3,72 63,7 4,25 110,2 4, , ,8 2,82 36,1 3,81 65,3 4,35 113,0 4, , ,0 2,89 37,0 3,90 66,8 4,45 115,6 5, , ,2 2,96 37,8 3,98 68,3 4, , ,4 3,02 38,6 4,07 69,8 4, , ,6 3,08 39,4 4,15 71,2 4, , ,9 3,14 40,2 4,24 72,6 4, , ,1 3,20 41,0 4,32 74,0 4, , ,3 3,26 41,7 4,40 75,4 5, , ,5 3,32 42,5 4, , ,7 3,38 43,2 4, , ,9 3,43 43,9 4, , ,0 3,49 44,6 4, , ,2 3,54 45,3 4, , ,4 3,59 46,0 4, , ,6 3,65 46,7 4, , ,8 3,70 47,3 4, , ,0 3,75 48,0 5, , ,1 3, , ,3 3, , ,5 3,90 * Symbols used in all tables: Q - throughflow v - flow rate I - pipeline trench slope OD/DN - pipeline outer diameter ID - pipeline inner diameter 47

48 SECTION 6 Conformity certificates 49 Conformity Certificate INSPECTA No. 1426/2009 in Latvian 49 Conformity Certificate INSPECTA No. 1426/2009 in English 50 Conformity Certificate SPSC No. SPSC-8555 in Lithuanian 51 Conformity Certificate SPSC No. SPSC-8555 in English 52 Conformity Certificate ГОСТ Р No. POCC LV. AЯ12. НO5403 in Russian 53 Product standards 54 Notes 56 Resistance of plastic materials to chemical matters 59 48

49 Conformity certificates 49

50 50 Conformity certificates

51 Conformity certificates 51

52 52 Conformity certificates

53 Conformity certificates 53

54 Product standards No. Standard number Standard title 1 EN : EN : EN : EN :2008 Plastics piping systems for non-pressure underground drainage and sewerage. Structured-wall piping systems of unplasticized polyvinyl chloride (PVC-U), polypropylene (PP) and polyethylene (PE). Part 1. General requirements and performance characteristics Plastics piping systems for non-pressure underground drainage and sewerage. Structured-wall piping systems of unplasticized polyvinyl chloride (PVC-U), polypropylene (PP) and polyethylene (PE). Part 2. Specifications for pipes and fittings with smooth internal and external surface and the system, Type A Plastics piping systems for non-pressure underground drainage and sewerage. Structured-wall piping systems of unplasticized polyvinyl chloride (PVC-U), polypropylene (PP) and polyethylene (PE). Part 3. Specifications for pipes and fittings with smooth internal and profiled external surface and the system, Type B Plastics piping systems for non-pressure underground drainage and sewerage. Structured-wall piping systems of unplasticized polyvinyl chloride (PVC-U), polypropylene (PP) and polyethylene (PE). Part 4. Guidance for the assessment of conformity 5 EN 476:2000 General requirements for components used in discharge pipes, drains and sewers for gravity system 6 EN 681-1: EN 681-2:2003 +A1 8 EN 681-4:2003 +A1 Elastomeric seals. Materials requirements for pipe joint seals used in water and drainage applications. Part 1. Vulcanized rubber Elastomeric seals. Materials requirements for pipe joint seals used in water and drainage applications. Part 2. Thermoplastic elastomers Elastomeric seals. Materials requirements for pipe joint seals used in water and drainage applications. Part 4. Cast polyurethane sealing elements 9 EN 728:2000 Plastics piping and ducting systems. Polyolefin pipes and fittings. Determination of oxidation induction time 10 EN 744:1995 Plastics piping and ducting systems. Thermoplastics pipes. Test method for resistance to external blows by the roundthe-clock method (title changed on ) 11 EN 1053:2000 Plastics piping systems. Thermoplastics piping systems for non-pressure applications. Test method for watertightness 12 EN 1055: EN 1277: EN 1437:2003 Plastics piping systems. Thermoplastics piping systems for soil and waste discharge inside buildings. Test method for resistance to elevated temperature cycling Plastics piping systems. Thermoplastics piping systems for buried non-pressure applications. Test methods for leaktightness of elastomeric sealing ring type joints Plastics piping systems. Piping systems for underground drainage and sewerage. Test method for resistance to combined temperature cycling and external loading 15 EN 1446:2000 Plastics piping and ducting systems. Thermoplastics pipes. Determination of ring flexibility 16 EN 1979:2000 Plastics piping and ducting systems. Thermoplastics spirally-formed structured-wall pipes. Determination of the tensile strength of a seam 17 EN 12061:2000 Plastics piping systems. Thermoplastics fittings. Test method for impact resistance 18 EN 12256:2000 Plastics piping systems. Thermoplastics fittings. Test method for mechanical strength or flexibility of fabricated fittings 19 EN 14741:2006 Thermoplastics piping and ducting systems Joints for buried non-pressure applications. Test method for the longterm sealing performance of joints with elastomeric seals by estimating the sealing pressure 20 EN ISO 9969:2008 Thermoplastics pipes. Determination of ring stiffness 21 ISO 12091:1995 Structured-wall thermoplastics pipes - Oven test 54

55 Product standards No. Standard number Standard title 22 EN ISO 1133:2005 Plastics. Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics 23 EN ISO : EN ISO : EN ISO : EN ISO :2008 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. Part 1. General method Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. Part 2. Determination of the resistance to internal pressure Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. Part 3. Preparation of components Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. Part 4. Preparation of assemblies 27 EN ISO 16871:2003 Plastics piping and ducting systems. Plastics pipes and fittings. Method for exposure to direct (natural) weathering 28 EN ISO 580:2005 Plastics piping and ducting systems Injection-moulded thermoplastics fittings. Methods for visually assessing the effects of heating 29 EN ISO 9967:2008 Thermoplastics pipes. Determination of creep ratio 30 ISO 13967:1998 Thermoplastics fittings - Determination of the short-term stiffness 31 EN 1610:2000 Construction and testing of drains and sewers 32 EN 476:2000 General requirements for components used in discharge pipes, drains and sewers for gravity systems 33 EN 752:2008 Drain and sewer systems outside buildings 34 EN 13380:2002 General requirements for components used for renovation and repair of drain and sewer systems outside buildings 35 EN :2004 Plastics piping systems for non-pressure underground drainage and sewerage. Unplasticized polyvinylchloride (PVC-U), polypropylene (PP) and polyethylene (PE). Part 1. Specifications for ancillary fittings including shallow inspection chambers 36 EN 14457:2004 General requirements for components specifically designed for use in trenchless construction of drains and sewers 37 EN :2006 Management and control of cleaning operations in drains and sewers. Part 1. Sewer cleaning 38 EN 14802:2006 Plastics piping systems. Thermoplastics shafts or risers for inspection chambers and manholes. Determination of resistance against surface and traffic loading 39 EN 14830:2007 Thermoplastics inspection chamber and manhole bases. Test methods for buckling resistance 40 CEN/TR 14920:2005 Jetting resistance of drain and sewer pipes. Moving jet test method 41 EN 14982:2007 Plastics piping and ducting systems. Thermoplastics shafts or risers for inspection chambers and manholes. Determination of ring stiffness 42 CEN/TR 15128:2005 Survey of European Standards for rehabilitation of drain and sewer systems 43 ISO 9001:2008 Quality management systems 55

56 56 Notes

57 Notes 57

58 58 Notes

59 Resistance of plastic materials to chemical matters Chemical matter or product PVC Polyethylene Polypropylene Polycarbonate Polyamide Chemical matter or product PVC Polyethylene Polypropylene Polycarbonate Polyamide ºC PVC-U PE PP PC PA Acetaldehyde, in water (40%) 40 d - d Glycerin, fluid 60 d Acetic acid (<10%) 40 d Chlorhydric acid, fluid 40 d - Acetic acid (10%-85%) Chlorhydric acid, concentrate Acetic acid (85%-95%) Hydrofluoric acid (40%) Acetic acid (>95%) Hydrofluoric acid (60%) Acetone (small amount) Hydrofluoric acid (100%) Ammonia, water solution (20%) 40 - Hydrogen (100%) 60 Ammonia, dry gas 60 - Hydrogen peroxide (20%) 20 d d Ammonium chloride (20%) 20 d d d - Hydrogen sulphide, dry or wet 60 d d Ammonium fluoride (2%) 20 d d d - Hydrogen sulphide, fluid 40 d d Ammonium nitrate (20%) 20 d d d - Ketone Aniline (saturated fluid) 60 d d Lactic acid (10%-90%) 40 Ortho-arsenic acid (<20%) 60 d Methanol, fluid 40 - Beer 60 d Mineral oil 20 d Benzol 20 - d d - Sodium chlorate, fluid 20 d Bleach (13%) 40 d d Sodium hydroxide (<10%) 20 d Borax, saturated fluid 60 d d Nitric acid (<30%) Hydrobromic acid, fluid (10%) Nitric acid (30%-45%) Butane, gas - - Nitric acid (50%-60%) 20 d d - - Carbonic acid, dry 40 Nitrogen gases, dry or wet 60 d d d - d Carbonic acid, dry or wet 40 d Oils and fats 60 - Carbon tetrachloride Oxalic acid, fluid (10%) 40 d Carbon disulphide 20 d d d - d Oxalic acid, fluid (concentrate) Sodium hydroxide (<40%) 40 - Oxygen 60 d Sodium hydroxide (40%-60%) 60 - Ozone 20 d d - d Cement, dry 20 Perchloric acid (10%) 20 d Cement, mix 20 - Perchloric acid (70%) 60 - d d - d Chlorine, dry or wet gas 20 d d d - - Permanganate (<6%) 20 d - Chlorine, water solution 20 d Benzene 60 d d - Chlorinated hydrocarbon Oil 20 d Chlorosulfuric acid (100%) 20 d d d - - Phenol (<90%) 45 d d d - - Chromic acid, water solution(50%) Orthophosphoric acid, fluid (<30%) Chromic acid (20%) d d d - Orthophosphoric acid, fluid (>30%) Chromosulfuric acid (20%) d d d - - Potassium nitrate 60 - Citric, saturated fluid 60 Potassium chloride 60 - Cresol, fluid (<90%) 45 d d d - - Propane, fluid - - Copper sulphate, saturated fluid 60 d Salt solution 40 Copper chloride, saturated fluid 60 d Sea water 40 d Diesel 20 d Sulphur dioxide (in all conditions) 40 d d Photographic developers 40 d Sulphuric acid, fluid (<40%) 40 d - Dextrin (18%) 20 d Sulphuric acid, fluid (40%-80%) Ester Sulphuric acid, fluid (80%-90%) Ethanol (<40%) 40 d Sulphuric acid, fluid (90%-96%) Diethyl ether 20 - d d d Common salt solution (light) 40 Butyric acid 20 d d d Tartaric acid (10%) d Urine 40 Chlorofluorocarbon d d Water 60 Formaldehyde, fluid 30 d Xylene (100%) 20 - d d - Formic acid (<30%) 40 d - Zinc chloride, fluid (all kinds) 60 d d - Formic acid, concentrate Zinc chloride, fluid (light) 60 d - ºC PVC-U PE PP PC PA Marking: - plastic product is resistant to effect of chemicals in general installation conditions d - plastic product is partially resistant to effect of chemicals in general installation conditions - plastic product is not resistant to effect of chemicals 59

60 CONTACTS Production and office Jelgava, Latvia phone fax Langervaldes street 2a, Jelgava, LV-3002 Representative offices Moscow, Russia phone +7(495) fax +7(495) Hоlоdilnij pеrеulок 3, оffice 4301, Моscow Vilnus, Lithuania phone fax Savanoriu pr.219, LT-02300, Vilnius