EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF EXTERNALLY CONFINED REINFORCED CONCRETE COLUMNS

Size: px
Start display at page:

Download "EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF EXTERNALLY CONFINED REINFORCED CONCRETE COLUMNS"

Transcription

1 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 578 EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF EXTERNALLY CONFINED REINFORCED CONCRETE COLUMNS Munawar A. HUSSAIN 1 and Robert G. DRIVER 2 SUMMARY Due to changes in codes, poor detailing practice, rezoning of seismic activity, and/or a change of function of the buildings requiring changes in performance objectives, many existing reinforced concrete buildings are seismically deficient. A scheme for the rehabilitation of seismically deficient reinforced concrete buildings is proposed that makes use of unstiffened thin steel plate shear walls, which are becoming increasingly popular as a lateral load resisting system in the construction industry. The connection of the unstiffened steel plate shear walls to the columns of the reinforced concrete frame is made with collars fabricated from steel hollow structural sections (HSS) and the connection to the beams of the frame is made either with collars or bolts passing through the slab. The steel collars serve not only as a means of connection to the steel plate, but they also increase the strength, ductility, and robustness of the concrete frame members. The objective of the present research is to investigate the performance of the proposed seismic rehabilitation scheme which is, in fact, a composite lateral load resisting system consisting of steel plate shear walls and a reinforced concrete frame. This paper presents a summary of the first two phases of the project: behaviour of the externally confined columns under concentric monotonic loading (phase I) and under simulated seismic loading (phase II). INTRODUCTION Various rehabilitation schemes have been developed for the upgrade of seismically deficient reinforced concrete buildings. A large number of reinforced concrete buildings have been seismically upgraded and there are still many more to be rehabilitated. The collapse or damage of seismically deficient reinforced concrete buildings in the most recent earthquakes have confirmed the existence of a large number of seismically deficient reinforced concrete buildings which are a potential threat to the lives of thousands of people around the globe. Figure 1(a) shows a schematic diagram of the proposed rehabilitation scheme, which consists of unstiffened steel plate shear walls installed in a deficient reinforced concrete building. These walls resist the lateral loads through the development of a diagonal tension field after out-of-plane buckling of the steel plates occurs at relatively low loads. Large-scale testing has confirmed that these walls provide an excellent lateral load resisting system both for wind and earthquake loading [1]. These walls have high 1 Doctoral Candidate, Department of Civil and Environmental Engineering, University of Alberta. 2 Associate Professor, Department of Civil and Environmental Engineering, University of Alberta.

2 initial stiffness, low weight, redundancy, high deformability (ductility), and high hysteresis damping (energy dissipation capability). There is no evidence in the literature about the use of this type of steel plate shear wall for the seismic rehabilitation of reinforced concrete buildings. However, a few reinforced concrete buildings have been seismically upgraded in North America with the help of stiffened steel plate shear walls. The seismic performance of unstiffened steel plate shear walls as a lateral load resisting system, has already been validated by Driver et al. [1]. Therefore, the present research focuses on the performance of the seismically deficient reinforced concrete frame members confined externally by HSS collars. The function of the collars is two-fold: (a) provide a means of connection between the steel plate shear wall panels and the reinforced concrete frame; and (b) improve the ductility and energy dissipation at the location of plastic hinges through confinement. Figure 1 also shows representative HSS collars with bolted as well as welded corner connections and a conventional rebar hoop that meets seismic detailing requirements for comparison. In contrast to the conventional hoop reinforcement in which confining pressure is principally contributed by the axial stiffness of the hoop bars, the confining pressure under the collars is contributed significantly by both axial as well as flexural stiffness of the sides of the collars, as demonstrated by Hussain and Driver [2] through finite element study. (b) (c) (a) (d) (e) Figure 1: (a) Schematic diagram of the proposed rehabilitation system; (b) conventional rebar hoop reinforcement; (c) HSS collar with welded collar connection; (d) HSS collar with bolted collar connection (assembled view); and (e) HSS collar with bolted collar connection (exploded view). EXPERIMENTAL PROGRAMME The experimental programme consists of two phases: (1) investigation into the behaviour of externally confined columns under monotonic concentric loading; and (2) investigation into the behaviour of externally confined columns under simulated seismic loading, with and without axial load. Description of Specimens Table 1 gives the internal and external transverse reinforcement details for specimens of phase I and phase II. In phase I of the experimental program, a total of 11 columns of 300x300 mm cross-section and 1500 mm in height were cast and tested. Of the 11 test columns, two (C00A and C00B) were control columns with conventional tie reinforcement and the remainder (C01 through C09) had external collar confinement. Each column had four nominally 20 mm diameter longitudinal bars, making the longitudinal reinforcement ratio equal to 1.33%. The effective concrete cover to the centroid of the longitudinal bars was kept equal to 58 mm. In placing the

3 transverse reinforcement, the columns were divided into three parts: top end zone; test region; and bottom end zone. The top and bottom end zones were 350 mm in height and the test region was 800 mm long. Columns C01 through C09 had external confinement by HSS collars and, in order to study the effect of external confinement separately, no tie reinforcement was provided in the test region. Figure 2(a) and 2(b) show representative test specimens with bolted and welded collars in the setup. The tie reinforcement in the test region of column C00A satisfied the gravity load design criteria of ACI and CSA Standard A and the tie reinforcement of column C00B satisfied the seismic plastic hinge requirements of these codes. In the end zones of all columns, closely spaced ties as well as closely spaced, flexurally stiff external collars were provided to prevent failure from occurring near the reaction points. In the test regions of the collared columns, either four, six, or eight collars at equal spacings were used. The collars on column C01 were tightened to be just snug with the column, minimizing the active confinement pressure, and the pretensioning force in the bolts is considered to be negligible. In the cases of columns C02, C03, C04, and C05, a significant initial pretensioning force was applied to the bolts, which was measured with an annular load cell. The initial tensions in the bolts for these columns were 65.1 kn, kn, 68.9 kn, and 90.2 kn, respectively. The bolts for column C03 had a significantly higher preload in order to study the potential benefits of active confining pressure. Table 1 Description of specimens and transverse reinforcement details Phase Specimen Transverse Steel Steel Size s Corner s A Connection t Type (mm) (mm) (mm) Type (mm 2 ) ρ t C00A φ deg hooks Rebars C00B φ deg hooks C01 HSS 51x51x bolted 375* 4.81 C02 HSS 76x51x bolted 375* 5.15 C03 HSS 76x51x bolted 375* 5.15 I C04 HSS HSS 76x51x bolted 375* 3.68 C05 Collars HSS 76x51x bolted 375* 6.63 C06 HSS 51x51x welded C07 HSS 76x51x welded C08 HSS 102x51x welded C09 HSS 76x51x welded CL0 Rebars φ deg hooks CL1 HSS 76x51x welded CL2 HSS 76x51x welded CL3 HSS 76x51x welded II CL4 HSS HSS 51x51x welded CL5 Collars HSS 76x51x welded CL6 HSS 76x51x welded CL7 HSS 76x51x welded CL8 HSS 51x51x welded * based on cross-sectional area of the bolts

4 (f) (a) (b) (c) (d) (e) (g) Figure 2: (a) Column C05 with bolted collars in the setup; (b) column C06 with welded collars in the setup; (c) column C05 at the end of the test after removing collars; (d) column C02 at the end of the test after removing collars; (e) column C04 at the end of the test after removing collars; (f) a typical deformed bolted collar at the end of the test; and (g) a typical fractured corner of a welded collar In phase II of the experimental program, a total of nine full-scale column specimens (CL0 to CL8) were designed to simulate typical columns of two to three storey reinforced concrete buildings in seismic regions. All the columns were 300x300 mm in cross-section and reinforced with eight longitudinal steel bars of 25 mm diameter, constituting a longitudinal reinforcement ratio of 4.4%. Concrete cover of 60 mm was provided to the centroid of the vertical bars. Column CL0 was a control column and was provided with conventional tie reinforcement in the test region, which satisfied the seismic plastic hinge requirements of ACI and CSA Standard A The spacing of the first hoop was set equal to s / 2 above the footing in this column, where s is the typical centre-to-centre hoop spacing of 70 mm. All the remaining columns were provided with external transverse reinforcement by HSS collars in the test regions. In order to study the effect of external confinement separately, no internal tie reinforcement was provided in the test regions of these columns. All the columns had 1800x1050x591 mm footings which were anchored to the strong floor of the structural laboratory by four post-tensioned 50 mm diameter high strength steel threaded rods to achieve fixity at the bases of the columns. The column reinforcement cages were erected vertically into the footings before casting the footing concrete. There was no splicing of the vertical bars in the columns. Casting of the columns and the footings was done separately. At the location of the construction joint between the columns and footings, the footing surface was roughened before the hardening of the concrete. Figure 3 shows the arrangement of the collars and the loading position of the columns with long and short shear spans. Columns CL0 to CL4 were tested with long shear spans and columns CL5 to CL8 were tested with short shear spans. On columns CL1 to CL4, heavy collars were provided in the region between the test region and the bracing channels to prevent failure at that location. Table 2 summarizes cylinder strength of concrete, axial load, axial load index (axial load/0.85 A g fc ), and dimensions H1, H2, and H3 for all the columns used in this study. H1 represents the overall height of the concrete column measured from the top of the footing. H2 (height to horizontal load point) and H3 (height to vertical load point at the knife edge) have been defined in Figure 3. Specimens CL1 to CL8 were provided with external confinement by HSS collars in the test region, the height of which was kept approximately equal to 600 mm based on the premise that the plastic hinge length will not exceed the test region. The clear

5 spacing between the collars, s, was either 50 or 100 mm. The clear distance between the top of the footing and the bottom of the first collar was equal to s / 2. (a) (b) Figure 3: Loading scheme: (a) with long shear span; (b) with short shear span Three sizes of HSS were used in the fabrication of the collars used in this study (dimensions in mm): HSS102x51x6.35, HSS76x51x6.35, and HSS51x51x6.35. The HSS collar segments were oriented so that the largest flexural stiffness was available to resist lateral expansion of the concrete in the column and were bevelled at 45 at the corner connections. In the case of collars with bolted corner connections, 25.4 mm diameter high strength threaded rods were used to make the connection between the HSS sides. The fabrication of collars for phase I was done in the structural engineering laboratory at the University of Alberta. A partial penetration single-v groove weld was deposited all around the attachments in case of the bolted collars and around the corner joints in the case of the welded collars, using the shielded metal arc welding process. The fabrication of the welded collars for phase II was done in a commercial fabrication workshop with full penetration groove welds all around the corners. Installation of the bolted collars, which requires the clamping of the bolted collars onto the column, is relatively easy. The installation of the welded collars was relatively more labour-intensive. The inner dimensions of the welded collars were kept 10 to 12 mm larger than those of the column cross-section. The welded collars are threaded on to the column, a method that obviously could not be used for rehabilitation in the field. The gap between the collar and the concrete column was filled with low viscosity epoxy grout; the performance of epoxy grout under shear and normal stresses in strengthened concrete structures has already been validated by Hussain et al. [3]. The volumetric ratios of transverse confining steel, ρ t, for all of the test columns of phase I and phase II are given in Table 1. The volume of the confining steel for the welded collars was calculated by multiplying the cross-sectional area of the HSS by the perimeter of the collar measured at the centroid of the HSS cross-section. For the bolted collars, since the contribution of the HSS to confinement is limited by the behaviour of the bolts, the volume of the confining steel was taken as the net cross-sectional area of the bolts running at the centreline of the collars. In both cases, since the collars are placed externally and prevent most of the spalling, the volume of the concrete was calculated based on the gross area of the

6 column and the centre-to-centre vertical spacing of the collars. Hence, the core of the collared columns was considered equal to the cross-sectional dimensions of the columns. For columns C00A, C00B, and CL0, the volume of the tie steel was calculated in the same way as that for the collars, but the volume of the concrete was based on the core of the column within the reinforcing cage. The core dimension for C00A was 215x215 mm and for C00B and CL0 was 220x220 mm, based on the centreline of the ties. Table 2 Concrete properties and location of loading points and plastic hinge lengths Phase Specimen f c Cylinder Strength for Concrete Columns σ Footings f c σ Axial Load kn Axial Load Index Location of Horizontal and Vertical Loads H1 mm H2 mm H3 mm I II C00A C00B C C C C C C C C C CL / / CL CL CL CL CL CL CL CL Material Properties The average ultimate concrete strengths, f c, and the corresponding standard deviations for the specimens of phase I and phase II are given in Table 2. Poisson s ratio was determined using 100x200 mm cylinders and was found to have an overall mean value of The mechanical properties of rebars, threaded rods, and HSS for both phases are given in Table 3. Strain-hardening strains and strain-hardening moduli are given only for steel with a well-defined yield plateau. Loading Protocol Phase I columns were tested under concentric monotonic axial loading. Initially, a load of about 200 kn was applied to each column to check the instrumentation and data acquisition system and then removed. Most columns were then loaded monotonically to failure, however one column with bolted collars (C05) and one with welded collars (C07) were subjected to 15 cycles of load from zero to near their respective

7 compressive capacities and back, in order to examine the robustness of the system. In particular, the cycles were to verify that the collars would not decrease in their effectiveness of confining the concrete in the columns due to deterioration or slip as the confining pressure was repeatedly applied and released. All the columns were tested under stroke control. The strain rate effect on the strength of the concrete of the columns tested in phase I is considered negligible. Table 3 Properties of steel rebars and steel HSS Phase Steel Type Size mm f y E s f p ε p ε sh H I II φ Rebars φ φ Threaded rods φ HSS 51x51x HSS HSS 76x51x HSS 102x51x φ Rebars φ25 (CL0 TO CL4) φ25 (CL5 TO CL8) HSS HSS 51x51x HSS 76x51x Phase II columns were tested under simulated seismic loading (constant axial load and lateral cyclic loading). After checking that all of the instrumentation was functioning properly, the vertical load was applied, followed by the horizontal cyclic loading. The cycles of horizontal loads were applied in the north-south direction. The columns were pushed initially in the north direction, after the application of gravity loads. For all of the columns, the vertical load was kept constant throughout the tests except for column CL0, in which a load of 1470 kn was applied from cycles 1 to 16 and 720 kn from cycle 17 to the end of the test. When the column reached large displacements, the P effect from the high vertical load caused a substantial drop in the applied lateral force in each displacement increment. For this reason, the vertical load was reduced to 720 kn and the test was continued. All the remaining columns were tested under 720 kn or zero load as per Table 1. The sequence for horizontal loading shown in Figure 4, which has been adapted from Ref. [4], was used for all the columns. The first five cycles were load controlled, in which a peak horizontal load of 75 percent of the lateral load Vy was applied. V y is defined as the lateral force corresponding to the yield moment of the column, under axial load if present, taken as the point of first yield of the vertical tensile steel. The concrete stress distribution for the collared columns is based on the estimated confined material curves determined from the test results of phase I columns. A more general confined material model is currently under development and will eventually be used to define the confined concrete material curves for the phase II columns which, in turn, will be used to determine the yield displacements which may be slightly different from the values reported here. As shown in Figure 4(a), the yield displacement is defined using the first full cycle by extrapolating straight lines from the origin through the peak load-displacement points at 0.75V y to the theoretical strength V y.

8 The average of the yield displacements in the positive and negative directions was taken as the yield displacement (Table 3). The displacement ductility factor, µ, is defined as the ratio of the actual displacement to the yield displacement. Subsequent cycles were displacement controlled and extended to displacement ductilities, µ, equal to 1.5, 2, 4, 6, 8 and so on, with five cycles carried out at each displacement ductility level. (a) definition yield displacement (b) displacement sequence Figure 4: Sequence of imposed horizontal displacements (adapted from Ref. 4) TEST RESULTS AND DISCUSSION Behaviour of Columns Tested in Phase I Figure 5 shows the normalized stress vs. strain curve of the confined concrete for phase I columns. The multiple load cycles applied to columns C05 and C07, as described previously, are not shown in the figure for clarity of the other curves. In addition, column C07 was loaded twice; in the first loading, the specimen could not be failed and then it was moved to a higher capacity testing machine for complete failure. Assuming full composite action between the longitudinal rebars and the concrete, the load carried by the concrete was obtained by subtracting the load carried by the longitudinal rebars (derived from the strain data) from the total column load. The concrete load vs. strain curves for all the columns are then converted to confined concrete stress, f cc, vs. strain curves by dividing their ordinate by A c (where, Ac = Ag Ast ). These curves are commonly referred to as confined concrete material curves. In order to compare directly the effect of confinement on the behaviour of the concrete in the columns, it is necessary to normalize the concrete material curves of the columns with respect to their unconfined concrete strengths, f co, taken as 0.85 f c. These normalized curves are shown in Figure 5. It should be noted that the descending branches of these curves may not be accurate because of the localization of axial strains and lateral bending of the longitudinal bars in the test regions. As expected, column C00A showed brittle failure because of the relatively wide spacing of the ties. The peak load for this column was achieved at a strain of Column C00B showed ductile failure because of the closely spaced hoops in the test region. The peak load was reached at an average strain in the test region of , which is about nine times the analogous strain for column C00A. The enhancement in concrete strength due to confinement of 96% was obtained (based on concrete area enclosed by the centreline of the ties). Columns C01, C02, C03, and C04 with bolted collars, showed

9 ductile failure, although the ductility of column C04 was somewhat lower due to the relatively large collar spacing. The curve for column C05 is terminated just before cycling the load. From these curves it can be calculated that the average enhancement in concrete strength for columns with bolted collars (based on concrete area Ac = Ag Ast ) is 67% with a maximum value of 115% for column C05. The average strain at peak stress of confined concrete for these columns is with a maximum value of for column C05 (after cycling the load). Columns C06, C07, C08, and C09, with welded collars, also showed enhancement in concrete strength and ductility. The average enhancement in concrete strength of 110% (based on the concrete core area, which for collared columns is A c ) was obtained for these columns with a maximum value of 131% for column C07. The average strain at peak stress of confined concrete for these columns was with a maximum value of for column C06. Although large strains at peak stress of confined concrete were observed for these columns, the failure exhibited was brittle due to the fracture of a corner weld in one or more of the collars. Nevertheless, improved column ductility would certainly have been exhibited had the collar welds not failed. It is also clear from the curves of Figure 5 that with an increase in collar spacing, the strength enhancement factor and the ductility of the column both decrease. This can be observed for bolted collars by comparing the results of columns C02, C04, and C05 and for welded collars by comparing columns C07 and C09. The flexural and axial stiffnesses of the collars (size of the collars) also have an effect on the behaviour of the columns. The increase in the stiffness of the collars increases both the strength and the ductility of the column. This can be observed for bolted collars by comparing the curves of columns C01 and C02 and for welded collars by comparing curves of columns C06, C07, and C08. Figure 5: Normalized concrete confined material curves A typical deformed bolted collar and fractured welded collar at the end of the tests are shown in Figures 2(f) and 2(g). The plastic flexural deformations are evident in the bolted collar. The appearance of three columns (C02, C04, and C05) at the end of the tests (with collars removed) that had different collar spacings but were otherwise identical are shown in Figures 2(c), 2(d), and 2(e). It is obvious from this Figure that no spalling of concrete took place under the collars. The localized damage seen in column C04 is a result of the relatively large collar spacing that resulted in less efficient confinement. Behaviour of Columns Tested in Phase II The axial loads and axial load indices for phase II columns are given in Table 2. It is to be noted that the stroke limit of the jack for horizontal loading was about 200 mm in either direction. The yield displacements and the number of complete cycles that were applied to these columns are given in Table 4.

10 The yield displacement corresponds to the point of application of horizontal load. The first five cycles for each column were performed using load control and the remaining cycles were performed using displacement control at the specified displacement ductility level. In specimens CL0, CL1, CL2, CL3, and CL4, the last ductility level at which cycles were performed corresponds to the displacement equal to the stroke of the jack (i.e., the starred number of cycles in Table 4), giving ductility levels of about 6.6, 8.6, 4.8, 5.2, and 7.1, respectively. The displacement ductility, µ, shown in Table 4 is different for columns CL1 and CL4 because they were failed monotonically as described subsequently. Columns CL1 and CL5 were tested under zero gravity load and columns CL2, CL3, CL4, CL6, CL7, and CL8 were tested under gravity load of 720 kn. The testing of column CL0 was started with a gravity load of 1470 kn, which was maintained up to the end of 16 th cycle and then reduced to 720 kn. Specimens Table 4 Yield displacement, total energy dissipated, µ, and number of cycles sustained y mm Total Energy Dissipated KN m µ V = 0.75V y Number of Complete Cycles Sustained Displacement Ductility, µ CL * CL * CL * CL * CL * CL CL CL CL Total The upper limit for the number of complete cycles was 45. In order to facilitate this discussion, the first collar above the footing has been numbered as one, and the next collar as two, and so on. Specimens CL1, CL3, and CL4, all with long shear-span, did not fail at the completion of 45 cycles. The stroke of the jack was adjusted for these columns and then the columns were pushed in one direction (north) up to the available stroke limit of the adjusted jack, but these columns could not be failed. The column CL0 failed in shear in the 45 th cycle at the location of hinge formation while pushing the column towards the north as depicted in Figure 6, accompanied by a reduction in both horizontal and vertical loads. An upward shift in the location of hinge formation has been observed for this column during the regime of cycling. Columns CL2, CL5, CL6, CL7, and CL8 failed due to fracture of the vertical bars under low cycle fatigue. In column CL2, the vertical bars became visible in the 22th cycle due to spalling of the concrete cover. The three vertical bars on the south face of the column fractured while pushing the column towards the north; one in each of 26 th, 27 th, and 28 th cycle. The test was stopped after the fracture of the third vertical bar in the 28 th cycle. In column CL5, the fracture of the two vertical bars took place on the south face of the column while pushing the column towards the north; one in each of the 37 th and 38 th cycle. The test was stopped in the 38 th cycle after the rupture of the second bar. In column CL6, the test was stopped after the fracture of a single vertical bar (the middle bar) on the north face of the column while pushing the column towards the south in the 32 nd cycle, accompanied by a drop in load. In column CL7, the test was stopped after the fracture of three vertical bars on the north and south faces of the column. The first vertical bar fractured on the south face while pushing the column towards the north in the 35 th cycle, the second

11 vertical bar fractured on the north face while pushing the column towards the south in the 35 th cycle. The third vertical bar also fractured on the north face while pushing the column towards the south in the 36 th cycle and then the test was stopped. In column CL8, the middle bar on the south face fractured while pushing the column towards the north in the 36 th cycle. While pushing the column towards the south in 36 th cycle, two more bars fractured on the north face of the column, one after the other and the test was stopped. CL0 CL1 CL2 Figure 6: Appearance of typical phase II columns at the end of the tests In column CL2, most of the damage occurred in the first two gaps the gap between the first collar and the footing and the gap between the first and second collars however, fracture of the vertical bars occurred in the second gap as depicted in Figure 6. In columns CL1, CL5, CL6, CL7, and CL8, most of the damage was concentrated in the gap between the first collar and the footing. The appearance of one of these columns at the end of the test, i.e., CL1, is also shown in Figure 6. A similar type of failure has also been observed by Xiao and Wu [5], who tested under cyclic loading thinly jacketed columns with stiffeners that resemble the HSS collars. The fracture of vertical bars of columns CL5, CL6, CL7, and CL8 also took place in the first gap. In column CL3 the damage was well distributed up to the fourth collar, and in column CL4, the damage was concentrated in the gap between the first and the second collar. The appearance of columns CL0, CL1, and CL2 at the end of the test in Figure 6, can also be considered typical of columns with closely spaced ties, closely spaced collars, and widely spaced collars, respectively. In the collared columns, very little spalling of concrete between the collars was observed at the end of the first 20 cycles, a ductility level equal to 4, which is commonly used for the design of new reinforced concrete structures in seismic zones. In the case of the conventional column (CL0), most of the spalling of the concrete cover occurred at a displacement ductility level of 1.5. Hence, collared columns possess a larger effective core than that of conventionally tied columns and are more resistant to degradation under severe cyclic loading. In addition, no slippage of collars was observed during cyclic loading; a feature which is highly desirable for the success of this rehabilitation scheme. In the collared columns, most of the spalling was confined to the lower half of the test region, while in the conventional column, spalling took place over a wider range (Figure 6). Figure 7 shows the moment vs. lateral drift hysteresis curves of all the columns tested in phase II of the project. Generally, the hysteresis curves for columns under cyclic loading are represented in terms of horizontal load vs. lateral displacement at the point of application of the horizontal load. In the present study, the points of application of horizontal and vertical loads are at considerably different heights, especially in columns with short shear spans, hence, both horizontal and vertical loads contribute considerably to the applied moment at the critical section of the columns. Therefore, moment vs. lateral

12 drift relationships are considered to be more appropriate for presenting the hysteresis loops of columns tested in this phase. Figure 7: Moment vs. lateral drift hysteresis for all columns There are several ways to express the ductility of the yielding structures. Among them, the most commonly used methods of measuring ductility of structural members are: (1) curvature ductility factor, µ φ ; (2) rotational ductility factor, µ θ ; and (3) displacement ductility factor, µ. Curvature ductility, µ φ, represents the sectional behaviour of the member and local ductility in the hinging zone. The displacement and rotational ductility factors are used to express the overall behaviour of the members. These ductility factors are related to each other. In the columns under study, the moment distributions along the heights of the columns are complex due to the P effect; therefore, the relationships between the various ductility factors will also be complex, which is an area currently being studied. In the present paper, the displacement ductility factor, µ, will be presented for all the phase II columns. The displacement ductility factor is defined as: u µ = [1] Where y and u are the yield displacement and ultimate displacement. The yield displacements are given in Table 4. The ultimate lateral displacement, u, can be found from the envelope curves to the moment vs. lateral drift hysteresis loops given in Figure 7. The ultimate horizontal drift corresponds to the moment equal to the 90% of the maximum moment in the descending branch of the envelope curves to the moment vs. lateral drift hysteresis loops. The displacement ductility factors thus calculated are given in Table 4. y

13 For columns CL0 to CL4, there was no drop in the moment capacity up to the imposed displacement limited by the stroke of the jack. For columns CL0 and CL2, the maximum displacement taken as the average of the two directions exhibited by these curves was used as the ultimate displacement. For columns CL1 and CL4, the maximum displacement related to the final push in the north direction was taken as the ultimate displacement. For column CL3, the displacement related to the final push was not used because of the substantial reduction in the moment capacity due to degradation. For columns CL5 to CL8, the moment capacity declined with an increase in the drift at large displacements. Therefore, the drift corresponding to the moment in the descending branch equal to the 90% of the maximum moment capacity was taken as the ultimate drift. The effect of shear span on the displacement ductility of the columns can be studied by comparing the ductility of columns CL1 to CL5 and CL4 to CL8. The displacement ductility of CL1 is higher than that of CL5 and the displacement ductility of CL4 is higher than that of CL8. The displacement ductility of CL2 cannot be compared to that of CL6 for this purpose because the lower displacement ductility of column CL2 may be attributed to the limit on the stroke of jack. Column CL3 was excluded from this comparison because of the degradation in moment capacity due to application of an excessive number of cycles before applying the final push towards the north. The increase in collar spacing has a detrimental effect on the displacement ductility and energy dissipation of the columns. This can be verified by comparing the displacement ductility and energy dissipation of columns CL2 to CL3 and CL6 to CL7. The axial load has a significant effect on the behaviour of the columns. It has an effect on the strain level of the column directly and through the P effect. Comparing the displacement ductility and energy dissipation of CL1 to CL3 it can be concluded that with the increase of axial load, the energy dissipation of the column increases and displacement ductility decreases. The total energy dissipated by all the columns tested in phase II is given in Table 4. The dissipated energy in a cycle was determined by calculating the area enclosed by the moment vs. lateral drift hysteresis loops. The total energy dissipated by a column was determined by summing the energy dissipated in each cycle of loading. Figure 8a shows the energy dissipated in each cycle of a typical column (column C05). This column was subjected to 37 complete cycles before failure. At each ductility level five cycles were performed. The energy dissipated in the first cycle was generally higher than that of the other four cycles at the same ductility level. Figure 8b shows the cumulative energy dissipated by the column with respect to the number of cycles. The cumulative energy dissipated increases at an increasing rate with the increase of the displacement ductility level until the displacements become relatively large. This figure also shows that the cumulative energy dissipated by the column in the elastic range is negligible as compared to the energy dissipated by the column in the plastic range. Energy Absorbed, kn.m Cycle Number Cumulative Energy Dissipated, kn.m Cycle Number (a) (b) Figure 8: Energy dissipated by column C05: (a) per cycle; (b) cumulative

14 CONCLUSIONS The behaviour of columns under concentric monotonic loading and under simulated seismic loading has confirmed that the external collar confinement can be used as a means of rehabilitation for seismically deficient reinforced concrete structures through enhancement in strength and ductility. The pertinent conclusions based on the test results of the first two phases of the project are presented below. Based on the test results of phase I of the project it can be concluded that the collared columns exhibited a maximum strength enhancement of concrete of 131% (column C07), and a maximum observed strain at peak stress of (column C05). By comparison, a conventionally confined column satisfying the plastic hinge requirements of ACI 318 and CSA Standard A23.3 (column C00B) exhibited a strength enhancement of concrete of 96%, calculated based on the core of the column, and a strain at peak stress of The external confinement by HSS collars prevents the spalling of concrete cover under the collars and inhibits spalling between the collars. The effective core area of externally confined columns is therefore significantly larger than that of conventional columns and can be taken as the full crosssectional concrete area.. On average, columns confined by collars having welded corner connections show an enhancement in strength of 2.41 times that of columns with bolted collars. The strain at peak stress of the concrete confined by the two types of collars are comparable and generally are close to ten times that which would be expected for unconfined concrete. The lower failure strain exhibited by columns with welded collars is attributed to the lack of ductility of the welds in the collars themselves and it may be increased significantly with deeper weld penetration. Based on the test results of phase II of the project it can be concluded that collared columns showed very good seismic behaviour under severe cyclic loading. Reduction in the shear span has a detrimental effect on the ductility of the columns. With an increase in axial load on the column, ductility reduces and energy dissipation increases. With an increase of collar spacing, both energy dissipation and ductility reduces. In addition, no slippage of collars was observed and no spalling of concrete occurred under the collars during severe cyclic loading, a feature which is highly desirable for the success of this rehabilitation scheme. The desired enhancement in strength and ductility was achieved through confinement of the concrete and the presence of the collars made the columns very resistant to degradation under severe cyclic loading. External confinement by HSS collars is therefore an effective means of rehabilitating columns in seismically deficient reinforced concrete buildings. ACKNOWLEDGEMENTS This ongoing research program is funded by the Natural Sciences and Engineering Research Council of Canada. The high capacity universal testing machine in which two columns discussed in this paper were tested was provided by the Centre for Engineering Research in Edmonton, Canada. The authors are also grateful to Reliable Tubes Ltd., Unicon Concrete Ltd., and Master Builders for their donations in carrying out this project. NOTATION A c = Ag Ast ; area of the concrete in the gross column cross-section, mm 2 ; A g = gross area of the section, mm 2 ; A st = cross-sectional area of longitudinal steel, mm 2 ; A t = cross-sectional area of one leg of the confining steel, mm 2 ;

15 E s = modulus of elasticity of steel, ; f = cylinder strength of concrete, ; c f = applied stress on confined concrete in column, ; cc f co =.85 f c y 0 ; unconfined concrete strength of the column, ; f = yield strength of steel, ; f = peak stress of steel, ; p H = strain hardening modulus, ; s = center-to-center spacing of ties or collars, mm; s = clear spacing between collars or ties, mm; = ultimate horizontal displacement at the point of application of horizontal load, mm; u y = horizontal displacement at the point of application of horizontal load at which yielding takes place, mm; ε p = strain at peak stress of steel, f p ; ε sh = strain at the start of strain hardening; µ φ = curvature ductility factor; µ θ = rotational ductility factor; µ = displacement ductility factor; σ = standard deviation of the concrete cylinder strength, ; REFERENCES 1. Driver, R.G., Kulak, G.L., Kennedy, D.J.L. and Elwi, A.E., Cyclic test of four-story steel plate shear wall. Journal of Structural Engineering, ASCE, 1998; 124(2): Hussain, M.A. and Driver, R.G., Finite element study on the strength and the ductility of externally confined rectangular and square concrete columns, Proc., Canadian Society for Civil Engineering Annual Conference, Victoria, BC, Canada, May 30-June 2, Hussain, M.A., Sharif, A., Basunbul, I.A., Baluch, M.H., Al-Sulaimani, G.J. Flexural behavior of precracked reinforced concrete beams strengthened externally by steel plates. ACI Structural Journal, 1995; 92(1): Ghee, A.B., Priestley, M.J.N. and Paulay T., Seismic Shear Strength of Circular Reinforced Concrete Columns. ACI Structural Journal, January-February 1989: Xiao, Y., and Wu, H., Retrofit of reinforced concrete columns using partially stiffened steel jackets, Journal of Structural Engineering, ASCE, May-June 2003; 129(6):

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips M. Samadi Department of civil engineering., Mashhad Branch, Islamic Azad University, Mashhad,

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Deformation Capacity of RC Structural Walls without Special

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS 6 th International Conference on Advanced Composite Materials in Bridges and Structures 6 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes Kingston, Ontario,

More information

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL CYCLIC RESPONSE OF ALTERNATIVE COLUMN TO FOUNDATION CONNECTIONS OF REINFORCED CONCRETEC PRECAST STRUCTURES Ettore Fagà, Dr, EUCENTRE, Pavia, Italy Lorenzo

More information

EXPERIMENTAL STUDY ON REINFORCED CONCRETE COLUMN STRENGTHENED WITH FERROCEMENT JACKET

EXPERIMENTAL STUDY ON REINFORCED CONCRETE COLUMN STRENGTHENED WITH FERROCEMENT JACKET EXPERIMENTAL STUDY ON REINFORCED CONCRETE COLUMN STRENGTHENED WITH FERROCEMENT JACKET Katsuki TAKIGUCHI 1 And ABDULLAH 2 SUMMARY Investigation by many researchers have indicated that by providing external

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

CYCLIC BEHAVIOR OF SLENDER R/C COLUMNS WITH INSUFFICIENT LAP SPLICE LENGTH

CYCLIC BEHAVIOR OF SLENDER R/C COLUMNS WITH INSUFFICIENT LAP SPLICE LENGTH CYCLIC BEHAVIOR OF SLENDER R/C COLUMNS WITH INSUFFICIENT LAP SPLICE LENGTH S.Eshghi 1 and V.Zanjanizadeh 2 1 Assistant Professor of International Institute of Earthquake Engineering and Seismology (IIEES),

More information

Fragility Curves for Seismically Retrofitted Concrete Bridges

Fragility Curves for Seismically Retrofitted Concrete Bridges Fragility Curves for Seismically Retrofitted Concrete Bridges S.-H. Kim Department of Civil and Environmental Engineering, University of California, Irvine, USA. ABSTRACT: This study presents the development

More information

SEISMIC PERFORMANCE AND RETROFIT OF BRIDGE FOOTINGS. David I. McLean 1

SEISMIC PERFORMANCE AND RETROFIT OF BRIDGE FOOTINGS. David I. McLean 1 Abstract SEISMIC PERFORMANCE AND RETROFIT OF BRIDGE FOOTINGS David I. McLean 1 This study investigated retrofitting measures for improving the seismic performance of the foundations of existing bridges.

More information

> 0. 1 f, they are treated as beam-columns.

> 0. 1 f, they are treated as beam-columns. 223 A- Flexural Members (Beams) of Special Moment Frames Requirements of ACI 21.5 are applicable for special moment frame members proportioned primarily to resist flexure with factored axial forces 0.

More information

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION Wei YUE,

More information

Reinforced concrete beam-column joints with lap splices under cyclic loading

Reinforced concrete beam-column joints with lap splices under cyclic loading Structural Engineering and Mechanics, Vol. 14, No. 6 (2002) 000-000 1 Reinforced concrete beam-column joints with lap splices under cyclic loading Athanasios I. Karabinis Department of Civil Engineering,

More information

Behaviour of Reinforced Concrete Dual Structural System: Strength, Deformation Characteristics, and Failure Mechanism

Behaviour of Reinforced Concrete Dual Structural System: Strength, Deformation Characteristics, and Failure Mechanism IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 213 ehaviour of Reinforced Concrete Dual Structural System: Strength, Deformation Characteristics, and Failure Mechanism

More information

GFRP retrofitted RC frames with columns subjected to high axial stresses

GFRP retrofitted RC frames with columns subjected to high axial stresses GFRP retrofitted RC frames with columns subjected to high axial stresses K. D. Dalgic Istanbul Kultur University, Turkey O. Ozel Istanbul Technical University, Turkey M. Ispir Istanbul Technical University,

More information

CYCLIC TESTING OF BOLTED CONTINUOUS I-BEAM-TO-HOLLOW SECTION COLUMN CONNECTIONS

CYCLIC TESTING OF BOLTED CONTINUOUS I-BEAM-TO-HOLLOW SECTION COLUMN CONNECTIONS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska CYCLIC TESTING OF BOLTED CONTINUOUS I-BEAM-TO-HOLLOW SECTION COLUMN

More information

The cracking behaviour of reinforced concrete beams under static and dynamic loading

The cracking behaviour of reinforced concrete beams under static and dynamic loading The cracking behaviour of reinforced concrete beams under static and dynamic loading J.A. Huffadine, A.G. van Bysterveldt, G.C. Clifton & G.W. Ferguson Department of Civil Engineering, University of Auckland,

More information

SEISMIC RETROFIT OF BEAM-COLUMN JOINTS WITH FRP SHEETS

SEISMIC RETROFIT OF BEAM-COLUMN JOINTS WITH FRP SHEETS B-4 ADVANCED COMPOSITE MATERIALS IN BRIDGES AND STRUCTURES MATÉRIAUX COMPOSITES D'AVANT GARDE POUR PONTS ET CHARPENTES Winnipeg, Manitoba, Canada, September 22 24, 28 / 22, 23 et 24 septembre 28 SEISMIC

More information

Seismic Evaluation and Retrofit of Beam- Column Joints of Mid-America Bridges Part 2: Steel Sheet and Plate Retrofit

Seismic Evaluation and Retrofit of Beam- Column Joints of Mid-America Bridges Part 2: Steel Sheet and Plate Retrofit Seismic Evaluation and Retrofit of Beam- Column Joints of Mid-America Bridges Part 2: Steel Sheet and Plate Retrofit Genda Chen, Ph.D., P.E. Associate Professor of Civil Engineering Department of Civil,

More information

DUCTILITY REQUIREMENTS FOR BUILDINGS

DUCTILITY REQUIREMENTS FOR BUILDINGS DUCTILITY REQUIREMENTS FOR BUILDINGS Prof. P. C. Vasani, Applied Mechanics Department, L. D. College of Engineering, Ahmedabad 380015. profvasani@rediffmail.com Bhumika B. Mehta M. E. CIVIL - (CASAD) Sem

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Nonlinear Seismic Behavior

More information

EXPERIMENTAL STUDY ON RC COLUMNS RETROFITTED BY FRP AND SUBJECTED TO SEISMIC LOADING

EXPERIMENTAL STUDY ON RC COLUMNS RETROFITTED BY FRP AND SUBJECTED TO SEISMIC LOADING EXPERIMENTAL STUDY ON RC COLUMNS RETROFITTED BY FRP AND SUBJECTED TO SEISMIC LOADING Raphaelle SADONE, Marc QUIERTANT Université Paris Est - IFSTTAR - SOA 58 Boulevard Lefebvre, 75015 PARIS r.sadone@hotmail.fr*;

More information

Moment curvature analysis of concrete flexural members confined with CFRP grids

Moment curvature analysis of concrete flexural members confined with CFRP grids Materials Characterisation V 131 Moment curvature analysis of concrete flexural members confined with CFRP grids A. Michael & P. Christou Department of Civil Engineering, Frederick University, Cyprus Abstract

More information

Pile to Slab Bridge Connections

Pile to Slab Bridge Connections Pile to Slab Bridge Connections Mohamed I. Ayoub 1, David H. Sanders 2 and Ahmed Ibrahim 3 Abstract Slab bridges are a common bridge type, where the pile extends directly from the ground to the superstructure.

More information

Analytical Investigation of Seismic Performance of Exterior RC Beam-Column Joints Rehabilitated with New Scheme

Analytical Investigation of Seismic Performance of Exterior RC Beam-Column Joints Rehabilitated with New Scheme Analytical Investigation of Seismic Performance of Exterior RC Beam-Column Joints Rehabilitated with New Scheme A. Hosseini, M.Marefat, A. Arzeytoon & J. Shafaei School of Civil Engineering, University

More information

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION Renato Parretti, Co-Force America, Inc., Rolla, MO Antonio Nanni, University of Missouri-Rolla, Rolla, MO Abstract

More information

Behaviour and design of innovative hybrid coupled shear walls for steel buildings in seismic areas

Behaviour and design of innovative hybrid coupled shear walls for steel buildings in seismic areas Behaviour and design of innovative hybrid coupled shear walls for steel buildings in seismic areas A. Zona, G. Leoni & A. Dall Asta University of Camerino, Italy C. Braham, T. Bogdan & H. Degée University

More information

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical Note: 008-2010 A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical This CFA Technical Note is intended to serve as a guide to assist

More information

INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING

INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING INHERENT DUCTILITY OF REINFORCED CONCRETE SHEAR WALLS WITH NON-SEISMIC DETAILING J. S. Kuang*, Hong Kong University of Science and Technology, Hong Kong Y. B. Ho, Hong Kong University of Science and Technology,

More information

Effect of beam dimensions on structural performance of wide beam-column joints

Effect of beam dimensions on structural performance of wide beam-column joints Effect of beam dimensions on structural performance of wide beam-column joints J.S. Kuang 1) and *Wing Shan Kam 2) 1), 2) Department of Civil and Environmental Engineering, Hong Kong University of Science

More information

Comparison of Prefabricated Cage System with Existing Reinforcement Methods in Concrete Columns

Comparison of Prefabricated Cage System with Existing Reinforcement Methods in Concrete Columns Comparison of Prefabricated Cage System with Existing Reinforcement Methods in Concrete Columns A Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Distinction with the Degree

More information

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS

REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS REHABILITATION OF RC BUILDINGS USING STRUCTURAL WALLS Ahmed GHOBARAH 1 And Maged YOUSSEF 2 SUMMARY A developed macroscopic model is applied to the analysis of an example structure to demonstrate the use

More information

1. INTRODUCTION. Fig.1 Dimension of test specimen

1. INTRODUCTION. Fig.1 Dimension of test specimen F1B04 Evaluation of a Shear Wall Reinforced with Glass FRP Bars Subjected to Lateral Cyclic Loading Nayera Mohamed PhD candidate, Department of Civil Engineering, University of Sherbrooke, Sherbrooke,

More information

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Mohamad J. Terro Associate Professor. Civil Engineering Department, Kuwait University. Sameer

More information

RETROFITTING OF COLUMNS WITH RC JACKETTING AN EXPERIMENTAL BEHAVIOR

RETROFITTING OF COLUMNS WITH RC JACKETTING AN EXPERIMENTAL BEHAVIOR RETROFITTING OF COLUMNS WITH JACKETTING AN EXPERIMENTAL BEHAVIOR 1 K.SENGOTTIAN, 2 DR.K.JAGADEESAN 1 Research Scholar (4089023115), Anna University, Coimbatore 2 Professor and Head, Department of Civil

More information

Special Reinforced Concrete Structural Walls

Special Reinforced Concrete Structural Walls 135 Special Reinforced Concrete Structural Walls The requirements of this section apply to special reinforced concrete structural walls serving as part of the earthquake force-resisting system. Shear Strength:

More information

DESIGN OF GRAVITY-LOAD RESISTING FRAMES FOR SEISMIC DISPLACEMENT DEMANDS

DESIGN OF GRAVITY-LOAD RESISTING FRAMES FOR SEISMIC DISPLACEMENT DEMANDS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska DESIGN OF GRAVITY-LOAD RESISTING FRAMES FOR SEISMIC DISPLACEMENT DEMANDS

More information

STRENGTHENING WITH WING WALLS FOR SEISMICALLY SUBSTANDARD R/C BEAM-COLUMN JOINTS

STRENGTHENING WITH WING WALLS FOR SEISMICALLY SUBSTANDARD R/C BEAM-COLUMN JOINTS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska STRENGTHENING WITH WING WALLS FOR SEISMICALLY SUBSTANDARD R/C BEAM-COLUMN

More information

Seismic design of braced frame gusset plate connections

Seismic design of braced frame gusset plate connections Earthquake Resistant Engineering Structures V 105 Seismic design of braced frame gusset plate connections C. W. Roeder, D. E. Lehman, A. Christopolus, I. Gunnarson, S. Johnson & J. H. Yoo Department of

More information

Study on Nonlinear Static Analysis of R/C Frames Retrofitted With Steel Plate Shear Wall

Study on Nonlinear Static Analysis of R/C Frames Retrofitted With Steel Plate Shear Wall Study on Nonlinear Static Analysis of R/C Frames Retrofitted With Steel Plate Shear Wall A.R. Shokrzadeh & M. Miri Department of Civil Engineering, University of Sistan and Baluchestan, Iran SUMMARY: This

More information

Survey and Testing of Pre-1988 Braced Frame Structures From The West Coast of the United States

Survey and Testing of Pre-1988 Braced Frame Structures From The West Coast of the United States Survey and Testing of Pre-1988 Braced Frame Structures From The West Coast of the United States Dan Sloat 1, Charles W. Roeder 2, Dawn E. Lehman 3, and Jeffrey W. Berman 4 1 Graduate Student, Dept. of

More information

Experimental study on seismic behavior of composite concrete and

Experimental study on seismic behavior of composite concrete and 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 215, University of

More information

Seismic Detailing of RC Structures (IS: )

Seismic Detailing of RC Structures (IS: ) Seismic Detailing of RC Structures (IS:13920-1993) Sudhir K Jain Indian Institute of Technology Gandhinagar November 2012 1 Outline This lecture covers: Covers important clauses of IS13920 With particular

More information

Repair of Earthquake-Damaged RC Columns with FRP Wraps

Repair of Earthquake-Damaged RC Columns with FRP Wraps ACI STRUCTURAL JOURNAL Title no. 94-S20 TECHNICAL PAPER Repair of Earthquake-Damaged RC Columns with FRP Wraps by Hamid Saadatmanesh, Mohammad R. Ehsani, and Limin Jin An investigation was conducted into

More information

Seismic Retrofit of Reinforced Concrete Building Structures with Prestressed Braces

Seismic Retrofit of Reinforced Concrete Building Structures with Prestressed Braces Journal of Advanced Concrete Technology Vol. 7, No. 3, 337-345, October 9 / Copyright 9 Japan Concrete Institute 337 Scientific paper Seismic Retrofit of Reinforced Concrete Building Structures with Prestressed

More information

Pacific Earthquake Engineering Research Center

Pacific Earthquake Engineering Research Center Pacific Earthquake Engineering Research Center Performance-Based Evaluation of Exterior Reinforced Concrete Building Joints for Seismic Excitation Chandra Clyde Chris P. Pantelides Lawrence D. Reaveley

More information

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS Juan G. Arias Acosta, Graduate Student David H. Sanders, Professor and Project PI University of Nevada, Reno NEESR SG 53737

More information

SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES

SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES

More information

SEISMIC TEST OF CONCRETE BLOCK INFILLED REINFORCED CONCRETE FRAMES

SEISMIC TEST OF CONCRETE BLOCK INFILLED REINFORCED CONCRETE FRAMES SEISMIC TEST OF CONCRETE BLOCK INFILLE REINFORCE CONCRETE FRAMES Yoshiaki NAKANO 1, Ho CHOI 2, Yasushi SANAA 3 and Naruhito YAMAUCHI 4 1 Associate Professor, Institute of Industrial Science, The University

More information

IMPROVEMENT OF THE DEFORMATION CAPACITY BY THE USE OF FIBERS

IMPROVEMENT OF THE DEFORMATION CAPACITY BY THE USE OF FIBERS IMPROVEMENT OF THE DEFORMATION CAPACITY BY THE USE OF FIBERS Kenji Kosa and Hiroki Goda Department of Civil Engineering, Kyushu Institute of Technology, Japan Abstract To improve the seismic resistance

More information

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Design Example 2 Reinforced Concrete Wall with Coupling Beams Design Example 2 Reinforced Concrete Wall with Coupling Beams OVERVIEW The structure in this design example is a six story office building with reinforced concrete walls as its seismic force resisting

More information

406 A.R. Khaloo and A. Esmaili This method does not enhance column moment capacity and stiness signicantly. Therefore, additional earthquake forces in

406 A.R. Khaloo and A. Esmaili This method does not enhance column moment capacity and stiness signicantly. Therefore, additional earthquake forces in Scientia Iranica, Vol. 14, No. 5, pp 405{413 c Sharif University of Technology, October 2007 Strengthening Design Limitations of an RC Frames Using FRP Column Wrapping Considering Column-to-Beam Strength

More information

USE OF CFRP ANCHORS TO STRENGTHEN LAP SPLICES OF RECTANGULAR RC COLUMNS

USE OF CFRP ANCHORS TO STRENGTHEN LAP SPLICES OF RECTANGULAR RC COLUMNS US OF CFRP ANCHORS TO STRNGTHN LAP SPLICS OF RCTANGULAR RC COLUMNS Insung KIM 1 James O. JIRSA 2 Oguzhan BAYRAK 3 1 2 3 Degenkolb ngineers, San Francisco, USA Department of Civil ngineering, The University

More information

Concrete-filled fiber reinforced polymer tube-footing interaction in bending

Concrete-filled fiber reinforced polymer tube-footing interaction in bending Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Concrete-filled fiber reinforced polymer tube-footing interaction in bending Y. C.

More information

Compression Behavior, Strength, and Ductility of Confined Concrete after Inelastic Tensile Cyclic Loading

Compression Behavior, Strength, and Ductility of Confined Concrete after Inelastic Tensile Cyclic Loading Lehigh University Lehigh Preserve Theses and Dissertations 2014 Compression Behavior, Strength, and Ductility of Confined Concrete after Inelastic Tensile Cyclic Loading Mujahid Noor Lehigh University

More information

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS Frank Devine, 1 Omri Olund, 2 Ken Elwood 3 and Perry Adebar 4 1 Graduate Student, Dept. of Civil Engineering, University

More information

PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140)

PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140) PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140) *A. Ahmed 1, K. H. Tan 1 1 Department of Civil and Environmental Engineering National University of Singapore, Singapore,

More information

Seismic Rehabilitation of Selby Condominium Complex, Montreal (Quebec), Canada

Seismic Rehabilitation of Selby Condominium Complex, Montreal (Quebec), Canada Seismic Rehabilitation of Selby Condominium Complex, Montreal (Quebec), Canada M. Zarrabi & R. Bartosh BCA Consultants, Montreal, Quebec, Canada A. Pall Pall Dynamics Limited, Montreal, Canada SUMMARY

More information

CFT Column-to-Cap Beam Connections for. Accelerated Bridge Construction in Seismic Regions. Lisa Marie Berg. Master of Science in Civil Engineering

CFT Column-to-Cap Beam Connections for. Accelerated Bridge Construction in Seismic Regions. Lisa Marie Berg. Master of Science in Civil Engineering CFT Column-to-Cap Beam Connections for Accelerated Bridge Construction in Seismic Regions Lisa Marie Berg A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

Residual Post-Fire Behaviour of Pre-Damaged Confined Concrete

Residual Post-Fire Behaviour of Pre-Damaged Confined Concrete Residual Post-Fire Behaviour of Pre-Damaged Confined Concrete V. Kumar, U. K. Sharma, B. Singh, P. Bhargava Indian Institute of Technology Roorkee, Roorkee 247667 SUMMARY: The effects of pre-damage on

More information

FINITE ELEMENT MODELING OF NON-DUCTILE REINFORCED CONCRETE COLUMNS

FINITE ELEMENT MODELING OF NON-DUCTILE REINFORCED CONCRETE COLUMNS Research and Development Journal Volume 26 Issue 1 January-March 2015 Received 20 October 2014 Accepted 22 December 2014 The Engineering Institute of Thailand under H.M. The King s Patronage The Engineering

More information

NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS

NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS AHMAD RAHIMIAN, PhD, PE, SE Dr. Ahmad Rahimian., PE, SE is President of Cantor Seinuk Structural Engineers in New York City. An expert in the behaviour of steel

More information

MOMENT REDISTRIBUTION IN CONTINUOUS BEAMS OF EARTHQUAKE RESISTANT MULTISTOREY REINFORCED CONCRETE FRAMES

MOMENT REDISTRIBUTION IN CONTINUOUS BEAMS OF EARTHQUAKE RESISTANT MULTISTOREY REINFORCED CONCRETE FRAMES 205 MOMENT REDISTRIBUTION IN CONTINUOUS BEAMS OF EARTHQUAKE RESISTANT MULTISTOREY REINFORCED CONCRETE FRAMES T. Paulay* ABSTRACT To allow a more uniform and efficient distribution of load resistance in

More information

SEISMIC EFFECTS ON COUPLED SHEAR WALL STRUCTURE BY COUPLING BEAMS WITH SIDE BOLTED STEEL PLATES

SEISMIC EFFECTS ON COUPLED SHEAR WALL STRUCTURE BY COUPLING BEAMS WITH SIDE BOLTED STEEL PLATES SEISMIC EFFECTS ON COUPLED SHEAR WALL STRUCTURE BY COUPLING BEAMS WITH SIDE BOLTED STEEL PLATES Y. Zhu 1, F.L. Zhou 2 and R.K.L. Su 3 1 School of Civil Engineering, University of Guang Zhou, China 2 Centre

More information

Strengthening of infilled RC frames by CFRP

Strengthening of infilled RC frames by CFRP Earthquake Resistant Engineering Structures V 591 Strengthening of infilled RC frames by CFRP G. Erol, K. Taskın, E. Yuksel & H. F. Karadogan Civil Engineering Faculty of Istanbul Technical University,

More information

Structural Upgrade of Reinforced Concrete Column-Tie Beam Assembly using FRP Composites

Structural Upgrade of Reinforced Concrete Column-Tie Beam Assembly using FRP Composites SP-258 4 Structural Upgrade of Reinforced Concrete Column-Tie Beam Assembly using FRP Composites by A.S. Mosallam Synopsis: The paper discusses the potential use of fiber reinforced polymer composites

More information

CYCLIC LOADING TEST OF REINFORCED CONCRETE COLUMN WITH HOLLOW SECTION AND HIGH LONGITUDIAL STEEL RATIO UNDER HIGH AXIAL LOADING

CYCLIC LOADING TEST OF REINFORCED CONCRETE COLUMN WITH HOLLOW SECTION AND HIGH LONGITUDIAL STEEL RATIO UNDER HIGH AXIAL LOADING CYCLIC LODING TEST OF REINFORCED CONCRETE COLUMN WITH HOLLOW SECTION ND HIGH LONGITUDIL STEEL RTIO UNDER HIGH XIL LODING Hitoshi YTSUMOTO 1, Junichi SKI 2, Jun-ichi HOSHIKUM 3 bstract Reinforced concrete

More information

Cold-Formed Steel Special Bolted Moment Frames: Cyclic Testing and Numerical Modeling of Moment Connections

Cold-Formed Steel Special Bolted Moment Frames: Cyclic Testing and Numerical Modeling of Moment Connections Cold-Formed Steel Special Bolted Moment Frames: Cyclic Testing and Numerical Modeling of Moment Connections by Chia-Ming Uang 1, Jong-Kook Hong 2, Atsushi Sato 3 and Ken Wood 4 ABSTRACT Cyclic tests on

More information

ECCENTRICALLY BRACED FRAME DESIGN FOR MODERATE SEISMIC REGIONS

ECCENTRICALLY BRACED FRAME DESIGN FOR MODERATE SEISMIC REGIONS ECCENTRICALLY BRACED FRAME DESIGN FOR MODERATE SEISMIC REGIONS Xue Ming Han, P.Eng., P.E. SNC-Lavalin Nuclear, Inc., Oakville, Ontario, Canada Email: xueming.han@slnuclear.com ABSTRACT: Factors influencing

More information

PERFORMANCE OF RC BRIDGE COLUMNS SUBJECTED TO LATERAL LOADING

PERFORMANCE OF RC BRIDGE COLUMNS SUBJECTED TO LATERAL LOADING Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey PERFORMANCE OF RC BRIDGE COLUMNS SUBJECTED TO LATERAL LOADING S. Sotoud 1 and R.S. Aboutaha 2 ABSTRACT Old existing reinforced concrete bridge

More information

Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment

Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment Omar M. Ben-Sasi Abstract A total of fourteen slab-edge beam-column connection specimens were tested gradually to

More information

Reinforced concrete edge beam column slab connections subjected to earthquake loading

Reinforced concrete edge beam column slab connections subjected to earthquake loading Magazine of Concrete Research, 24, 55, No. 6, June, 273 291 Reinforced concrete edge beam column slab connections subjected to earthquake loading M. Shin* and J. M. LaFave* University of Illinois at Urbana-Champaign

More information

22. DESIGN OF STEEL BRACED FRAMES Eccentrically Braced Steel Frames

22. DESIGN OF STEEL BRACED FRAMES Eccentrically Braced Steel Frames 22. DESIGN OF STEEL BRACED FRAMES 22.1 Eccentrically Braced Steel Frames Objective is to dissipate energy in the shear or moment links and to protect the remainder of the frame from inelastic action, including

More information

Experimental Study on Wall-Frame Connection of Confined Masonry Wall

Experimental Study on Wall-Frame Connection of Confined Masonry Wall Available online at www.sciencedirect.com Procedia Engineering () The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Experimental Study on Wall-Frame Connection of Confined

More information

RESPONSE OF SUBSTANDARD REINFORCING DETAILS T CONNECTIONS UPGRADED WITH CONCRETE COVERS AND CFRP

RESPONSE OF SUBSTANDARD REINFORCING DETAILS T CONNECTIONS UPGRADED WITH CONCRETE COVERS AND CFRP Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013) 11-13 December 2013, Melbourne, Australia 2013 International Institute for FRP in Construction RESPONSE OF SUBSTANDARD REINFORCING DETAILS

More information

DESIGN OF STEEL FRAMES OF DISSIPATIVE SHEAR WALLS

DESIGN OF STEEL FRAMES OF DISSIPATIVE SHEAR WALLS SDSS Rio 21 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-1, 21 DESIGN OF STEEL FRAMES OF DISSIPATIVE SHEAR WALLS C. Neagu*,

More information

Strength Design of Reinforced Concrete Structures

Strength Design of Reinforced Concrete Structures Chapter 6 Strength Design of Reinforced Concrete Structures 6.1 Analysis and Design General Considerations 6.1.1 Convention and Notation Unless otherwise explicitly stated, the following units shall be

More information

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Journal of Asian Scientific Research journal homepage: http://www.aessweb.com/journals/5003 EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Kamyar Bagherinejad 1 ---- Emad Hosseinpour

More information

STRENGTH AND DUCTILITY OF STEEL BEAMS WITH FLANGE HOLES

STRENGTH AND DUCTILITY OF STEEL BEAMS WITH FLANGE HOLES SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 STRENGTH AND DUCTILITY OF STEEL BEAMS WITH FLANGE HOLES

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

PORTAL FRAMES 1.0 INTRODUCTION

PORTAL FRAMES 1.0 INTRODUCTION 36 PORTAL FRAMES 1.0 INTRODUCTION The basic structural form of portal frames was developed during the Second World War, driven by the need to achieve the low - cost building envelope. Now they are the

More information

EFFECT OF VENEER JOINT REINFORCEMENT ON BRICK TIE EMBEDMENT

EFFECT OF VENEER JOINT REINFORCEMENT ON BRICK TIE EMBEDMENT EFFECT OF VENEER JOINT REINFORCEMENT ON BRICK TIE EMBEDMENT William McEwen, 1 Ari Wibowo, 2 Perry Adebar, 2 and Donald Anderson 2 ABSTRACT Some building codes require single wire joint reinforcement in

More information

Cyclic In-Plane Shear of Concrete Masonry Walls Strengthened by FRP Laminates

Cyclic In-Plane Shear of Concrete Masonry Walls Strengthened by FRP Laminates SP-230 19 Cyclic In-Plane Shear of Concrete Masonry Walls Strengthened by FRP Laminates by M.A. Haroun, A.S. Mosallam, and K.H. Allam Synop nopsis: s: Cyclic in-plane shear tests were conducted on six

More information

Infill Precast Panels as Retrofit System of Reinforced Concrete Frames

Infill Precast Panels as Retrofit System of Reinforced Concrete Frames Infill Precast Panels as Retrofit System of Reinforced Concrete Frames L. R. Terec & C. Enyedi National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development

More information

EXPERIMENTAL STUDY OF THE DEFORMATION CAPACITY OF STRUCTURAL MASONRY

EXPERIMENTAL STUDY OF THE DEFORMATION CAPACITY OF STRUCTURAL MASONRY 12 th Canadian Masonry Symposium Vancouver, British Columbia, June 2-5, 213 EXPERIMENTAL STUDY OF THE DEFORMATION CAPACITY OF STRUCTURAL MASONRY A. Salmanpour 1, N. Mojsilović 2 and J. Schwartz 3 1 PhD

More information

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls ing of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls Burak HOROZ 1, M.Fethi GÜLLÜ 2, and Kutay ORAKÇAL 3 1 Research Assistant Bogazici University, Istanbul, Turkey 2 Research Assistant

More information

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES Benjamin Raison R; Freeda Christy C PG student, School of Civil Engineering, Karunya University. Associate Professor, School of Civil Engineering, Karunya

More information

Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams

Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams Seismic Performance of GFRP-RC Exterior Beam-Column Joints with Lateral Beams By Shervin Khalili Ghomi A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment

More information

NONLINEAR DYNAMIC RESPONSE OF DISSIPATIVE DEVICES FOR SEISMIC RESISTANT STEEL FRAMES: EXPERIMENTAL BEHAVIOUR AND NUMERICAL SIMULATION

NONLINEAR DYNAMIC RESPONSE OF DISSIPATIVE DEVICES FOR SEISMIC RESISTANT STEEL FRAMES: EXPERIMENTAL BEHAVIOUR AND NUMERICAL SIMULATION COMPDYN 211 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25 28 May 211 NONLINEAR

More information

Seismic design of large underground structures Application of a new methodology to structures with feasible layout

Seismic design of large underground structures Application of a new methodology to structures with feasible layout Seismic design of large underground structures Application of a new methodology to structures with feasible layout A. Brito scola Superior de Tecnologia do Barreiro, IPS, Setúbal, Portugal M. Lopes Instituto

More information

Numerical study of shear wall behavior coupled with HPFRCC beam and diagonal reinforcements

Numerical study of shear wall behavior coupled with HPFRCC beam and diagonal reinforcements Engineering Solid Mechanics 4 (206) 53-62 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Numerical study of shear wall behavior coupled with

More information

Analysis of the confinement of RC hollow columns wrapped with FRP

Analysis of the confinement of RC hollow columns wrapped with FRP Analysis of the confinement of RC hollow columns wrapped with FRP G.P. Lignola, A. Prota, G. Manfredi & E. Cosenza Department of Structural Engineering DIST, University of Naples Federico II, Naples, Italy

More information

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 7, July 2017, pp. 581 593, Article ID: IJCIET_08_07_062 Available online at http:// http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=7

More information

NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS

NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS 1NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 214 Anchorage, Alaska NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS S. SUZUKI 1, H. KURAMOTO

More information

Seismic Behavior of Beam Column Joints in Reinforced Concrete Moment Resisting Frames

Seismic Behavior of Beam Column Joints in Reinforced Concrete Moment Resisting Frames Document No. :: IITK-GSDMA-EQ32-V1.0 Final Report :: A - Earthquake Codes IITK-GSDMA Project on Building Codes Seismic Behavior of Beam Column Joints in Reinforced Concrete Moment Resisting Frames by Dr.S.R.Uma

More information

Application of Buckling Restrained Braces in a 50-Storey Building

Application of Buckling Restrained Braces in a 50-Storey Building ctbuh.org/papers Title: Authors: Subject: Keywords: Application of Buckling Restrained Braces in a 50-Storey Building Jose A. Sy, SY2 + Associates, Inc. Naveed Anwar, Asian Institute of Technology Thaung

More information

Overview of Presentation. SCBFs are Conceptually Truss Structures

Overview of Presentation. SCBFs are Conceptually Truss Structures Ultimate Strength and Inelastic Behavior of Braced Frame Gusset Plate Connections Charles W. Roeder University of Washington Department of Civil and Environmental Engineering Seattle, WA 98195 Structural

More information