Structural performance of a novel technique for repairing reinforced concrete slabs subjected to corrosion damage

Size: px
Start display at page:

Download "Structural performance of a novel technique for repairing reinforced concrete slabs subjected to corrosion damage"

Transcription

1 Structural performance of a novel technique for repairing reinforced concrete slabs subjected to corrosion damage H.P. Sooriyaarachchi 1, Anuradha Abeynayake 1 1 Department of Civil and Environmental Faculty of Engineering, University of Ruhuna Hapugala, Galle. SRI LANKA harsha@cee.ruh.ac.lk Abstract: Corrosion of reinforcement is one of the main durability concerns in costal structures. For number of reasons, due to both design and construction, slabs elements are corroded earlier than other structural elements. Common method of restoring the corrosion damages of reinforced concrete flexural elements has been found not only highly technically demanding but also less effective to repair the tension phase of flexural elements. This paper presents the performance of repair slab elements using a repair technique developed around the conventional slab casting. In the instance of heavy corrosion or expected excessive loading of the existing slab, the technique allows introducing new reinforcements or layers of new reinforcement beneath the existing slab. It is found that the static performance of the repaired slab elements under the proposed method of repair is better than the conventional repair technique. Keywords: Reinforced concrete, corrosion damage, Repair techniques, Static performance. 1 INTRODUCTION Corrosion of reinforced concrete is by far the main durability issue in costal structures. Due to number of reasons, it is considered that the slab elements are more vulnerable to corrosion damages compared to other structural elements (i.e. beams and column elements). Due to relative small moments in slab elements, reinforce requirement to resist ultimate limit state loading is often found to be considerably low which leads engineers to use ever decreasing slab thicknesses for slab elements. This leads to excessive deflect and cracking of slabs at serviceability limit state giving rise to number of durability issues. It is also a common practice to reduce the cover in slab reinforcement as means to increase the lever arm and thereby reduce reinforcement requirement. All of such practices often lead to less protection to reinforcement. In terms of environmental exposure, slabs, due to its significantly larger external exposure dimensions to volume ratio compeered to other structural elements, have the highest exposure to the environmental conditions. In addition slabs are subjected to wetting and drying more often than the other structural elements. All of which leads slabs more vulnerable to chloride ingress and corrosion damage compares to other structural elements. Figure 1 below show example of slab corrosion while other structural elements are still in good health and spalling off repair mortar from slab due to not attending to proper details (1). (a) Slab corrosion (b) Spalling of concrete after slab repair after corrosion Figure 1 Slab Corrosion before the beam 105

2 Spalling of concrete layers and cracking concrete around reinforcement bars are common signs of corrosion of reinforcement in RC structures. This is caused by the expansive rust forming on the reinforcement and pressure exerted by it on concrete. Initial rust formation around reinforcement can lead to better structural performance of reinforced concrete temporarily due to improved bond between concrete and reinforcement. However, this behaviour is short-lived as more rust will crack and displace concrete around the reinforcement bars. It is now found that the structural behaviour of exposed reinforcement with spalling cover is not one of composite action but one of tied arch behaviour (2, 3, and 4). Figure 2 shows the strain pattern at various sections along an exposed beam with clear evidence of stress reversal close to the support. Stress reversal of exposed beams are further confirmed by the occasional tension cracks emanating from top of the beam, what normally considered as the compression phase of the beam as depicted in inserts of Figure mm 1280mm 1800mm Figure 2 Strain pattern of exposed beam clearly show the stress reversal close to the support and inserts evidence of tension cracking close to support. Conventional method of structural repair of reinforced concrete involves shot-creating repair mortar into a cavity created after removing the concrete surrounded by the corroded reinforcement. Figure 3 shows different steps in conventional method of mechanical repair simulated in preparing test specimens to evaluate performance of conventional method of mechanical repair which involves; removing lose concrete around the reinforcement and creating a cavity with repair extending at least 20mm beyond the reinforcement level ( which is in this experimental purposes is simulated by beams cast with a cavity and exposed reinforcement), exposing aggregate to create good bond between the parent concrete and repair mortar (which in this experimental study is conducted by water blasting), applying a layer of primer onto the prepared surface and pump repair mortar into the cavity. The properly performed repair is expected to restore the structural action and recover the moment carrying capacity of the corroded elements. However, this is largely depending upon the stress transfer between the repair and parent concrete. When the repair is properly done it is expected that the structure restore its load carrying capacity. Conventional method of repair of corrosion damage is often considered highly technically demanding and costly method of repair for corrosion damage elements. 106

3 3(a) Prepare repair surfaces using water blasting 3(b) Complete the required shuttering work for the repair 3(c) Application of primer to the prepared surface before being repaired 3(d) Shotcrete the repair mortar to the cavity Figure 3 Procedure for conventional shotcrete repairing for corrosion damage 2 SIGNIFICANCE OF THE STUDY This study suggests an alternative repair technique for corroded reinforced concrete slabs. The main advantage of the method is that it often seen as extension of current practice of slab casting with only exception being the use of self compacting concrete against normal concrete. The method involves use of shuttering arrangement very similar to the one that is used for new construction. This shuttering arrangement shall be placed after the removal of lose concrete around reinforcement and after application of any primer or bonding material on the surface of the parent concrete coming into contact with the repair concrete. After shuttering arrangement is completed, the self compacting concrete is poured on to the cavity created by the shuttering though holes drilled trough the existing slab. The technique allows any surface preparation and application of bonding agents in the existing concrete strata and replacement or addition of new reinforcement layers beneath the existing corroded slab. Rigorous static test conducted on the repaired test specimen under different shear stress intensities suggest that the new technique of repair is as effective as the conventional method in restoring the structural behaviour. 3 METHODOLOGY There are number of variables that can influence the performance of repaired beams. Repair length, repair depth, properties of the repair material, surface treatment, force intensity experienced at the interface, bond strength between the repair and old concrete are all considered factors influencing the performance of repair (5,6). For the longevity of the repairs, it is recommended that repair depth shall be at least 20mm beyond the tensile reinforcement level as it would be otherwise difficult to ensure the durability after repair (6). Depths not covering the reinforcement level can easily lead to corrosion of the reinforcement and delaminating of repair mortar from the parent concrete with short period after repair (see Figure 1 for evidence). Differential shrinkage, strength and stiffness properties of repair mortar are all considered important parameters in determining material for repair. It is considered that shrinkage compensated mortar with stiffness GPa compare with the parent concrete is more appropriate for repair (5, 6). In this investigation repair beams were cast in two stages to simulate the concrete repair under the new technique. In the first stage beams were cast keeping repair dimensions empty by filling it with packing material. In the second stage that is after 28 days packing material was strapped and typical shuttering arrangement was placed around the cavity to receive self compacting concrete. Self 107

4 compacting concrete was then poured into to cavity through a cores drilled though the compression face of the slab. Figure 4 shows the specimen preparation done according to the proposed method of slab repair. 4(b) 4(c) 4(a) Drilling through the specimen 4(b) Placement of shutters 4(c) Finished specimen Figure 4 Different stages of sample preparation under the proposed slab repair technique. Table 1. Specimens tested under the experimental program to evaluate the performance of the repair technique. 650mm 1600mm R/42/80/ mm 1600mm R/42/80/ mm R/42/50/ mm 1000mm R/42/50/ mm R/69/80/ mm 1600mm R/69/80/ mm R/69/50/ mm R/69/50/

5 Repair length, concrete grade and shear arm length in load application are considered variable in this experimental investigation to evaluate the performance of the new repair technique. Two concrete grades, Grade 40 and Grade 70 self compacting concrete are used as repair mortar while 50% and 80% repair lengths are used to find the influence of repair length. In addition, in order to critically evaluate the structural integrity of the repair under possible worse loading combinations, the specimens were subjected to different shear force intensities by changing the shear arm of the two point bending test setup (7). Two shear arms 4.5 and 6 times effective depth are used for testing specimens after initial investigation of control specimens (Beams without repair) suggested no shear failure in the control specimen (specimen without repair) for the considered beam dimensions up to 4.5 shear arm to effective depth ratio. Table 1 show the schematic diagrams of specimens tested under this experimental investigation. Reinforcement detail and the two point testing set ups used for beam are shown in Figure 5. For simple reference purposes 4 letters/digit name was given to identify the beams. First letter of the name is given to denote the study R to denote the current study and C to denote the comparison study. Digits following the English letter denote the compressive strength of the repair mortar which is followed by the length of repair expressed as a percentage of the total length of the beam. Final digits denote the shear arm to depth ratio of the beam testing. For example R/42/80/6.0 refer to the beam tested under the current study repaired with mortar strength 42 over a 80 percentage of the total length tested with shear arm to depth ratio of 6.0. The static test results of this investigation is compared with the results obtained from test specimens cast using conversional techniques with the state of the art technologies used in mechanical repair. In the referred study (3) the surfaces of the specimens in the parent concrete that are coming into contact with the repair material were water blasted to expose aggregate before bonding agents are applied as depicted in Figure 3. In evaluation of the new repair technique under the current experimental investigation, neither the bonding surfaces had any treatment nor were the surfaces applied with any bonding agent (primers). 20mm 150mm 5 R mm 250mm (a) Reinforcement detail and 1st loading arrangement of the current study (Shear arm 4.5xd) (b) 550mm 20mm 150mm mm 5 R mm (c) Reinforcement detail and 2nd loading arrangement of the current study (Shear arm 6.0xd) 450mm 150mm 20mm 23 R mm 1800mm (d) Reinforcement detail and loading arrangement of the conventional repair (Shear arm 6.0xd) Figure 5 Reinforcement detail and the loading arrangements of the two studies 109

6 Furthermore, in the referred study, test specimens were cast with shear links as recommended as the minimum requirement by BS8110 for beam elements where as beams tested under this experimental investigation are provided with no shear links. It is considered that both the surface preparations, bonding agents and the provision of shear links greatly influence the bond performance and integrity of the repair that the presence or absence will have a direct influence on the performance of the repair technique.although the beams tested in comparison study underwent four-point bending, only shear arm to depth ratio of 6 is used in the comparison study where as in the current investigation both shear arm to depth ratios 6 ratio 4.5 (intense shear loading) were used. Under these circumstances the specimens in this experimental investigation are considered to have gone through rigorous assessment compared to the study taken for the comparison purposes. Reinforcement details and loading details of the two studies are shown in Figure 5. 4 RESULTS Figure 6 (a) and Figure 6(b) below shows the load-deflection behaviour of the beams tested under static loading for shear arm to depth ratio (a v /d ) for a v /d=6 and a v /d=4.5 respectively compared with control beam tested under same loading condition. All repaired beams tested under a v /d=6 had better performance compared to control beam (composite beam without repair) and there were little evidence of delaminating of the repair from the parent concrete. Although most of the beams under shear arm to depth ratio 4.5 showed some signs of shear cracking and delaminating of the repair from the parent concrete all beams have shown yielding prior to substantial shear and delaminating failures. Most of beams tested at a v /d=4.5 showed significant delaminating progressed into shear cracking. However except in the case of R/69/80/4.5 for all other beams despite shear cracking final failure bending with enough evidence of compression failure at the top of the beam in the constant bending zone. Beam R80/69/4.5 is the only beam under a v /d=4.5 that did not show bending failure and the only beam failed without appreciable deformation after yielding. Similar to the comparison study beams tested under this has shown similar crack patterns to control with most of the crack stopping at interface between parent concrete with significant crack opening at the penetrating cracks. Table 2 summarizes the key parameters of the beams tested in the current study under the two a v /d ratios Load(kN) control6.0 R/42/50/6.0 R/69/50/6.0 R/69/80/6.0 R/42/80/ Deflection (mm) a v /d=6 Load (kn) Deflection (mm) a v /d=4.5 control beam 4.5 R/69/50/4.5 R/42/80/4.5 R/69/80/4.5 R/42/50/4.5 Figure 6 Load deformation relations ship of the beams tested under different shear arm (a v ) depth (d)ratio in the current study. 110

7 Table 2 Summary of results under current study for different shear arm to depth ratio a v /d=6 a v /d=4.5 Beam no Yield point Ultimate load Failure mode Beam no Yield point Ultimate load Failure mode Control Bending failure Control Bending Failure R/42/80/ Bending failure R/42/80/ Bending failure R/69/80/ Bending failure R/69/80/ Shear failure R/42/50/ Bending failure R/42/50/ Bending failure R/69/50/ Bending failure R/69/50/ Bending failure 5 DISCUSSION AND CONCLUSION Current study Beams in the current study Max load(k N) Table 3 Comparison of two technique of repair Max. load of beam Max. Load of Control beam Convention method of repair Beams in the comparison study Max. load(k N) Control Control R/69/50/ R/42/50/ R/69/80/ R/42/80/ C/A/40/ C/B /40/ C/A/80/ C/B/80/ Max. Load of beam Max. Load of Control beam Table 3 compares the ultimate flexural capacity of the repaired elements with control elements for the two repair methods. Comparison was limited only for shear arm to depth ratio of 6.0. Results suggest that the novel repair technique outperform conventional method at a v /d=6. Given the fact that, those beams repaired under novel method have minimum precautions against delaminating of the repair from the parent concrete in terms of surface preparation and the provision of shear links, it is safe to conclude that the novel repair technique is significantly better than conventional shot-crete repair in restoring the static performance of repair beams. It is noted that the repair beams under the novel technique demonstrate the crack propagation patterns similar to beams with conventional repair characterized by crack trapping and bifurcations at the interface between the repair and parent concrete and substantially lesser number of cracking making its way to the parent concrete. Similar crack patterns in the conventional method of repair has resulted poor fatigue performance of the repaired beams. As it is through these penetrating cracks that most of the deformations are mobilized there is direct relation of bar straining and crack number. Lesser cracking means more strain in the bar at crack locations and therefore poor fatigue performance. Given similarities in cracking between the conventional repair method and new technique, it will be interesting to find how beams under new repair technique would fare under cyclic loading. It is expected that those beams under novel repair technique would also have subdued fatigue performance compared with their control beams. Further research is required to find the fatigue performance of the repaired beams under the new repair technique. 111

8 6 REFERENCES Soorriyaarachchi H.P, De Silva G.S.Y. Conditional report of the main building of the maternity ward complex, Mahamodara Teaching Hospital, Galle, Dept Civil Engineering, University of Ruhuna, Sooriyaarachchi H.P. Static and Fatigue Performance of Repaired Reinforced concrete Beams, ENGINEER, Institute of Engineers, Sri Lanka, Volume xxxxv, No. 04, October 2012, pp Crains, J., and Zhao, Z., Behaviour of concrete beams with exposed reinforcement, Proc. Institution Civil Engineers, Structures & Buildings, V.99, May 1993, pp Roof, M., and Lin, Z., Behavior of concrete beams with exposed main reinforcement, Proceeding Institute of Civil Engineers, Structures & Buildings, V.122, February 1997, pp Emberson, N.K., and Mays, G.C., Significance of property mismatch in patch repair concrete, Part I: Properties of repair system, Magazine of Concrete Research, V.42, No.152, Sept.1990, pp ICRI, Technical guideline committee of ICRI, Guide for surface preparation for the repair of deteriorated concrete resulting from reinforcing steel corrosion, International Concrete Repair Institute, Guideline No , January Kani, G.N.J., The riddle of shear and its solution, proceedings, ACI Journal, V.61, No.4 April 1964, pp

Fundamental Study on Mechanical Behavior and Repairing Method of Corroded RC Beams Including Anchorage Damage 06_10431 Mai SAKAI

Fundamental Study on Mechanical Behavior and Repairing Method of Corroded RC Beams Including Anchorage Damage 06_10431 Mai SAKAI Fundamental Study on Mechanical Behavior and Repairing Method of Corroded RC Beams Including Anchorage Damage 06_10431 Mai SAKAI 1 Supervisor : Prof. Junichiro NIWA Backgrounds Steel corrosion is one of

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

EXPERIMENTAL STUDY ON CRACK-BRIDGING ABILITY OF ECC FOR REPAIR UNDER TRAIN LOADING

EXPERIMENTAL STUDY ON CRACK-BRIDGING ABILITY OF ECC FOR REPAIR UNDER TRAIN LOADING EXPERIMENTAL STUDY ON CRACK-BRIDGING ABILITY OF ECC FOR REPAIR UNDER TRAIN LOADING Hiroshi Inaguma 1, Masaki Seki 1, Kumiko Suda 2 and Keitetsu Rokugo 3 (1) Technology Research and Development Dept., Central

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS Prof. John J. Myers Associate Professor CIES / Department of Civil, Arch., & Env. Engineering University

More information

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials P. Suthiwarapirak & T. Matsumoto The University of Tokyo, Tokyo, Japan. ABSTRACT: The present paper considers the

More information

Effect of Distribution in Cross Sectional Area of Corroded Tensile Reinforcing Bars on Load Carrying Behaviour of RC Beam

Effect of Distribution in Cross Sectional Area of Corroded Tensile Reinforcing Bars on Load Carrying Behaviour of RC Beam Effect of Distribution in Cross Sectional Area of Corroded Tensile Reinforcing Bars on Load Carrying Behaviour of RC Beam Takashi Yamamoto 1*, Satoshi Takaya 1 and Toyo Miyagawa 1 1 Kyoto University, JAPAN

More information

AN APPLICATION OF HPFRCC AND FIBER NET FOR RECOVERING STRENGTH OF RC MEMBERS DETERIORATED BY CHLORIDE INDUCED CORROSION

AN APPLICATION OF HPFRCC AND FIBER NET FOR RECOVERING STRENGTH OF RC MEMBERS DETERIORATED BY CHLORIDE INDUCED CORROSION BEFIB2012 Fibre reinforced concrete Joaquim Barros et al. (Eds) UM, Guimarães, 2012 AN APPLICATION OF HPFRCC AND FIBER NET FOR RECOVERING STRENGTH OF RC MEMBERS DETERIORATED BY CHLORIDE INDUCED CORROSION

More information

CHAPTER 3 BEHAVIOUR OF FERROCEMENT HOLLOW SLABS

CHAPTER 3 BEHAVIOUR OF FERROCEMENT HOLLOW SLABS 30 CHAPTER 3 BEHAVIOUR OF FERROCEMENT HOLLOW SLABS 3.1 INTRODUCTION There are numerous similarities between ferrocement and reinforced concrete. Both use similar matrix and reinforcement materials. They

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Seismic Behavior of Low Strength RC Columns with Corroded Plain Reinforcing Bars

Seismic Behavior of Low Strength RC Columns with Corroded Plain Reinforcing Bars Seismic Behavior of Low Strength RC Columns with Corroded Plain Reinforcing Bars C. Goksu 1, B. Demirtas 2, C. Demir 1, A. Ilki 3 and N. Kumbasar 4 1 PhD Candidate, Civil Engineering Faculty, Istanbul

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 MOMENT REDISTRIBUTION OF GFRP-RC CONTINUOUS T-BEAMS S. M. Hasanur Rahman M.Sc. Student, University of Manitoba, Canada Ehab El-Salakawy Professor and CRC in Durability

More information

SHEAR STRENGTH OF ASR-DETERIORATED RC MEMBERS AND SHEAR REINFORCING EFFECT OF REPAIR BY ADDING REBAR

SHEAR STRENGTH OF ASR-DETERIORATED RC MEMBERS AND SHEAR REINFORCING EFFECT OF REPAIR BY ADDING REBAR VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) SHEAR STRENGTH OF ASR-DETERIORATED RC

More information

65 mm 2 mm 65 mm D6 SD295A D6 SUS34 D13 SD39 SD39 15mm mm Series 1: Stirrup Series 2 : Main rebar 45 a = 45 mm SUS34 D25 SD39 2 mm mm 2

65 mm 2 mm 65 mm D6 SD295A D6 SUS34 D13 SD39 SD39 15mm mm Series 1: Stirrup Series 2 : Main rebar 45 a = 45 mm SUS34 D25 SD39 2 mm mm 2 コンクリート工学年次論文集,Vol.36,No.1,214 MECHANICAL CHARACTERISTICS OF RC BEAMS WITH CORRODED STIRRUPS OR MAIN REINFORCEMENTS -Technical Paper- Visal ITH *1, Koji MATSUMOTO *2 and Junichiro NIWA *3 ABSTRACT This

More information

FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS

FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS ABSTRACT The use of Near Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) rods is a new and promising

More information

Shear Behavior of RC Slender Beams with Corrosion-Damaged Stirrups

Shear Behavior of RC Slender Beams with Corrosion-Damaged Stirrups : Shear Behavior of RC Slender Beams with Corrosion-Damaged Stirrups Authors Ahmed El-Sayed, Raja Hussain, Ahmed Shuraim Publication date 2014 Conference 4th Annual International Conference on Civil Engineering,

More information

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS D.S. Lunn 1,2, V. Hariharan 1, G. Lucier 1, S.H. Rizkalla 1, and Z. Smith 3 1 North Carolina State University, Constructed Facilities Laboratory,

More information

Flexural Performance of Reinforced Concrete Beams with a Layer of Expansive Strain-hardening Cement -based Composite(SHCC)

Flexural Performance of Reinforced Concrete Beams with a Layer of Expansive Strain-hardening Cement -based Composite(SHCC) Flexural Performance of Reinforced Concrete Beams with a Layer of Expansive Strain-hardening Cement -based Composite(SHCC) Hae Jun Yang, June Su Kim, Sung Ho Kim & Hyun Do Yun Chungnam National University,

More information

STRUCTURAL ASSESSMENT OF REINFORCED CONCRETE BRIDGE STRUCTURES EXPOSED TO CHLORIDE ENVIRONMENT

STRUCTURAL ASSESSMENT OF REINFORCED CONCRETE BRIDGE STRUCTURES EXPOSED TO CHLORIDE ENVIRONMENT 480 STRUCTURAL ASSESSMENT OF REINFORCED CONCRETE BRIDGE STRUCTURES EXPOSED TO CHLORIDE ENVIRONMENT Laksiri Pradeep 1, Sudhira De Silva 2 and Chandana Nawarathna 3 1 Engineer, Research and Development Division,

More information

Fatigue flexural behaviour of corroded RC beams strengthened with CFRP sheets

Fatigue flexural behaviour of corroded RC beams strengthened with CFRP sheets Indian Journal of Engineering & Materials Sciences Vol. 22, February 2015, pp. 77-84 Fatigue flexural behaviour of corroded RC beams strengthened with CFRP sheets Li Song & Zhiwu Yu* School of Civil Engineering,

More information

NEW COMPOSITE CONSTRUCTION OF HYBRID BEAMS COMBINING STEEL INVERTED T-SECTION AND RC FLANGE

NEW COMPOSITE CONSTRUCTION OF HYBRID BEAMS COMBINING STEEL INVERTED T-SECTION AND RC FLANGE NEW COMPOSITE CONSTRUCTION OF HYBRID BEAMS COMBINING STEEL INVERTED T-SECTION AND RC FLANGE Alex Remennikov 1, Marcus Roche 2 ABSTRACT: Steel and concrete composite beams are typically formed by shear

More information

AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET

AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET Gnanasekaran, K. 1 and Amlan K. Sengupta 2 1 Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology

More information

Introduction of a Japan Concrete Institute Guideline: Practical Guideline for Investigation, Repair and Strengthening of Cracked Concrete Structures

Introduction of a Japan Concrete Institute Guideline: Practical Guideline for Investigation, Repair and Strengthening of Cracked Concrete Structures Journal of Civil Engineering and Architecture 9 (2015) 213-224 doi: 10.17265/1934-7359/2015.02.010 D DAVID PUBLISHING Introduction of a Japan Concrete Institute Guideline: Practical Guideline for Investigation,

More information

Hybrid-steel concrete connections under reversed cyclic loadings

Hybrid-steel concrete connections under reversed cyclic loadings Hybrid-steel concrete connections under reversed cyclic loadings Bing Li, W.K. Yip and C.L. Leong Nanyang Technological University, Sch. of Civil & Env. Eng., Singapore 639798 ABSTRACT: The aim of the

More information

Study on Strengthening of RC Slabs with Different Innovative Techniques

Study on Strengthening of RC Slabs with Different Innovative Techniques Open Journal of Civil Engineering, 2016, 6, 516-525 http://www.scirp.org/journal/ojce ISSN Online: 2164-3172 ISSN Print: 2164-3164 Study on Strengthening of RC Slabs with Different Innovative Techniques

More information

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION Wei YUE,

More information

Comprehensive condition assessment program on the fire damaged structure a project case in Singapore

Comprehensive condition assessment program on the fire damaged structure a project case in Singapore Comprehensive condition assessment program on the fire damaged structure a project case in Singapore Gunawan Budi Wijaya 1,* 1 Petra Christian University, Department of Civil Engineering, Indonesia Abstract.

More information

Basic types of bridge decks

Basic types of bridge decks Bridge Deck Slab 1 Introduction 2 Bridge deck provide the riding surface for traffic, support & transfer live loads to the main load carrying member such as girder on a bridge superstructure. Selection

More information

CONCREEP 10. September 21-23, 2015 Vienna, Austria. SPONSORED BY RILEM Engineering Mechanics Institute of ASCE

CONCREEP 10. September 21-23, 2015 Vienna, Austria. SPONSORED BY RILEM Engineering Mechanics Institute of ASCE CONCREEP 1 Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures PROCEEDINGS OF THE 1TH INTERNATIONAL CONFERENCE ON MECHANICS AND PHYSICS OF CREEP, SHRINKAGE, AND

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

EFEECT OF GFRP BELT TO THE FAILURE MODE OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRP SHEET

EFEECT OF GFRP BELT TO THE FAILURE MODE OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRP SHEET 9th International Symposium on Lowland Technology September 27-29, 2014 in Saga, Japan EFEECT OF GFRP BELT TO THE FAILURE MODE OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRP SHEET Rudy Djamaluddin 1

More information

Strengthening of Reinforced Concrete Column via Ferrocement Jacketing

Strengthening of Reinforced Concrete Column via Ferrocement Jacketing 2015 American Transactions on Engineering & Applied Sciences. American Transactions on Engineering & Applied Sciences http://tuengr.com/ateas Strengthening of Reinforced Concrete Column via Ferrocement

More information

FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS

FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS - Technical Paper - FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS Esayas GEBREYOUHANNES *1, Nobuhiro CHIJIWA *2,Chikako FUJIYAMA *3,Koichi MAEKAWA *4 ABSTRACT Shear Fatigue behavior

More information

SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS

SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS Josh LOMBARD 1, David T LAU 2, Jag L HUMAR 3, Simon FOO 4 And M S CHEUNG 5 SUMMARY This paper presents the results obtained in a feasibility

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Behavior of High Performance Steel Fiber Reinforced Concrete in Exterior Beam- Column

More information

SikaWrap. Composite Fabrics for Structural and Seismic Strengthening. Solutions with Sika Systems. Hybrid fiber fabrics. Glass fiber fabrics

SikaWrap. Composite Fabrics for Structural and Seismic Strengthening. Solutions with Sika Systems. Hybrid fiber fabrics. Glass fiber fabrics Solutions with Sika Systems Composite Fabrics for Structural and Seismic Strengthening Hybrid fiber fabrics Glass fiber fabrics Structural epoxy resins Carbon fiber fabrics Composite Strengthening Systems

More information

Appendix M 2010 AASHTO Bridge Committee Agenda Item

Appendix M 2010 AASHTO Bridge Committee Agenda Item Appendix M 2010 AASHTO Bridge Committee Agenda Item 2010 AASHTO BRIDGE COMMITTEE AGENDA ITEM: SUBJECT: LRFD Bridge Design Specifications: Section 5, High-Strength Steel Reinforcement TECHNICAL COMMITTEE:

More information

An Experimental Study on Corrosion Protection Performance of HPFRCCs with Fine Cracks

An Experimental Study on Corrosion Protection Performance of HPFRCCs with Fine Cracks An Experimental Study on Corrosion Protection Performance of HPFRCCs with Fine Cracks Le Anh Dung 1, Koichi Kobayashi 2, Keitetsu Rokugo 3 123 Department of Civil Engineering, Gifu University, Yanagido

More information

AFRP retrofitting of RC structures in Japan

AFRP retrofitting of RC structures in Japan AFRP retrofitting of RC structures in Japan H. Shinozaki Civil Engineering R&D Department, Sumitomo Mitsui Construction Corporation, Japan G.R. Pandey School of Engineering, James Cook University, Australia

More information

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS M. T. Shedid 1, W. W. El-Dakhakhni 2, and R. G. Drysdale 3 1 Ph.D. Candidate, Dept. of Civil Engineering, McMaster University, Hamilton.

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

Long-term Experiments of Composite Steel-Concrete Beams

Long-term Experiments of Composite Steel-Concrete Beams Available online at www.sciencedirect.com Procedia Engineering 14 (211) 287 2814 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Long-term Experiments of Composite Steel-Concrete

More information

1. CORROSION OF REINFORCEMENT

1. CORROSION OF REINFORCEMENT MAB 1033 Structural Assessment and Repair 1. CORROSION OF REINFORCEMENT Professor Dr. Mohammad bin Ismail C09-313 Learning Outcome At the end of the course students should be able to understand Mechanism

More information

Disaster Risk Management, National Institute for Land and Infrastructure Management (NILIM)

Disaster Risk Management, National Institute for Land and Infrastructure Management (NILIM) SEISMIC PERFORMNACE AND STRUCTURAL DETAILS OF PRECAST SEGMENTAL CONCRETE BRIDGE COLUMNS Jun-ichi Hoshikuma 1, Shigeki Unjoh 2, Junichi Sakai 3 Abstract The precast segmental concrete bridge column would

More information

Investigation on Behaviour of Reinforced Concrete Beam Column Joints Retrofitted with FRP Wrapping

Investigation on Behaviour of Reinforced Concrete Beam Column Joints Retrofitted with FRP Wrapping International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 3 (2014), pp. 289-294 Research India Publications http://www.ripublication.com/ijcer.htm Investigation on Behaviour

More information

CORROSION MONITORING IN REINFORCED CONCRETE BY ACOUSTIC EMISSION

CORROSION MONITORING IN REINFORCED CONCRETE BY ACOUSTIC EMISSION Abstract CORROSION MONITORING IN REINFORCED CONCRETE BY ACOUSTIC EMISSION MASAYASU OHTSU and YUICHI TOMODA Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, JAPAN Cracking of concrete due to corrosion

More information

World Engineering Congress 2010, 2 nd 5 th August 2010, Kuching, Sarawak, Malaysia Conference on Engineering and Technology Education

World Engineering Congress 2010, 2 nd 5 th August 2010, Kuching, Sarawak, Malaysia Conference on Engineering and Technology Education STRUCTURAL PERFORMANCE OF SPLICE SLEEVE CONNECTOR WITH VERTICAL AND SPIRAL REINFORCEMENT BAR UNDER DIRECT TENSILE LOAD Shuhaimi Shaedon 1, Ahmad Baharuddin Abd Rahman 2, Izni Syahrizal Ibrahim 3, Zuhairi

More information

INVESTIGATION OF CURING PERIOD OF CEMENTITIOUS ADHESIVE AND PERFORMANCE OF RUST PREVENTION

INVESTIGATION OF CURING PERIOD OF CEMENTITIOUS ADHESIVE AND PERFORMANCE OF RUST PREVENTION Geotec., Const. Mat. & Env., DOI: https://doi.org/10.21660/2018.43.3717 ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan INVESTIGATION OF CURING PERIOD OF CEMENTITIOUS ADHESIVE AND PERFORMANCE OF RUST

More information

REVIEW PAPER ON USAGE OF FERROCEMENT PANELS IN LIGHTWEIGHT SANDWICH CONCRETE SLABS

REVIEW PAPER ON USAGE OF FERROCEMENT PANELS IN LIGHTWEIGHT SANDWICH CONCRETE SLABS REVIEW PAPER ON USAGE OF FERROCEMENT PANELS IN LIGHTWEIGHT SANDWICH CONCRETE SLABS K. Vetri Aadithiya 1, Dr. P. Chandrasekaran 2 1PG Student, Department of Civil Engineering, Kongu Engineering College,

More information

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES F. El M e s k i 1 ; M. Harajli 2 1 PhD student, Dept. of Civil and Environmental Engineering, American Univ. of Beirut;

More information

Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments

Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments L.J. Woods University of Canterbury and Holmes Consulting Group, New Zealand. R.C. Fenwick University of Canterbury,

More information

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs S.V.T. Janaka Perera 1*, Hiroshi Mutsuyoshi 1 and Nguyen Duc Hai 2 1 Saitama University,

More information

Finite Element Analysis of CFRP Strengthened Concrete Beams

Finite Element Analysis of CFRP Strengthened Concrete Beams Finite Element Analysis of CFRP Strengthened Concrete Beams R.Arunothayan 1, J.C.P.H.Gamage 1 and U.N.D.Perera 1 1 Department of Civil Engineering University of Moratuwa Moratuwa SRI LANKA E-Mail: arunothayan91@gmail.com

More information

SHEAR BEHAVIOR OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK WITH SHEAR KEYS OR BOLTS

SHEAR BEHAVIOR OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK WITH SHEAR KEYS OR BOLTS - Technical Paper - SHEAR BEHAVIOR OF BEAMS USING U-SHAPED PERMANENT FORMWORK WITH SHEAR KEYS OR BOLTS Puvanai WIROJJANAPIROM *1, Koji MATSUMOTO *2, Katsuya KONO *3 and Junichiro NIWA *4 ABSTRACT Shear

More information

Basic quantities of earthquake engineering. Strength Stiffness - Ductility

Basic quantities of earthquake engineering. Strength Stiffness - Ductility Basic quantities of earthquake engineering Strength Stiffness - Ductility 1 Stength is the ability to withstand applied forces. For example a concrete element is weak in tension but strong in compression.

More information

Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH

Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH Robustness of continuous steel-concrete composite beams of slender plain webbed and cellular open webbed sections Marian A. GIZEJOWSKI Leslaw KWASNIEWSKI Wael SALAH Faculty of Civil Engineering Warsaw

More information

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES Composites in Construction 2005 Third International Conference, Hamelin et al (eds) 2005 ISBN xxxxx Lyon, France, July 11 13, 2005 STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON

More information

Experimental investigation on the dynamic properties of RC structures affected by reinforcement corrosion

Experimental investigation on the dynamic properties of RC structures affected by reinforcement corrosion Experimental investigation on the dynamic properties of RC structures affected by reinforcement corrosion Tiejun Liu, Dujian Zou, Jun Teng Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen,

More information

Mechanisms of Bond Failure Between Existing Concrete and Sprayed Polymer Cement Mortar with CFRP Grid by Acoustic Emission

Mechanisms of Bond Failure Between Existing Concrete and Sprayed Polymer Cement Mortar with CFRP Grid by Acoustic Emission Mechanisms of Bond Failure Between Existing Concrete and Sprayed Polymer Cement Mortar with CFRP Grid by Acoustic Emission Junlei Zhang 1, Kentaro Ohno 2, Ryo Kikuchi 1, Tran Vu Dung 1, Kimitaka Uji 3

More information

CHAPTER 2. Design Formulae for Bending

CHAPTER 2. Design Formulae for Bending CHAPTER 2 Design Formulae for Bending Learning Objectives Appreciate the stress-strain properties of concrete and steel for R.C. design Appreciate the derivation of the design formulae for bending Apply

More information

Seismic performance of New Steel Concrete Composite Beam-Columns

Seismic performance of New Steel Concrete Composite Beam-Columns Seismic performance of New Steel Concrete Composite Beam-Columns Toshiaki FUJIMOTO, Hiroshi KOMATSU, Tomoyuki SAKURADA & Noritaka MOROHASHI College of Industrial Technology, Nihon University, Japan SUMMARY:

More information

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1 Department of Civil Engineering Lecture 2.1 Methods of Prestressing Advantages of Prestressing Section remains uncracked under service loads Reduction of steel corrosion (increase durability) Full section

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 7, January 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 7, January 2013 Performance of Coated Steel in R.C. Beams with High Percentages of Chloride S. Abd-Elsalam 1, H. Shehab Eldin 2, E.A. El-Shamy 3, Sh. M.M. Shawky 4 1 Prof. of Str. Eng. Dept., Fac. of Eng., Z.U., Egypt

More information

HRC T-Headed Bars Advantages for the user

HRC T-Headed Bars Advantages for the user HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Headed Bars Advantages for the user HRC T-headed bars have some special characteristics which distinguish them from conventional reinforcement. HRC T-heads

More information

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars October 1-17, 8, Beijing, China Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars F. Kusuhara 1 and H. Shiohara 1 Assistant Professor, Dept.

More information

SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES

SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES Hiroaki Hasegawa 1, Masanobu Sakashita 2, Ai Urabe 3, Susumu Kono 4, Hitoshi Tanaka 5 and Fumio Watanabe

More information

IDEA OF HYBRID COLUMN WITH ENERGY ABSORPTION ELEMENT

IDEA OF HYBRID COLUMN WITH ENERGY ABSORPTION ELEMENT 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 66 IDEA OF HYBRID COLUMN WITH ENERGY ABSORPTION ELEMENT Masato ISO 1, Ayato HOMMA 2, Katsumi KOBAYASHI

More information

PERFORMANCE OF SPLICE SLEEVE CONNECTOR WITH SPIRAL REINFORCEMENT BAR UNDER DIRECT TENSILE LOAD

PERFORMANCE OF SPLICE SLEEVE CONNECTOR WITH SPIRAL REINFORCEMENT BAR UNDER DIRECT TENSILE LOAD PERFORMANCE OF SPLICE SLEEVE CONNECTOR WITH SPIRAL REINFORCEMENT BAR UNDER DIRECT TENSILE LOAD Shuhaimi Shaedon 1, Ahmad Baharuddin Abd. Rahman 2, Izni Syahrizal Ibrahim 3, Zuhairi Abd. Hamid 4 1 Faculty

More information

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS Chapter 4 EXPERIMENTAL RESULTS 4.1 Introduction This chapter presents the results from the half scale interior Corcon rib beam-column subassemblage and the FRP repaired subassemblage. As described in chapter

More information

Experimental Study on behavior of Interior RC Beam Column Joints Subjected to Cyclic Loading P.Rajaram 1 A.Murugesan 2 and G.S.

Experimental Study on behavior of Interior RC Beam Column Joints Subjected to Cyclic Loading P.Rajaram 1 A.Murugesan 2 and G.S. Experimental Study on behavior of Interior RC Beam Column Joints Subjected to Cyclic Loading P.Rajaram 1 A.Murugesan 2 and G.S.Thirugnanam 3 1 P.G.Student, Department of Civil Engineering, Institute of

More information

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE - Technical Paper - SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE Aloke RAJBHANDARY *1, Govinda R. PANDEY *2, Hiroshi MUTSUYOSHI *3 and Takeshi MAKI

More information

Strengthening of RC Beams subjected to Combined Torsion and Bending with GFRP Composites

Strengthening of RC Beams subjected to Combined Torsion and Bending with GFRP Composites Available online at www.sciencedirect.com Procedia Engineering 51 ( 2013 ) 282 289 Chemical, Civil and Mechanical Engineering Tracks of 3 rd Nirma University International Conference on Engineering (NUiCONE

More information

Seismic behaviour of HSC beam-column joints with high-yield strength steel reinforcement

Seismic behaviour of HSC beam-column joints with high-yield strength steel reinforcement Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 215, Sydney, Australia Seismic behaviour of HSC beam-column joints with high-yield

More information

CHAPTER 4 PUNCHING SHEAR BEHAVIOUR OF RECYCLED AGGREGATE CONCRETE TWO WAY SLABS

CHAPTER 4 PUNCHING SHEAR BEHAVIOUR OF RECYCLED AGGREGATE CONCRETE TWO WAY SLABS 103 CHAPTER 4 4.1 GENERAL PUNCHING SHEAR BEHAVIOUR OF RECYCLED AGGREGATE CONCRETE TWO WAY SLABS The problem of punching shear in reinforced concrete slabs under a concentrated load or around a column has

More information

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2012 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Flexural Behavior of RC

More information

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II No. of Printed Pages : 6 BCE-041 Diploma in Civil Engineering Term-End Examination June, 2012 00819 BCE-041 : THEORY OF STRUCTURES II Time : 2 hours Maximum Marks : 70 Note : Question number 1 is compulsory.

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Retrofitting of Reinforced Concrete Beam with Externally Bonded CFRP

Retrofitting of Reinforced Concrete Beam with Externally Bonded CFRP IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 07 December 2015 ISSN (online): 2349-6010 Retrofitting of Reinforced Concrete Beam with Externally Bonded CFRP

More information

Fiber Reinforced Concrete

Fiber Reinforced Concrete Fiber Reinforced Concrete Old Concept Exodus 5:6, And Pharaoh commanded the same day the taskmasters of the people, and their officers, saying, Ye shall no more give the people straw to make brick, as

More information

Flexural Analysis and Design of Beams. Chapter 3

Flexural Analysis and Design of Beams. Chapter 3 Flexural Analysis and Design of Beams Chapter 3 Introduction Fundamental Assumptions Simple case of axial loading Same assumptions and ideal concept apply This chapter includes analysis and design for

More information

INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET)

INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 6308 ISSN 0976 6308 (Print) ISSN 0976 6316(Online) Volume

More information

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK - Technical Paper - EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED PERMANENT FORMWORK Puvanai WIROJJANAPIROM *1, Koji MATSUMOTO *2, Katsuya KONO *3 and Junichiro NIWA *4 ABSTRACT Shear resistance

More information

BEHAVIOR OF REINFORCED CONCRETE ONE-WAY SLABS STRENGTHENED BY CFRP SHEETS IN FLEXURAL ZONE

BEHAVIOR OF REINFORCED CONCRETE ONE-WAY SLABS STRENGTHENED BY CFRP SHEETS IN FLEXURAL ZONE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 10, October 2018, pp. 1872 1881, Article ID: IJCIET_09_10_097 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=10

More information

SHEAR BEHAVIOR OF MULTI-STORY RC STRUCTURAL WALLS WITH ECCENTRIC OPENINGS

SHEAR BEHAVIOR OF MULTI-STORY RC STRUCTURAL WALLS WITH ECCENTRIC OPENINGS SHEAR BEHAVIOR OF MULTI-STORY RC STRUCTURAL WALLS WITH ECCENTRIC OPENINGS Makoto Warashina 1, Susumu Kono 2, Masanobu Sakashita 3, Hitoshi Tanaka 4 1 Ex-Graduate Student, Dept. of Architecture and Architectural

More information

Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load

Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load Experimental Study on the Behaviour of Plastered Confined Masonry Wall under Lateral Cyclic Load Rildova, D. Kusumastuti, M. Suarjana & K.S. Pribadi Faculty of Civil and Environmental Engineering, Institut

More information

INFLUENCE OF SHEAR REINFORCEMENT ON RESIDUAL LOAD CAPACITY OF RC BEAMS WITH CORROSION

INFLUENCE OF SHEAR REINFORCEMENT ON RESIDUAL LOAD CAPACITY OF RC BEAMS WITH CORROSION - Technical Paper - INFLUENCE OF SHEAR REINFORCEMENT ON RESIDUAL LOAD CAPACITY OF RC BEAMS WITH CORROSION Wei DONG *1, Shuichi SUZUKI* 2, Takuro KOJIMA *3 and Hideki OSHITA *4 ABSTRACT The requirements

More information

ANALYTICAL AND EXPERIMENTAL STUDY ON COMPOSITE FRAMES

ANALYTICAL AND EXPERIMENTAL STUDY ON COMPOSITE FRAMES ANALYTICAL AND EXPERIMENTAL STUDY ON COMPOSITE FRAMES ARCHANA P1, ANJUGHAP PRIYA R2, SARANYA M3 1PG Student, Dept. of Civil Engineering, Valliammai Engineering College, Chennai, Tamil Nadu 2 Assistant

More information

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 13, Issue 3 Ver. I (May- Jun. 216), PP 71-75 www.iosrjournals.org Lap Splices in Tension Between

More information

Truss Analysis for Evaluating the Behavior of Reinforced Concrete Moment-Resisting Frames with Poorly Reinforcing Details

Truss Analysis for Evaluating the Behavior of Reinforced Concrete Moment-Resisting Frames with Poorly Reinforcing Details October 12-17, 28, Beijing, China Truss Analysis for Evaluating the Behavior of Reinforced Concrete Moment-Resisting Frames with Poorly Reinforcing Details Yung-Chin Wang 1, Kai Hsu 2 1 Associate Professor,

More information

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION Yoshikazu TAKAHASHI 1 And Hirokazu IEMURA 2 SUMMARY The flexural and shear behaviors of rectangular hollow reinforced concrete columns

More information

CHAPTER 5 FINITE ELEMENT MODELLING

CHAPTER 5 FINITE ELEMENT MODELLING 53 CHAPTER 5 FINITE ELEMENT MODELLING 5.1 GENERAL Reinforced concrete structures are largely employed in engineering practice in a variety of situations and applications. In most cases these structures

More information

with Fillers Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C

with Fillers Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C A Study on the Mechanical Behaviour of the BFRP Decks with Fillers Yeou-Fong Li 1* and Chia-Hou Wu 1 1 Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C * 1, Sec.

More information

SEISMIC DAMAGE AND REPARABILITY EVALUATION OF RC COLUMNS IN TERMS OF CRACK VOLUME

SEISMIC DAMAGE AND REPARABILITY EVALUATION OF RC COLUMNS IN TERMS OF CRACK VOLUME SEISMIC DAMAGE AND REPARABILITY EVALUATION OF RC COLUMNS IN TERMS OF CRACK VOLUME Takeshi MAKI ) and Asim RAUF ) ) Associate Professor, Department of Civil and Environmental Engineering, Saitama University

More information

An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading

An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading An Experimental Study on the Effect of Opening on Confined Masonry Wall under Cyclic Lateral Loading M. Suarjana, D. Kusumastuti & K.S. Pribadi Department of Civil Engineering, Institut Teknologi Bandung

More information

International Journal of Civil Engineering and Technology (IJCIET) IAEME Scopus

International Journal of Civil Engineering and Technology (IJCIET) IAEME Scopus International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 8, August 2018, pp. 304 317, Article ID: IJCIET_09_08_031 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=8

More information

Safe Support of Underground Hard Rock Excavations with Macrosynthetic Fibre Reinforced Shotcrete. E.S. Bernard.

Safe Support of Underground Hard Rock Excavations with Macrosynthetic Fibre Reinforced Shotcrete. E.S. Bernard. Safe Support of Underground Hard Rock Excavations with Macrosynthetic Fibre Reinforced Shotcrete E.S. Bernard Safety in Underground Excavation Fibre Reinforced Shotcrete has revolutionised ground control

More information

Experimental Analysis of CFRP Strengthened Reinforced Concrete Slabs Loaded by Two Independent Explosions

Experimental Analysis of CFRP Strengthened Reinforced Concrete Slabs Loaded by Two Independent Explosions Proceedings Experimental Analysis of CFRP Strengthened Reinforced Concrete Slabs Loaded by Two Independent Explosions Azer Maazoun 1,2, *, Stijn Matthys 1, Bachir Belkassem 2, David Lecompte 2 and John

More information

PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS

PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS Hamdy M. Mohamed NSERC Post-Doctoral Fellow University of Sherbrooke Sherbrooke, Quebec, Canada. Hamdy.Mohamed@usherbrooke.ca Brahim Benmokrane Professor

More information

High Performance and Efficiency of Joints in Precast Members

High Performance and Efficiency of Joints in Precast Members High Performance and Efficiency of Joints in Precast Members M.J.Gopinathan #1, K.Subramanian #2, #1 Research Scholar, Anna University, Chennai, India #2 Professor and Head, Dept of Civil Engineering Coimbatore

More information

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened

More information