DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP INTRODUCTION

Size: px
Start display at page:

Download "DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP INTRODUCTION"

Transcription

1 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No DETERMINATION OF ULTIMATE FLEXTURAL CAPACITY OF STRENGTHENED BEAMS WITH STEEL PLATES AND GFRP Javad VASEGHI AMIRI 1, Morteza HOSSEINALIBEGIE 2 SUMMARY In order to investigate the effect of strengthening of reinforced beams using steel and GFRP plates on the flexural strength and ductility,14 specimens have been designed and tested.the specimen regarding the amount of compressive steel and the condition of strengthening are divided in to two Group I and II.All the beams were simply supported and were tested under two-point loading. The amount of imposed load, strain in concrete, strain in the level of tension reinforcement bars and deflection of mid span in different stages of loading have been measured and recorded. According to test results the amount of change in the flexural strength and ductility of beams have been calculated. The effect of shape and type of the performance,the strengthening of beams on the flexural parameters and ductility have been investigated. Keyword: Strengthening, GFRP, Flexural behavior INTRODUCTION There are different criteria, which increased the demand of strengthening of the structures. Some of them are, the increase of service load, deterioration or aging in the concrete structure, the change of criteria of codes, sudden collisions to the structure by trucks or severe earthquake.for example in Bridges of North of America which were built after the second world war, more often service loads were greater than the design load. This increase has been reported equal to 40 percent. So, the strengthening of structures is necessary. Also the weight of reinforcement must be as light as possible in order to prevent increase of the dead load. Steel and polymer plates (that are known with the abbreviation of FRP) are the most conventional material in strengthening concrete beams. Polymer plates consist of two main components, fiber and polymer unites. Especial type of plates which have fiber glass are called GFRP. Applying glue to the steel and GFRP plates is the simplest way to strengthen the concrete beams. But the most important factor to consider when using the steel plate, is corrosion. Corrosion is a serious danger which will not only decrease the strength of the plate, but will also destroy the bonding between plates and concrete in case of using epoxy resin. That s why the usage of GFRP plates as strengthening material, captured the attention of researchers. The ratio of strength to the weight, easiness to carry it, durability against fire, accessibility in every shape and length are some of advantage of GFRP plates. These materials in comparison with steel show a greater resistance against the electrochemical corrosion. Recently for the 1 Assistant Professor in Mazandaran University, Iran, Vaseghi@ tech.umz.ac.ir 2 Assistant Professor in Mazandaran University, Iran, Baygie@ tech.umz.ac.ir

2 usage of GFRP for the strengthening of concrete beam a great number of researches had been carried out. In 1991, Saadatmanesh and Ehsuny in Arizona University, U.S.A began a research for strengthening with fiber reinforced polymer (1). They chose 5 beams with rectangle cross section and one beam with T shape cross section, tested under the concentrated load (4 point load).by referring to reference(2) we will see some research which have been carried out in Oxford University on the effect of GFRP on the strength and ductility of beams. Reference (3 and 4 ) are in the same field. EXPERIMENTAL PROGRAM In order to carry out the test, 14 specimens with same dimensions and same flexure and shear reinforcement were used. Beams had square cross section with dimension equal to mm and the span equal to 1800 mm. Beams are divided in 2 Groups II, and I which each Group were consisting of 7 beam. One beam was considered as reference and tested without any strengthening, and the other beam were strengthened with steel and GFRP plates. (Three beams were strengthened with steel plates and three beams were strengthened with GFRP plates.) In beams of group I two bars with 8 mm diameter and in beams of group II two bars with 14 mm diameter were used as compressive bars and 3 bars with 14 diameters were used as tension bars. Bars with 8mm diameter were used as stirrup and placed with a distance of 130 mm from each other for each two group. The beams of Group I are strengthened with steel and GFRP plates prior to loading but the beams of Group II were strengthened after cracking load. In all of the test the bearing system is simply supported and the specimen were loaded with two concentrated load which are placed in 1/3 length of span.in Group I steel and GFRP plates are glued with normal epoxy Sicodor-31 to the beams but in beams of group II which were strengthened with steel plates in addition to using glue they used steel strap belts to brace the end of beams. Table 1 shows the characteristic of strengthening material. Figure 1 and 2 shows specimen and cross section and table 2 shows geometric component of strengthening material. TABLE 1 MECHANICAL PROPERTIES OF STRENGTHENING MATERIAL Material Elastic Modules (Gpa) Tension Strength (Mpa) Steel plate GFRP Epoxy resin 3/ The compressive strength of the concrete used in the beams was 330 kg/cm 2 with slump about 60 mm The tensile strength of reinforce used in beams are 3200 kg/cm 2 and the shear strength is 2700 kg/cm 2. The strengthening took place 4 weeks after the casting and grinding took place, then the gluing started. In order to prevent the movement of plates especial clamps were used as end anchorage. After 10 days from strengthening, beams were tested.

3 FIGURE 1 CROSS SECTION OF BEAMS OF GROUP I AND II TABLE 2 DETAIL OF TEST SPECIMENT AND STRENGTHENING MATERIAL speci men F / c kg/ cm 2 Width ( mm) characteristic of Strengthening Plate (t) Length Effective Fy (mm) ( mm) depth Kg/cm (mm) 2 Type of plate Percent of tension reinforc e Percent of compressiv e reinforce IA IA Steel IA Steel IA Steel IA GFRP IA GFRP IA GFRP IIB IIB Steel IIB Steel IIB Steel IIB GFRP IIB GFRP IIB GFRP

4 MEASURED PARAMETERS ULTIMATE LOAD GROUP I The value of ultimate load of reference beam of this Group is equal to ton. The largest value of ultimate load in strengthened beam belongs to IA5, which is equal to 17.4 ton, and in comparison to the reference beam it shows 71 percent increase. The lowest amount of increase of ultimate strength in strengthened beams belongs to IA3 beam, which is equal to ton and shows 11 percent increase relative to the reference beam. In strengthened beams by the increase of cross section in the s, ultimate bearing load in the beams increased. Of course in beams, which were strengthened with steel plates, this increase was not considerable. TABLE 3 COMPARISON BETWEEN ULTIMATE LOAD, DEFLECTION, MODE OF FRACTURE IN BEAMS OF GROUP I especie ment Compressive Strength Kg/ cm 2 Ultimate Load (ton) Increase percent in ultimate load Maximum deflection (mm) D S /D m Fracture Mode IA Yielding of tension bar IA Separation of IA Separation of IA Separation of strength plate IA Yielding of tension bars and strengthening plate IA Separation of IA Yielding of tension bars and strengthening plate

5 Beams, which were strengthened with GFRP plates, show more increase in the ultimate strength relative to beams consisting of steel plates. Table 3 shows a comparison between ultimate load, maximum displacement and type of failure of Group I beams. GROUP II The amount of ultimate load of reference beam (IIB) is The largest amount of ultimate load in strengthened beam of this Group belongs to IB1 beam, which is equal to 18.2 ton, and in comparison to the reference beam it shows 48 percent increase in strength. The lowest value of the increase of the strength belongs to IIB6 beam that shows 20 percent increase in comparison to the reference beam. In the strengthened beams of this Group by increasing the cross section of plates the ultimate strength increased. The strengthened beams with steel plates of this Group show more ultimate strength relative to similar beams in Group I and it is due to end anchorage. Table 4 shows a comparison between ultimate load of maximum displacement and type of failure of beams of Group II. The strengthened beams with steel plates relative to beams strengthened with GFRP will show more increase in strength. TABLE 4 COMPARISON BETWEEN ULTIMATE LOAD, DEFLECTION, MODE OF FRACTURE IN BEAMS OF GROUP II especiement Compres sive Strength Kg/ cm 2 Ultimat e Load (ton) Increase percent in ultimate load Maximum deflection (mm) D S /D m Fracture Mode IIB Yielding of tension bar IIB Yielding of tension bar IIB Yielding of tension bar IIB Yielding of tension bar IIB Separation of IIB Separation of IIB Separation of ** D t is measured displacement of mid span of beam and D m is displacement of mid span of reference beam

6 MID SPAN DISPLACEMENT GROUP I Deflection of mid span in the reference beam (IA) is equal to 15.7 mm.the highest deflection in the strengthening beam is belong to IA4 beam which is equal to mm. The lowest amount of deflection belongs to IA1 beam which is equal to 3.73 mm. In this Group with the increase of cross section the deflection of beams reduced which is due to the increase of stiffness in strengthening beams (Table 3). In this Group the strengthened beams with GFRP has a greater deflection relative to strengthening beam with steel plates. GROUP II Deflection of reference beam (IIB) is equal to 17.8 mm. The greatest deflection of these Beams is also similar to Group I belongs to IIB4 beam and the lowest deflection belongs to IIB1 beam which is equal to 6.6 mm. In this Group of beams with the increase of cross section of plates the deflection of beams reduced. Deflection of strengthened beams with steel plates relative to similar beam in Group I is greater and this is because of the presence of anchorage in the end of s. In this Group also the deflection of the strengthened beams with GFRP plates is greater than the deflection of strengthened beams with steel plates. (Table 4) DUCTILITY BEAMS OF GROUP I Figure 3 shows load- deflection curve of Group I beams. Regarding the curve it is clear that the ductility of strengthened beam relative to reference beam reduced with the increase of cross section of plates. The strengthened beam with GFRP has a greater ductility compared to steel plates. With regard to the curve the greatest ductility belongs to IA4 beam and the lowest ductility belongs to IA1 beam. Load(ton) IA IA1 IA2 IA3 IA4 IA5 IA Displacement (mm) FIGURE 3 LOAD DEFLECTION CURVE OF MID SPAN BEAMS OF GROUP I BEAMS OF GROUP II Figure 4 shows the curve of load- deflection curve of beams in Group II. In this Group the ductility of the beams reduced with the increase of cross section of. The ductility of all the strengthened beams is less than the reference beam. The beams strengthened with GFRP plates have a greater ductility relative to the beam strengthened with steel plates. The strengthened beam with steel plate in group I, has less ductility relative to strengthened beam with steel plate of this group.

7 Load (ton) Displacement (mm) IIB IIB1 IIB2 IIB 3 IIB4 IIB5 IIB6 FIGURE 4 LOAD DEFLECTION CURVES OF MID SPAN BEAMS OF GROUP II STRAIN Figure 5 and 6 shows the load- strain curve in the level of tensile bars of beams of group I and II. The result shows that the presence of will change the amount of strain in the concrete Load (ton) IA IA1 IA2 IA3 IA4 IA5 1A Strain 10 6 FIGURE 5 LOAD STRAIN CURVE IN THE LEVEL OF TENSILE BAR OF BEAMS OF GROUP I Load (ton) IIB IIB1 IIB2 IIB3 IIB4 IIB5 IIB Strain 10 6 FIGURE 6 LOAD STRAIN CURVE IN THE LEVEL OF TENSILE BAR OF BEAMS OF GROUP II

8 In the beams which are not strengthened, stress in the steel bar will increase until the steel reached the yielding limit. The additional stress can be tolerated by large deformations (increasing strain as well as stress known as strain hardening) of steel reinforcement as a result will reduce the increase of compressive strain of concrete. In strengthened beam, tensile stress between bars and strengthened plate will be distributed. Consequently the present stress in the bars are less than stress in bars of reference beam and will not reach the yielding limit. So, the strain of concrete in the strengthened beam is more than the control beam with similar loads. MODE OF FAILURE AND THE CRACK FORMATION Figure 7 (a, b, c, d) shows the state of failure and cracks formation in the beams which are under the test. GROUP I First cracking of the reference beam of group (IA) under the load of 2.25 ton have been observed. With the increase of load the widths and size of cracks increased and in vertical direction were developed towards the upper side of section. By increasing the applied load, more cracks in the pure bending zone (between two applied load) were developed and beam after yielding of tensile bars and considerable deformation accompanied with crushing of the beam failed. In IA1 beam, under the load of 5.5 ton first flexural crack was observed. With the increase of load another flexural crack appeared around the first crack. New cracks developed in the same direction. The growth will only reach the middle of the height of the concrete beam. Shear flexural cracks around the loading point in this beam have been observed which did not appear in the reference beam. The failure of this beam was due to separation of followed by crushing of. First crack of beams IA2, IA3 when the applied load reached to the 4.1 ton and 3.8 ton have been observed respectively. Figure (7.a) : Beam IA in failure state Figure(7.b) : Beam IA4 in failure state Figure (7.c) : Beam IB1 in failure state Figure( 7.d) : Beam IIB6 in failure state

9 Shape of cracks and type of failure of both beams is similar to IA1 beam. In none of the beams mentioned above did the tensile steel yield. First cracking of beam IA4, was under the load of 2.8 ton. In this beam flexural crack shows a lower growth relative to the reference beam. Shear cracks and also shear- flexural cracks have been observed in this beam. Ultimate failure of this beam was followed by separation of plate with the concrete of the lower part. In this beam tensile bar yields. In IA6, beam under the load of 2.5 ton, first flexural crack have been observed. The formation of crack and type of failure is similar to IA4 beam in this beam tensile bar yields. GROUP II Beams of group II were strengthened after being loaded under the cracking load. First cracking of reference beam (IIB) was under the load of 2.1 ton. The crack of this beam induced in the area of pure flexure. Only few shears flexural cracks near the loaded point have been observed. The failure of this beam was due to yielding of tensile steel and the crushing of concrete at compression side of beam. Beam IIB1 cracked under the 5 ton load. This crack have been induced and developed exactly from the cracking area prior to strengthening. With the increase of load other flexural cracks induced, but this crack had little growth of length and did not reach the middle of the height of beam. Shear- flexural cracks in this beam have been observed near the loading point. In this beam due to the presence of the steel belt and end anchorage the separation of plate did not happened. The ultimate failure of this beam is due to yielding of tensile bar concrete at compression side. The load of first cracking in the IIB2, IIB3 beam were 3.75 ton and 3.7 ton respectively. Formation of cracks and type of failure of this beam is similar to the IIB1 beam. IIB4 beam cracked under the load of 3 ton, and the flexural cracking got wider with applying the load. Shear- flexural cracks induced around the loading point. The ultimate failure of this beam is due to separation of plate with the concrete of lower part. In this beam tensile bar yield. Loads of first cracking in the IIB5 and IIB6 are 3 ton and 2/7 respectively. Shape of cracks and type of failure of this beam is similar to the IIB4. CONCLUSIONS Regarding the tests which have been carried out and experimental results which were presented in this article we can say: _With the strengthening of concrete beam ultimate strength increased and ductility decreased. _In all the strengthened beams load of first cracking increased and in the beams where the width of plate and the width of beam are equal, first cracking induced under a greater load. _Beams which were strengthened with GFRP show more ductility relative to the beams strengthened with steel plate. _Strengthening of the beams after cracking will reduce the ultimate strength relative to the strengthening prior to the cracking. _All the strengthened beams experienced brittle failure under the ultimate loading. REFRENCES 1. Saadatmanesh, H. and Ehsani, M. R. (1991). RC beams strengthened with GFRP plates I: experimental study. struct. Eng. 117(11) Quantrill, R. J. & Hollaway L. e. and Thorne A. m. (1996a) Part 1.Experimental and analytical investigation of FRP strengthened beam response. Mag. concrete Res. 48(177)

10 3. Hutchinson, A. R. and Rahimi, H. (1993). Behavior of reinforced Concrete beams with externally bonded fiber reinforced plastics. proc 5 The International Conference on structural Faults and Repair, university of Edinburgh, vol 3, pp Hollaway, L. C. and Leeming, M.B. Strengthening of reinforced Concrete structures using externallybonded FRP composites in structural and civil engineering, 1999.

Javad VASEGHI AMIRI 1, Morteza HOSSEINALIBYGIE 2

Javad VASEGHI AMIRI 1, Morteza HOSSEINALIBYGIE 2 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No.3239 EFFECT OF MALL CIRCULAR OPENING ON THE HEAR AND FLEXTURAL BEHAVIOR AND ULTIMATE TRENGTH OF REINFORCED

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 MOMENT REDISTRIBUTION OF GFRP-RC CONTINUOUS T-BEAMS S. M. Hasanur Rahman M.Sc. Student, University of Manitoba, Canada Ehab El-Salakawy Professor and CRC in Durability

More information

Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method

Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method Jincheng Yang 1, Reza Haghani 1, Mohammad Al-Emrani 1 1 Chalmers University of Technology,

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES Nabil F. Grace, Lawrence Technological University, Southfield, MI George Abdel-Sayed, University of Windsor, Windsor, ON Wael

More information

Ductility Behavior Fiber Reinforced Concrete Beams Strengthened With Externally Bonded Glass Fiber Reinforced Polymer Laminates

Ductility Behavior Fiber Reinforced Concrete Beams Strengthened With Externally Bonded Glass Fiber Reinforced Polymer Laminates American Journal of Applied Sciences, 10 (1): 107-111, 2013 ISSN: 1546-9239 2013 Science Publication doi:10.3844/ajassp.2013.107.111 Published Online 10 (1) 2013 (http://www.thescipub.com/ajas.toc) Ductility

More information

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3 ISSN: 239-5967 ISO 900:2008 Certified Volume 4, Issue 5, September 205 Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain, Khaled Fawzy 2, and Mahmoud Nasr 3 Abstract-

More information

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened

More information

Finite Element Analysis of RC Beams Strengthened with FRP Sheets under Bending

Finite Element Analysis of RC Beams Strengthened with FRP Sheets under Bending Australian Journal of Basic and Applied Sciences, 4(5): 773-778, 2010 ISSN 1991-8178 Finite Element Analysis of RC Beams Strengthened with FRP Sheets under Bending 1 2 Reza Mahjoub, Seyed Hamid Hashemi

More information

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES F. El M e s k i 1 ; M. Harajli 2 1 PhD student, Dept. of Civil and Environmental Engineering, American Univ. of Beirut;

More information

Effect of prestressed CFRP plate location on behavior of RC beam strengthened with prestressed CFRP plate

Effect of prestressed CFRP plate location on behavior of RC beam strengthened with prestressed CFRP plate Effect of prestressed CFRP plate location on behavior of RC beam strengthened with prestressed CFRP plate Majid Mohammed Ali Kadhim Ass. Lecturer Babylon University Mohammed Jassam Mohammed Ass. Lecturer

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS

FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS ABSTRACT The use of Near Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) rods is a new and promising

More information

Analytical prediction of tension force on stirrups in concrete beams longitudinally reinforced with CFRP bars

Analytical prediction of tension force on stirrups in concrete beams longitudinally reinforced with CFRP bars Analytical prediction of tension force on stirrups in concrete beams longitudinally reinforced with CFRP bars Rendy Thamrin 1,* 1 Civil Engineering Department, Engineering Faculty, Andalas University,

More information

COMPARATIVE STUDY OF BEAMS BY USING DIFFERENT TYPES OF RETROFITING TECHNIQUES

COMPARATIVE STUDY OF BEAMS BY USING DIFFERENT TYPES OF RETROFITING TECHNIQUES International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 04, April 2019, pp. 864 870, Article ID: IJCIET_10_04_091 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijciet&vtype=10&itype=4

More information

UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP

UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP Georges El-Saikaly 1 and Omar Chaallal 2 1 PhD candidate, Department of Construction Engineering, University of Quebec, École

More information

STRENGTHENING EFFECTS OF CONCRETE FLEXURAL MEMBERS RETROFITTED WITH HYBRID FRP COMPOSITES. Abstract. Introduction

STRENGTHENING EFFECTS OF CONCRETE FLEXURAL MEMBERS RETROFITTED WITH HYBRID FRP COMPOSITES. Abstract. Introduction STRENGTHENING EFFECTS OF CONCRETE FLEXURAL MEMBERS RETROFITTED WITH HYBRID FRP COMPOSITES Prof.Zhishen Wu, Ibaraki University, Hitachi,Japan Koji Sakamoto, Ibaraki University, Hitachi,Japan Dr.Hedong Niu,

More information

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP.

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Mohit Jaiswal Assistant Professor, Department of Civil

More information

DUCTILITY OF T-SHAPE RC BEAMES STRENGTHENED BY CFRP SHEET ABSTRACT

DUCTILITY OF T-SHAPE RC BEAMES STRENGTHENED BY CFRP SHEET ABSTRACT DUCTILITY OF T-SHAPE RC BEAMES STRENGTHENED BY CFRP SHEET Toshiyuki KANAKUBO *1, Yoshiro ARIDOME *2, Tomoki FURUTA *3, Masaaki MATSUI *4 ABSTRACT This study presents the results of strengthening using

More information

SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS

SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS Proc., 12th World Conference on Earthquake Engineering, Jan 3- Feb 4, 2, Auckland, New Zealand, paper 35,1 pp SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS AHMED KHALIFA,

More information

EFEECT OF GFRP BELT TO THE FAILURE MODE OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRP SHEET

EFEECT OF GFRP BELT TO THE FAILURE MODE OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRP SHEET 9th International Symposium on Lowland Technology September 27-29, 2014 in Saga, Japan EFEECT OF GFRP BELT TO THE FAILURE MODE OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRP SHEET Rudy Djamaluddin 1

More information

The effect of transverse steel rebars on the behavior of concrete beam reinforced with glass polymer rebars

The effect of transverse steel rebars on the behavior of concrete beam reinforced with glass polymer rebars Engineering Solid Mechanics (2017) 205-212 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm The effect of transverse steel rebars on the behavior

More information

AFRP retrofitting of RC structures in Japan

AFRP retrofitting of RC structures in Japan AFRP retrofitting of RC structures in Japan H. Shinozaki Civil Engineering R&D Department, Sumitomo Mitsui Construction Corporation, Japan G.R. Pandey School of Engineering, James Cook University, Australia

More information

SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS

SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS Josh LOMBARD 1, David T LAU 2, Jag L HUMAR 3, Simon FOO 4 And M S CHEUNG 5 SUMMARY This paper presents the results obtained in a feasibility

More information

Finite Element Analysis of CFRP Strengthened Concrete Beams

Finite Element Analysis of CFRP Strengthened Concrete Beams Finite Element Analysis of CFRP Strengthened Concrete Beams R.Arunothayan 1, J.C.P.H.Gamage 1 and U.N.D.Perera 1 1 Department of Civil Engineering University of Moratuwa Moratuwa SRI LANKA E-Mail: arunothayan91@gmail.com

More information

IMPROVING SHEAR CAPACITY OF RC BEAMS USING EPOXY BONDED CONTINOUS STEEL PLATES

IMPROVING SHEAR CAPACITY OF RC BEAMS USING EPOXY BONDED CONTINOUS STEEL PLATES IMPROVING SHEAR CAPACITY OF RC BEAMS USING EPOXY BONDED CONTINOUS STEEL PLATES MS. SEEMA A. BHAGAT 1, MRS. JYOTI P. BHUSARI 2 1 PG student -Civil (Structures) Sinhgad College of Engineering, Pune, India

More information

Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate

Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate Safety and Security Engineering V 853 Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate K.-B. Han, P.-Y. Song, H.-S. Yang, J.-H.

More information

Influence of Longitudinal FRP Straps on the Behaviour of Circularised and FRP Wrapped Square Hollow RC Concrete Specimens

Influence of Longitudinal FRP Straps on the Behaviour of Circularised and FRP Wrapped Square Hollow RC Concrete Specimens Proc. 1 st International Conference on Structural Engineering Research (icser 2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-6-8 Influence of Longitudinal FRP Straps on the Behaviour of Circularised

More information

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2012 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Flexural Behavior of RC

More information

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates I NPRESSCO NTERNATIONAL PRESS CORPORATION Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2012 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet

More information

2. EXPERIMENTAL PROGRAME

2. EXPERIMENTAL PROGRAME F1A04 The Study of FRP Sheet Effectiveness on Structural Behavioral of AAC Blocks Asghar V. Oskouei Department of Civil Engineering, Shahid Rajaee University, Tehran, Iran Shahed Rasouli Department of

More information

L Shaped End Anchors to Eliminate Premature Plate End Debonding in Strengthened RC Beams

L Shaped End Anchors to Eliminate Premature Plate End Debonding in Strengthened RC Beams L Shaped End Anchors to Eliminate Premature Plate End Debonding in Strengthened RC Beams M. Obaydullah *, Mohd Zamin Jumaat, Md. Ashraful Alam, Kh. Mahfuz Ud Darain, and Md. Akter Hosen Department of Civil

More information

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs S.V.T. Janaka Perera 1*, Hiroshi Mutsuyoshi 1 and Nguyen Duc Hai 2 1 Saitama University,

More information

REPAIRED REINFORCED CONCRETE BEAMS WITH NORMAL AND HIGH STRENGTH CONCRETE

REPAIRED REINFORCED CONCRETE BEAMS WITH NORMAL AND HIGH STRENGTH CONCRETE Diyala Journal of Engineering Sciences ISSN 1999-8716 Printed in Iraq Vol. 06, No. 02, pp. 21-37, June 2013 REPAIRED REINFORCED BEAMS WITH NORMAL AND HIGH STRENGTH Emad Yassin Khudhair Engineering College,

More information

Influence of Strengthening by Ultra High Strength Fibre Reinforced Concrete Panels on Shear Resisting Mechanism and Bond-Slip Behavior of Low Strength RC Members Jian Wang, Hidenori Morikawa * and Tetsuo

More information

Strengthening Reinforced Concrete Beams Using Hybrid FRP Laminates

Strengthening Reinforced Concrete Beams Using Hybrid FRP Laminates Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Strengthening Reinforced Concrete Beams Using Hybrid FRP Laminates N. ATTARI 1, S.

More information

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM S.D. Vanjara 2, J.M. Dave 1, Professor 1, Department of Mechanical Engineering, Institute of Technology, Nirma university

More information

Numerical Study on Behaviour of Concrete Filled Tubes (CFT) under Static Load

Numerical Study on Behaviour of Concrete Filled Tubes (CFT) under Static Load Numerical Study on Behaviour of Concrete Filled Tubes (CFT) under Static Load Akshaya M.D 1, Sujith P.S 2 P.G. Student, Department of Civil Engineering, Axis College of, Ambanoly, Kerala, India 1 Assistant

More information

Investigation on Structural Behaviour of Distressed RC Beams Strengthened With Multi-Directional Basalt Fibre Reinforced Polymer Composites

Investigation on Structural Behaviour of Distressed RC Beams Strengthened With Multi-Directional Basalt Fibre Reinforced Polymer Composites Investigation on Structural Behaviour of Distressed RC Beams Strengthened With Multi-Directional Basalt Fibre Reinforced Polymer Composites Chandran A Assistant Professor, DMI College of Engineering, Chennai,

More information

EFFECT OF EMBEDMENT LENGTH ON THE PERFORMANCE OF SHEAR-STRENGTHENED RC BEAMS WITH L-SHAPED CFRP PLATES

EFFECT OF EMBEDMENT LENGTH ON THE PERFORMANCE OF SHEAR-STRENGTHENED RC BEAMS WITH L-SHAPED CFRP PLATES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF EMBEDMENT LENGTH ON THE PERFORMANCE OF SHEAR-STRENGTHENED RC BEAMS WITH L-SHAPED CFRP PLATES 1 A. Mofidi 1 *, S. Thivierge 2, O. Chaallal

More information

INFLUENCE OF SHEAR REINFORCEMENT ON RESIDUAL LOAD CAPACITY OF RC BEAMS WITH CORROSION

INFLUENCE OF SHEAR REINFORCEMENT ON RESIDUAL LOAD CAPACITY OF RC BEAMS WITH CORROSION - Technical Paper - INFLUENCE OF SHEAR REINFORCEMENT ON RESIDUAL LOAD CAPACITY OF RC BEAMS WITH CORROSION Wei DONG *1, Shuichi SUZUKI* 2, Takuro KOJIMA *3 and Hideki OSHITA *4 ABSTRACT The requirements

More information

Fiber Reinforced Polymer Repair Techniques for Reinforced concrete Beams Pre-Damaged in Shear

Fiber Reinforced Polymer Repair Techniques for Reinforced concrete Beams Pre-Damaged in Shear Fiber Reinforced Polymer Repair Techniques for Reinforced concrete Beams Pre-Damaged in Shear Muhieddin Saleh TUGHAR Department of Civil Engineering, Faculty of Engineering, Al Mergeb University, Libya

More information

Experimental study on mechanical behaviors of damaged RC beams after reinforcement

Experimental study on mechanical behaviors of damaged RC beams after reinforcement Applied Mechanics and Materials Submitted: 2014-07-15 ISSN: 1662-7482, Vols. 638-640, pp 1330-1335 Accepted: 2014-07-18 doi:10.4028/www.scientific.net/amm.638-640.1330 Online: 2014-09-19 2014 Trans Tech

More information

The Effect of Width, Multiple Layers and Strength of FRP Sheets on Strength and Ductility of Strengthened Reinforced Concrete Beams in Flexure

The Effect of Width, Multiple Layers and Strength of FRP Sheets on Strength and Ductility of Strengthened Reinforced Concrete Beams in Flexure Jordan Journal of Civil Engineering, Volume 9, No. 1, 2015 The Effect of Width, Multiple Layers and Strength of FRP Sheets on Strength and Ductility of Strengthened Reinforced Concrete Beams in Flexure

More information

FLEXURAL RESPONSE OF FRC BEAMS WITH EXTERNAL GFRP LAMINATES

FLEXURAL RESPONSE OF FRC BEAMS WITH EXTERNAL GFRP LAMINATES FLEXURAL RESPONSE OF FRC BEAMS WITH EXTERNAL GFRP LAMINATES M.MARIAPPAN Research Scholar, Department of Structural Engineering, Annamalai Unniversity, Annamalai Nagar, Chidambaram, Tamilnadu, India mariappan.m2009@gmail.com

More information

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS Weichen XUE Professor Tongji University Siping Road 1239#, Shanghai 200092, China xuewc@tongji.edu.cn*

More information

Study on Strengthening of RC Slabs with Different Innovative Techniques

Study on Strengthening of RC Slabs with Different Innovative Techniques Open Journal of Civil Engineering, 2016, 6, 516-525 http://www.scirp.org/journal/ojce ISSN Online: 2164-3172 ISSN Print: 2164-3164 Study on Strengthening of RC Slabs with Different Innovative Techniques

More information

Ductile FRP Strengthening Systems

Ductile FRP Strengthening Systems Ductile FRP Strengthening Systems Hybridization allows strengthening of reinforced concrete beams without drawbacks typical of fiber-reinforced polymer systems BY NABIL F. GRACE, WAEL F. RAGHEB, AND GEORGE

More information

Flexural Behavior of Concrete Beam Reinforced with Steel and FRP Re-bars

Flexural Behavior of Concrete Beam Reinforced with Steel and FRP Re-bars Key Engineering Materials Online: 6-3-15 ISSN: 1662-9795, Vols. 36-38, pp 1367-1372 doi:1.428/www.scientific.net/kem.36-38.1367 6 Trans Tech Publications, Switzerland Flexural Behavior of Concrete Beam

More information

Efficiency of Injection Method in Repairing of Normal Strength and Reactive Powder Reinforced Concrete Beams

Efficiency of Injection Method in Repairing of Normal Strength and Reactive Powder Reinforced Concrete Beams Efficiency of Injection Method in Repairing of Normal Strength and Reactive Powder Reinforced Concrete Beams Asst. Prof. Aamer Najim Abbas Lina Abdulsalam Shihab Al-Mustansiriya University-College of Engineering

More information

Fatigue flexural behaviour of corroded RC beams strengthened with CFRP sheets

Fatigue flexural behaviour of corroded RC beams strengthened with CFRP sheets Indian Journal of Engineering & Materials Sciences Vol. 22, February 2015, pp. 77-84 Fatigue flexural behaviour of corroded RC beams strengthened with CFRP sheets Li Song & Zhiwu Yu* School of Civil Engineering,

More information

A STUDY ON THE BEHAVIOUR OF RC BEAMS RETROFITTED USING CFRP LAMINATES UNDER SINGLE POINT LOADING

A STUDY ON THE BEHAVIOUR OF RC BEAMS RETROFITTED USING CFRP LAMINATES UNDER SINGLE POINT LOADING Int. J. Chem. Sci.: 14(S1), 2016, 302-310 ISSN 0972-768X www.sadgurupublications.com A STUDY ON THE BEHAVIOUR OF RC BEAMS RETROFITTED USING CFRP LAMINATES UNDER SINGLE POINT LOADING P. L. KARUPPIAH a,*,

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 EFFECT OF CONCRETE STRENGTH ON THE PUNCHING SHEAR BEHAVIOUR OF GFRP-RC SLAB-COLUMN EDGE CONNECTIONS Ahmed M. Mostafa MSc Student, University of Manitoba, Canada

More information

Behavior of RC Beams Strengthened with Externally Post-Tensioning CFRP Strips

Behavior of RC Beams Strengthened with Externally Post-Tensioning CFRP Strips SP-230 30 Behavior of RC Beams Strengthened with Externally Post-Tensioning CFRP Strips by K.-S. Choi, Y.-C. You, Y.-H. Park, J.-S. Park, and K.-H. Kim Synopsis: Experimental study has been performed in

More information

Strengthening of Timber Bridges

Strengthening of Timber Bridges Strengthening of Timber Bridges Gentile, C., Svecova, D., Saltzberg, W., and Rizkalla, S. H. ISIS Canada, University of Manitoba, Winnipeg, Manitoba Abstract Most timber bridges in the Province of Manitoba

More information

Basic quantities of earthquake engineering. Strength Stiffness - Ductility

Basic quantities of earthquake engineering. Strength Stiffness - Ductility Basic quantities of earthquake engineering Strength Stiffness - Ductility 1 Stength is the ability to withstand applied forces. For example a concrete element is weak in tension but strong in compression.

More information

FRP STRENGTHENING OF 60 YEAR OLD PRE-STRESSED CONCRETE BRIDGE DECK UNITS

FRP STRENGTHENING OF 60 YEAR OLD PRE-STRESSED CONCRETE BRIDGE DECK UNITS FRP STRENGTHENING OF 60 YEAR OLD PRE-STRESSED CONCRETE BRIDGE DECK UNITS Ryan Cork, Jack Foote, Leo de Waal, Van Thuan Nguyen, Dilum Fernando School of Civil Engineering, The University of Queensland,

More information

Bending Response of HSRC Beams Strengthened with FRP Sheets

Bending Response of HSRC Beams Strengthened with FRP Sheets Transaction A: Civil Engineering Vol. 16, No. 2, pp. 138{146 c Sharif University of Technology, April 2009 Bending Response of HSRC Beams Strengthened with FRP Sheets Abstract. S.H. Hashemi 1;, A.A. Maghsoudi

More information

COMPRESSION BEHAVIOR OF CIRCULAR AND RECTANGULAR RC COLUMNS RETROFITTED BY GFRP LAMINATES: AN EXPERIMENTAL STUDY

COMPRESSION BEHAVIOR OF CIRCULAR AND RECTANGULAR RC COLUMNS RETROFITTED BY GFRP LAMINATES: AN EXPERIMENTAL STUDY COMPRESSION BEHAVIOR OF CIRCULAR AND RECTANGULAR RC COLUMNS RETROFITTED BY GFRP LAMINATES: AN EXPERIMENTAL STUDY Imaad Majid* 1, R.Navaneethan 2, Dr. V. Rajesh Kumar 3 1 M.Tech Structural Engineering,School

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS

SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS G.R. Pandey 1, H. Mutsuyoshi 2 and R. Tuladhar 3 1 Lecturer, School of Engineering, James Cook University, Townsville,

More information

Strengthening of Beams Using Glass Fiber Reinforced Polymer (GFRP) Laminate

Strengthening of Beams Using Glass Fiber Reinforced Polymer (GFRP) Laminate Strengthening of Beams Using Glass Fiber Reinforced Polymer (GFRP) Laminate 1 Sameer Shrivastava, 2 A. Tiwari 1 PG Scholar, Dept of Civil Engineering, Madhav Institute of Technology & Science, Madhya Pradesh,

More information

VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES

VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES Amando Padilla R., Antonio Flores B., Guillermo Landa A. and Iván Panamá UAM Azcapotzalco ABSTRACT This research is focused to study the effectiveness

More information

AN IMPROVED COMPOSITE ANCHORING SYSTEM

AN IMPROVED COMPOSITE ANCHORING SYSTEM AN IMPROVED COMPOSITE ANCHORING SYSTEM Mike Beigay, David T. Young, Janos Gergely UNC Charlotte, Civil Engineering ABSTRACT Composite materials can be used to upgrade the load-carrying capacities of unreinforced

More information

Basic types of bridge decks

Basic types of bridge decks Bridge Deck Slab 1 Introduction 2 Bridge deck provide the riding surface for traffic, support & transfer live loads to the main load carrying member such as girder on a bridge superstructure. Selection

More information

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS D.S. Lunn 1,2, V. Hariharan 1, G. Lucier 1, S.H. Rizkalla 1, and Z. Smith 3 1 North Carolina State University, Constructed Facilities Laboratory,

More information

Strengthening of R.C. Beams Using Externally Bonded Plates and Anchorages.

Strengthening of R.C. Beams Using Externally Bonded Plates and Anchorages. Australian Journal of Basic and Applied Sciences, 3(3): 2207-2211, 2008 ISSN 1991-8178 Strengthening of R.C. Beams Using Externally Bonded Plates and Anchorages. 1 2 Mohd Zamin Jumaat and Md. Ashraful

More information

Repair & Rehabilitation of Initially cracked RCC Beams by CFRP

Repair & Rehabilitation of Initially cracked RCC Beams by CFRP Repair & Rehabilitation of Initially cracked RCC Beams by CFRP Liaqat. A. Qureshi 1 Imran A. Bukhari Kamran A. Qureshi 3 T 11 ABSTRACT This paper presents the comparison of different repairing techniques

More information

Tensile Stress-Strain Relationship of High-Performance Fiber Reinforced Cement Composites

Tensile Stress-Strain Relationship of High-Performance Fiber Reinforced Cement Composites October -17, 8, Beijing, China ABSTRACT : Tensile Stress-Strain Relationship of High-Performance Fiber Reinforced Cement Composites Masayuki Nagayama 1 and Takashi Miyashita 1 Graduate Student, Graduate

More information

FEM performance of concrete beams reinforced by carbon fiber bars

FEM performance of concrete beams reinforced by carbon fiber bars FEM performance of concrete beams reinforced by carbon fiber bars Hashim Hasan Building and Construction Engineering Department, University of Technology, Baghdad, Iraq Abstract. Concrete structures may

More information

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS Prof. John J. Myers Associate Professor CIES / Department of Civil, Arch., & Env. Engineering University

More information

65 mm 2 mm 65 mm D6 SD295A D6 SUS34 D13 SD39 SD39 15mm mm Series 1: Stirrup Series 2 : Main rebar 45 a = 45 mm SUS34 D25 SD39 2 mm mm 2

65 mm 2 mm 65 mm D6 SD295A D6 SUS34 D13 SD39 SD39 15mm mm Series 1: Stirrup Series 2 : Main rebar 45 a = 45 mm SUS34 D25 SD39 2 mm mm 2 コンクリート工学年次論文集,Vol.36,No.1,214 MECHANICAL CHARACTERISTICS OF RC BEAMS WITH CORRODED STIRRUPS OR MAIN REINFORCEMENTS -Technical Paper- Visal ITH *1, Koji MATSUMOTO *2 and Junichiro NIWA *3 ABSTRACT This

More information

PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS

PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS Renata Kotynia Ph.D., Assistant Professor Technical University of Lodz, Poland Al. Politechniki 6,

More information

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER Lander Vasseur 1, Stijn Matthys 2, Luc Taerwe 3 Department of Structural Engineering, Ghent University, Magnel

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 FLEXURAL TESTS OF CONTINUOUS CONCRETE SLABS REINFORCED WITH BASALT FIBER-REINFORCED POLYMER BARS Akiel, Mohammad M.Sc. Candidate, United Arab Emirates University,

More information

EFFECT OF SHORT METALLIC FIBERS IN MIXED REINFORCED HRFRC BEAMS : AN EXPERIMENTAL STUDY

EFFECT OF SHORT METALLIC FIBERS IN MIXED REINFORCED HRFRC BEAMS : AN EXPERIMENTAL STUDY EFFECT OF SHORT METALLIC FIBERS IN MIXED REINFORCED HRFRC BEAMS : AN EXPERIMENTAL STUDY A.Si-Larbi,E.Ferrier,P.Hamelin Laboratoire Mécanique, matériaux & structures, Université Claude Bernard, Lyon I,

More information

A NEW CFRP STRENGTHENING TECHNIQUE TO ENHANCE PUNCHING SHEAR STRENGTH OF RC SLAB-COLUMN CONNECTIONS

A NEW CFRP STRENGTHENING TECHNIQUE TO ENHANCE PUNCHING SHEAR STRENGTH OF RC SLAB-COLUMN CONNECTIONS Asia-Pacific Conference on FRP in Structures (APFIS 2007) S.T. Smith (ed) 2007 International Institute for FRP in Construction A NEW STRENGTHENING TECHNIQUE TO ENHANCE PUNCHING SHEAR STRENGTH OF RC SLAB-COLUMN

More information

Carder 1. FABRICATION AND CYCLIC LOADING OF SUPER-ELASTIC SHAPE MEMORY ALLOY REINFORCED POLYMER Rachel Carder

Carder 1. FABRICATION AND CYCLIC LOADING OF SUPER-ELASTIC SHAPE MEMORY ALLOY REINFORCED POLYMER Rachel Carder Carder 1 FABRICATION AND CYCLIC LOADING OF SUPER-ELASTIC SHAPE MEMORY ALLOY REINFORCED POLYMER Rachel Carder Carder 2 INTRODUCTION Fiber-reinforced polymers (FRP) have increased in demand for civil engineering

More information

Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer

Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer Lander VASSEUR Civil Engineer Magnel Laboratory for Concrete Research, Ghent University, Ghent, BELGIUM

More information

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES Sung Woo Lee 1, Sokhwan Choi 2, Byung-Suk Kim 3, Young-Jin Kim 4, Sung-Yong Park 5 1 Prof., Dept of Civil & Environmental

More information

Shear Strength Prediction for Concrete Beams Reinforced with GFRP Bars

Shear Strength Prediction for Concrete Beams Reinforced with GFRP Bars Shear Strength Prediction for Concrete Beams Reinforced with GFRP Bars Noor Azlina A. Hamid 1, *, Rendy Thamrin 2, Azmi Ibrahim 3, Hanizah Abdul Hamid 3, Norhafizah Salleh 1, Zalipah Jamellodin 1, Masni

More information

Unidirectional Carbon Fibre Anchorage Length Effect on Flexural Strength Capacity For Concrete Beams

Unidirectional Carbon Fibre Anchorage Length Effect on Flexural Strength Capacity For Concrete Beams ISBN 978-93-84422-62-2 Proceedings of 2016 2nd International Conference on Architecture, Structure and Civil Engineering (ICASCE'16) London (UK), March 26-27, 2016 Unidirectional Carbon Fibre Anchorage

More information

EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH SMPM

EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH SMPM October -17, 28, Beijing, China EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH SMPM Z.H. Yao 1, Q.L. Yao 2, S.M. Huang 3 and B. Song 4 ABSTRACT : 1 M.S. Candidate, University of

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 The new Steel-CFRP

More information

Effect of Distribution in Cross Sectional Area of Corroded Tensile Reinforcing Bars on Load Carrying Behaviour of RC Beam

Effect of Distribution in Cross Sectional Area of Corroded Tensile Reinforcing Bars on Load Carrying Behaviour of RC Beam Effect of Distribution in Cross Sectional Area of Corroded Tensile Reinforcing Bars on Load Carrying Behaviour of RC Beam Takashi Yamamoto 1*, Satoshi Takaya 1 and Toyo Miyagawa 1 1 Kyoto University, JAPAN

More information

Elimination of Deck Joints Using a Corrosion Resistant FRP Approach

Elimination of Deck Joints Using a Corrosion Resistant FRP Approach Elimination of Deck Joints Using a Corrosion Resistant FRP Approach Louisiana Transportation Conference February 2009 Aziz Saber, Ph.D., P.E. Chair of Civil Engineering Louisiana Tech University LTRC LA

More information

Performance of NSM FRP strengthened concrete slabs at low temperatures

Performance of NSM FRP strengthened concrete slabs at low temperatures Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Performance of NSM FRP strengthened concrete slabs at low temperatures P. Burke, L.A. Bisby

More information

Repair of Earthquake-Damaged RC Columns with FRP Wraps

Repair of Earthquake-Damaged RC Columns with FRP Wraps ACI STRUCTURAL JOURNAL Title no. 94-S20 TECHNICAL PAPER Repair of Earthquake-Damaged RC Columns with FRP Wraps by Hamid Saadatmanesh, Mohammad R. Ehsani, and Limin Jin An investigation was conducted into

More information

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 13, Issue 3 Ver. I (May- Jun. 216), PP 71-75 www.iosrjournals.org Lap Splices in Tension Between

More information

DURABILITY OF GFRP IN LOW-HEAT HIGH-PERFORMANCE CONCRETE. D. Svecova,. H. RlZkaUa,H. Vogel, A. Jawara ABSTRACT

DURABILITY OF GFRP IN LOW-HEAT HIGH-PERFORMANCE CONCRETE. D. Svecova,. H. RlZkaUa,H. Vogel, A. Jawara ABSTRACT DURABLTY OF GFRP N LOW-HEAT HGH-PERFORMANCE CONCRETE S. 2 D. Svecova,. H. RlZkaUa,H. Vogel, A. Jawara University of Manitoba, Winnipeg, MB, Canada 2 North Carolina State University, Raleigh, NC, USA ABSTRACT

More information

BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS

BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS A. Kobayashi 1, Y. Sato 2 and Y. Takahashi 3 1 Technical Development Department, Nippon

More information

Strengthening of Continuous SCC Hollow Beams under Shear Stresses Using Warped CFRP Strips

Strengthening of Continuous SCC Hollow Beams under Shear Stresses Using Warped CFRP Strips Strengthening of Continuous SCC Hollow Beams under Shear Stresses Using Warped CFRP Strips Asst. Prof. Dr. Ali Hameed Aziz* Asst. Prof. Dr. Ashraf A. Alfeehan Eng. Fawaz Adel Hussein Al-Mustanseryah University

More information

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK - Technical Paper - EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED PERMANENT FORMWORK Puvanai WIROJJANAPIROM *1, Koji MATSUMOTO *2, Katsuya KONO *3 and Junichiro NIWA *4 ABSTRACT Shear resistance

More information

with Fillers Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C

with Fillers Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C A Study on the Mechanical Behaviour of the BFRP Decks with Fillers Yeou-Fong Li 1* and Chia-Hou Wu 1 1 Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C * 1, Sec.

More information

EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS

EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS Ugo Ianniruberto Department of Civil Engineering, University of Rome Tor Vergata, ITALY Via del Politecnico, 1, 00133

More information

Flexural and Shear Strengthening Of RC beams with FRP-An Experimental Study

Flexural and Shear Strengthening Of RC beams with FRP-An Experimental Study Flexural and Shear Strengthening Of RC beams with FRP-An Experimental Study S.Rajesh 1, P.Suneetha 2 1 PG student, dept. of CIVIL, newton s institute of science & technology, Macherla, India 2 Asst. professor,

More information

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 41 (2016) (2016) - 31-37 Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section by Mohammad Hamid ELMY *1 and Shunichi

More information

Flexural Behavior of Steel I Beams Bounded With Different Fiber Reinforced Polymer Sheets

Flexural Behavior of Steel I Beams Bounded With Different Fiber Reinforced Polymer Sheets Flexural Behavior of Steel I Beams Bounded With Different Fiber Reinforced Polymer Sheets Sadashiv Tavashi 1, V S Kshirsagar 2, Rahul Kapase 3, Avinash Thorat 4 1 PG Student SVERI s COE, Pandharpur, solapur

More information

Behaviour of FRP strengthened concrete columns under eccentric compression loading

Behaviour of FRP strengthened concrete columns under eccentric compression loading University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2007 Behaviour of FRP strengthened concrete columns under eccentric compression

More information

FRP REPAIR TECHNIQUES FOR R.C. BEAMS PRE-DAMAGED IN SHEAR

FRP REPAIR TECHNIQUES FOR R.C. BEAMS PRE-DAMAGED IN SHEAR FRP REPAIR TECHNIQUES FOR R.C. BEAMS PRE-DAMAGED IN SHEAR BY Nabil H. El-Ashkar, Alaa M. Morsy, and Karim M. Helmi Construction and Building Engineering Department Arab Academy for Science, Technology

More information

1337. Seismic response of beam-column joints rehabilitated with FRP sheets and buckling restrained braces

1337. Seismic response of beam-column joints rehabilitated with FRP sheets and buckling restrained braces 1337. Seismic response of beam-column joints rehabilitated with FRP sheets and buckling restrained braces Heecheul Kim 1, Dae-Jin Kim 2, Min Sook Kim 3, Young Hak Lee 4 Kyung Hee University, Yongin, Republic

More information