Estimating Performance Point of Existing Masonry Buildings and Study on their Improvement using Retrofitting Method

Size: px
Start display at page:

Download "Estimating Performance Point of Existing Masonry Buildings and Study on their Improvement using Retrofitting Method"

Transcription

1 Estimating Performance Point of Existing Masonry Buildings and Study on their Improvement using Retrofitting Method Ajmal salim 1, Manju P.M 2, Sivan P.P 3, 1. MTECH Student, Sree narayana gurukulam college of Engineering, Kadayirupu, Kolenchery, Kerala 2. Associate professor, Sree narayana gurukulam college of Engineering, Kadayirupu, Kolenchery, Kerala 3. Assistant professor, Government Engineering College, Thrissur 1 Abstract- The masonry construction have many advantages like easy availability in many forms, colors and textures, comparative cheapness, thermal and sound insulation, fire resistance, durability, etc. So the masonry construction is still adopted as a most common construction technique in rural and even in urban areas. Unfortunately, due to its complex material nature the behavior of masonry is still not identified clearly under the effect of seismic action. Hence, the masonry buildings with structural deficiencies seems to be a most sensitive class of structures which have experienced heavy damage or even total collapse in previous seismic actions, especially in developing countries like India. This demands modern methods for designing safer masonry structures and judging their performance. Considering all these facts, this study aims at modeling and analyzing the performing seismic analysis of unreinforced brick masonry structures and their improvisation using different retrofitting techniques. For this, a macro level modeling is preferred. Macro modeling proposed by MIDAS GEN is finding appropriate for this project work. 1. INTRODUCTION Masonry is one of the ancient known building materials which is still in use for the construction of modern building systems. Since the beginning of modern civilization, masonry structures have been built not only for homes but also for aesthetic churches and arenas. Stone was the primary masonry unit and was used for basic structures. The Stonehenge ring on England s Salisbury Plains is an example of ancient structures composed of masonry which is 4000 years old. The Great Wall of China, the Egyptian pyramids in Giza, the pyramids of Yucatan and Teotihuacan in Mexico, the stone walls at Machu Pichu, The Taj Mahal are another well-known examples for masonry over the centuries. In the United States, masonry has been used as one of the primary building materials for construction since the 18th century. It is a well proven building material possessing excellent properties not only in terms of appearance, durability, thermal and acoustic insulation as well as fire and weather protection but also provision of subdivision of space and cost in comparison with alternatives. In spite of all these advantages, masonry is a complex composite material and its mechanical behavior, which is influenced by a large number of factors, is not generally well understood. In addition to these, the design and construction of unreinforced masonry buildings are carried out without using any scientific methods and engineering tools. It is completely on a traditional manner based on experience. That is why a significant percentage of physical losses in past earthquakes were due to insufficient performance of non-engineered masonry buildings with low construction quality. Since masonry construction is a traditional, widely used, extremely flexible and economical construction method, it has considerable potential for future developments. However, possibly due to the substantial empirical knowledge collected over several centuries of utilization of masonry as a structural material, the need for establishing a more modern basis for the design of masonry structures has not been developed in the same manner as for concrete structures. Most of those older masonry buildings are designed primarily to resist gravity loads only since the provision for earthquake loading codes were not developed at that time Considerable attention to the means of evaluation and strengthening of the all older masonry buildings that exists in seismic prone area is necessary. Research in the field is essential to understand masonry behavior to develop innovative products, to define reliable approaches to measure the safety level and to design possible retrofitting measures. 102

2 Foti.D (2015) proposes the pushover analysis of masonry structures using the experimental values combined with an analogy of rock masses for mechanical characteristics of masonry and compared the results obtained with Italian codes. In this method, the mortar joints are considered to be similar to the discontinuities found in a rock mass. The strength criterion used is the Mohr-Coulomb failure criteria. It establishes a linear relationship between shear strength obtained on a sliding plane and normal stress acting on the plane according to characteristics of the material.[1] D.N. Shinde, Nair Veena V and Pudale Yojana M (2014) study a building frame is designed as per Indian standard i.e. IS 456:2000 and IS 1893:2002 and check the kind of performance a building can give when designed as per Indian Standard. For this pushover analysis of the building frame is carried out. Building designed with IS 1893:2002 found to have a better performance under given earthquake. After performing the analysis the base shear at performance point is found to be greater than design base shear.[2] Park.J et al. (2011) presents a macro element for unreinforced masonry shear walls developed to allow for the seismic design of masonry structures under consideration of the wall-slab interaction effect. The proposed macro element basically consists of three rigid beams. One vertical beam is placed between two horizontal ones. The beams are jointed rigidly at mid span of the horizontal beams. The length of vertical beam corresponds to the wall height, the length of horizontal beams to the wall length. The horizontal beams at top and bottom of the element are connected to the support though non-linear springs.[3] Milani,G et al.(2009) conducted a pushover analysis by a equivalent frame model. He discover the strength of spandrel beam more precisely. This was done by two stages. The first step is done at meso level; the spandrels are extracted from the whole structure and their strength in terms of ultimate bending moment and shear forces are determined by means of an upper bond finite element heterogeneous approach. The obtained strength characteristics are stored in database. In the second stage, considering at a macro level, a frame model of the masonry wall is built. In this model, spandrels and piers are modeled as elastic Timoshenko beam elements. The strength of the spandrels is defined by the strength domains stored in the database.[3] Retrofitting denotes the addition of new technology or features to existing systems. Seismic retrofitting is the alteration of existing structures to make them more seismic resistant. From the past experience of seismic action on structures, the importance of retrofitting is very much acknowledged. Retrofitting reduces the severity of damage of an existing structure during a future earthquake A large number of masonry constructions, mostly concentrated in the core of important cities. However the researches performed for the behavior of constructions against the effect of earthquakes are focused on reinforced and steel constructions. As a result the project engineer has inadequate information about the behavior of masonry construction against earthquake. It is very difficult to define the mechanical characteristics in order to assure the reliability and stability of the masonry building due to the heterogeneity of various components in the structure. This work will make a contribution to the seismic vulnerability assessment of masonry buildings by assessing the existing models and checks how the retrofitting improves seismic resistance of buildings 2. EARTHQUAKE AND STRUCTURAL BEHAVIOR OF BUILDING 2.1. Earthquake Ground motion, which is generated by sudden displacements within the earth s crust is called an earthquake. Earthquakes are caused by natural phenomena, such as tectonic processes, volcanic eruptions etc. The seismic waves generated in the focus, propagate through different layers of rock and soil. Therefore the seismic waves reach the surface and induce vibration according to the characteristics of bedrock and soil on their way of propagation also. Earthquake ground motion is a tridimensional phenomenon. For simplification of design, these seismic movements are subdivided into horizontal and vertical vibrations. The horizontal vibrations are much severe than vertical vibrations, so they are considered as main factor in designing earthquake resistant structures. Due to these ground vibrations inertial forces will be generated at areas of mass in the building. The path of these force will be through the roof and walls to the foundation. Proper care should be taken to ensure that the force is reaching foundation safely. The absence of structural integrity is major sources of weakness responsible for severe damage leading to collapse. Out of the three constituents of a masonry building (roof, wall and foundation) the walls 103

3 are most susceptible to damage caused by horizontal forces due to earthquake. It is however not known which will be the main direction of ground motion during an expected seismic event. Therefore the resisting elements of each structure in a seismic zone should be designed to resist the seismic excitation in both principle direction of the building. Symmetric distribution of resisting elements in the plan of the building will prevent possible torsional vibration, which often causes unexpected behavior of the structure when subjected to strong seismic ground motion. For the same reason the dimensions of setbacks and recesses should be limited Structural behaviour Masonry building, when subjected to earthquake ground motion, inertia forces proportional to the mass of building develops, and produce acceleration, which cause the vibration of structural system. As a result of vibration, additional bending and shear stresses develop, which often exceed the strength of materials and cause damage to structural systems. Although masonry is strong in compression, the bending and shear stresses caused will result in severe damage or even collapse of building connections. So the number of connections has to be Buildings suffered from earthquakes are generally observed limited. cracks When at corners thickness and wall and intersections; width of these steel are strips due to insufficient c are subjected to diagonal cracks. Structural walls which are perpendicular to seismic action are subjected to out of plane bending. This will cause vertical cracks at the corners and middle of the walls. In the inplane walls, bending and shear causes horizontal and diagonal cracks respectively. General earthquake damage observed can be summarized as follows a. Cracks between wall and floors. b. Cracks at the corners and at the wall intersections. c. Out of plane collapse of walls. d. Cracks in spandrel beams. e. Diagonal cracks in structural walls. f. Partial disintegration or collapse of structural walls 3. Modelling and analysis of the unreinforced masonry building From the past experiences it is necessary that, the masonry building which are constructed in the traditional manner without formal design by a qualified engineer or architect has to be analysed properly and strengthened using a suitable retrofitting technique. For this study, some existing masonry buildings are selected. These structures are failure obtained buildings on seismic action. They are existing on the seismic area, zone III and soil type 2. They are located in the Trissur district. Trissur is the mostly affected seismic district in Kerala. Mainly diagonal type failures are identified in these buildings. So retrofitting of masonry buildings in these areas is necessary. Study on the performance point of three building plans from the above mentioned area using pushover analysis and their improvement when retrofitted using steel strips is discussed in this paper Retrofitting using steel plates The retrofit method suggested here consists of adding diagonal strips of steel on masonry walls. The diagonal steel strips that extend between the corners of the wall to strengthen it, while preventing diagonal tension failure and compression crushing under shear forces. The minimal increase in wall thickness due to the steel plates makes this an interesting substitute for existing walls. Retrofit was accomplished by adding a 200 mm wide diagonal steel strips of 4mm thickness on wall face. The steel strips can be fasten on the wall using one layer of bolts at certain interval. But the connection using bolts will lead to a local failure at the junction of increase, its dead weight on walls increases and it will be difficult to fix the plate on walls using minimum number of bolts and single layer of bolts 3.2. Material properties IS 1077:1992, IS 1905:2002, IS 2212:2005 specifies requirements of common burnt clay building bricks used in buildings. The standard modular size of common building bricks considered is 190mm x 90mm x 90mm. IS 2250:1990 specifies mortars specifications using for masonry construction. Since the project work is based on locations of Kerala, the properties of brick and mortar tested at Kollam is used for this project. properties Young s Modulus(MPa) Compressive strength (MPa) Tensile strength(mpa) Table 1. Material properties. Brick Mortar (1:6) (Bed joint) 1.15(Head joint) 104

4 Poisson s ratio Mass density(kg/m3) The pushover curve obtained is 3.3. Seismic quantities For the seismic analysis, response spectrum method of analysis is adopted here. Various input requirements for the analysis is as per IS 1893:2002. Seismic zone of Kerala is under Zone III, and a medium type soil is selected. Other input data s are as follows. Importance factor: 1.0 Percentage damping: 5 Response reduction factor: Model 1 The plan of the building is shown below Fig. 3. Model-1 Pushover result The maximum base shear obtained after analysing is KN Retrofitted using shotcrete The modelled view after retrofitting is Fig. 1. Model-1 Plan The modelled view is Fig. 4. Model-1 view after adding steel strips The pushover curve obtained after retrofitting is Fig. 2. Model-1 Model view Fig. 5. Model-1 Pushover result after adding steel strips The performance point of the building is found as increasing after analysing the retrofitted structure with steel strips and the base shear obtained is 393 KN. It shows 18.08% increase in base shear. 105

5 3.5. Model-2 The plan of the model-2 is shown below Retrofitted using steel strips The modelled view after retrofitting is Fig. 6. Model-2 Plan The modelled view is Fig. 9. Model-2 view after adding steel strips The pushover curve obtained after retrofitting is Fig. 7. Model-2 Model The pushover curve obtained is Fig. 10. Model-2 Pushover result after adding steel strips The performance point of the building is found as increasing after analysing the retrofitted structure with steel strips and the base shear obtained is KN. It shows 19.31% increase in base shear Model -3 The plan of the model-3 is shown below Fig. 8. Model-2 Pushover result The base shear obtained after analysing is KN. Fig. 11. Model-3 Plan 106

6 The modelled view is Fig. 12. Model-3 Model view The pushover curve obtained is Fig. 15. Model-3 Pushover result after adding steel strips The performance point of the building is found as increasing after analysing the retrofitted structure with steel strips and the base shear obtained is KN. It shows 20.31% increase in base shear Fig. 13. Model-2 Pushover result The base shear obtained after analysing is KN Retrofitted using steel strips The modelled view after retrofitting is Fig. 14. Model-3 View after adding steel strips The pushover curve obtained after retrofitting is 4. RESULT The results obtained from the analysis is tabulated below Table 2: Results Model Base shear Base shear (After adding steel strips) Percentage increase in Base shear (After adding steel strips) Model KN 393 KN % Model KN KN % Model KN KN % 5. CONCLUSION The points can be concluded from this work are The performance point can be considered as an effective tool for defining the behaviour structure. Addition of steel strips can be used as a best retrofitting techniques for existing masonry buildings. Addition of steel strips also increase the base shear about 18 to 21%. When steel is used as a retrofitting method, there will be chance of local failure at the junctions of fastening. So at-most care should be given at the time fastening using nuts and the number of connections should be minimum. 107

7 REFERENCES [1] Foti,D (2015) A new experimental approach to the pushover analysis of masonry buildings. Computers and Structures [2] D.N. Shinde, Nair Veena V and Pudale Yojana M (2014) Push over analysis for multy story building. International Journal of Research in Engineering and Technology. Volume: 03 Special Issue: 03, May-2014 [3] Park,J., El-Deib,K., Butenweg,Cand Gellert,C (2011) A novel macroelement approach for masonry walls Proceedings of 8th International Conference on Structural Dynamic, Leuven, Belgium, July. [4] Milani,G., Beyer,K and Dazio,A (2009) Upper bound limit analysis of meso mechanical spandrel models for the pushover analysis of 2D masonry frames. Engineering Structures

UNREINFORCED MASONRY STRUCTURES -PART I - DEFINITIONS AND PROBLEMS UNDER LATERAL LOADS

UNREINFORCED MASONRY STRUCTURES -PART I - DEFINITIONS AND PROBLEMS UNDER LATERAL LOADS UNREINFORCED MASONRY STRUCTURES -PART I - DEFINITIONS AND PROBLEMS UNDER LATERAL LOADS Some Definitions UnReinforced Masonry (URM): Defined as masonry that contains no reinforcing in it. Masonry Unit:

More information

Effect of soft storey in a structure present in higher seismic zone areas

Effect of soft storey in a structure present in higher seismic zone areas Effect of soft storey in a structure present in higher seismic zone areas by Neelima Patnala, Pradeep Kumar Ramancharla in Urban Safety of Mega Cities in Asia 2014 (USMCA 2014) Myanmar, Burma Report No:

More information

COMPARISON OF A REINFORCED CONCRETE BUILDING STRENGTHRND WITH VARIOUS METHODS

COMPARISON OF A REINFORCED CONCRETE BUILDING STRENGTHRND WITH VARIOUS METHODS COMPARISON OF A REINFORCED CONCRETE BUILDING STRENGTHRND WITH VARIOUS METHODS Farnaz ALINOORI 1 and Kadir GÜLER 2 ABSTRACT The earthquake performance of a school building having three stories which has

More information

SIGNIFICANCE OF SHEAR WALL IN FLAT SLAB MULTI STORIED BUILDING - A REVIEW. Vavanoor, India

SIGNIFICANCE OF SHEAR WALL IN FLAT SLAB MULTI STORIED BUILDING - A REVIEW. Vavanoor, India SIGNIFICANCE OF SHEAR WALL IN FLAT SLAB MULTI STORIED BUILDING - A REVIEW Athira M. V 1, Sruthi K Chandran 2 1PG Student, Department of Civil Engineering, Sreepathy Institute of Management And Technology,

More information

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-3, Issue-3, March- 2017]

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-3, Issue-3, March- 2017] Design, Analysis & Performance Check of A Multi-Story (G+23) RCC Building by Pushover Analysis using Sap 2000 Shahana Rahman 1, Mr. Ashish Yadav 2, Dr. Vinubhai R. Patel 3 1 M.tech Student: Structural

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.5, pp 2368-2373, 2014-2015 Experimental Studies on Strengthening of Masonry Walls with GFRP Subjected to Lateral

More information

Seismic Performance Of R C Flat-Slab Building Structural Systems

Seismic Performance Of R C Flat-Slab Building Structural Systems Research Paper Volume 2 Issue 9 May 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Seismic Performance Of R C Flat-Slab Building Paper ID IJIFR/ V2/ E9/ 027 Page

More information

Pushover Analysis Of RCC Building With Soft Storey At Different Levels.

Pushover Analysis Of RCC Building With Soft Storey At Different Levels. Pushover Analysis Of RCC Building With Soft Storey At Different Levels. Achyut S. Naphade 1, Prof. G. R. Patil 2 1 (M.E. (Structure) Student, Department of Civil Engineering Rajarshi Shahu College of Engineering,

More information

INFLUENCE OF HORIZONTAL OFFSETS OF OPENINGS IN SINGLE STORY BRICK MASONRY BUILDINGS UNDER SEISMIC FORCES

INFLUENCE OF HORIZONTAL OFFSETS OF OPENINGS IN SINGLE STORY BRICK MASONRY BUILDINGS UNDER SEISMIC FORCES INFLUENCE OF HORIZONTAL OFFSETS OF OPENINGS IN SINGLE STORY BRICK MASONRY BUILDINGS UNDER SEISMIC FORCES Ankitha George. 1, Dr. Rajesh K. N. 2 1 M. Tech scholar, Dept. of Civil Engg, Govt. College of Engineering

More information

NSET EXPERIENCE ON SEISMIC RETROFITTING OF MASONRY AND RC FRAME BUILDINGS IN NEPAL

NSET EXPERIENCE ON SEISMIC RETROFITTING OF MASONRY AND RC FRAME BUILDINGS IN NEPAL NSET EXPERIENCE ON SEISMIC RETROFITTING OF MASONRY AND RC FRAME BUILDINGS IN NEPAL 1. INTRODUCTION National Society for Earthquake Technology Nepal (NSET) was established in June 1993 and started its first

More information

Effect of Mass and Stiffness of Vertically Irregular RC Structure

Effect of Mass and Stiffness of Vertically Irregular RC Structure Effect of Mass and Stiffness of Vertically Irregular RC Structure Rohith R Shenoy 1, Dr. Sridhar R 2, Karthik B.S 3 1Student (M.Tech), Department of Civil Engineering, NCET, Bangalore, Karnataka, India

More information

CONFINED MASONRY CONSTRUCTION

CONFINED MASONRY CONSTRUCTION CONFINED MASONRY CONSTRUCTION Mario Rodriguez, Universidad Nacional Autonoma de Mexico, Mexico BACKGROUND Confined masonry construction consists of unreinforced masonry walls confined with reinforced concrete

More information

SEISMIC DESIGN OF STRUCTURE

SEISMIC DESIGN OF STRUCTURE SEISMIC DESIGN OF STRUCTURE PART I TERMINOLOGY EXPLANATION Chapter 1 Earthquake Faults Epicenter Focal Depth Focus Focal Distance Epicenter Distance Tectonic Earthquake Volcanic Earthquake Collapse Earthquake

More information

Comparative Study of Multi-storeyed RC Building With Open Ground Storey Having Different Type Infill Walls

Comparative Study of Multi-storeyed RC Building With Open Ground Storey Having Different Type Infill Walls Comparative Study of Multi-storeyed RC Building With Open Ground Storey Having Different Type Infill Walls Nesiya Yoosaf 1, Remya Raju 2, Hashim K Abdul Azeez 3 1 M.Tech student, Department of civil engineering,

More information

Research Article Volume 6 Issue No. 7

Research Article Volume 6 Issue No. 7 ISSN XXXX XXXX 216 IJESC Research Article Volume 6 Issue No. 7 Seismic Performance of Multi Storey RC Frame Buildings with Soft Storey from Pushover Analysis Basavaraju Y K 1, Dr. B S Jayashankar Babu

More information

Seismic Analysis of Earthquake Resistant Multi Bay Multi Storeyed 3D - RC Frame

Seismic Analysis of Earthquake Resistant Multi Bay Multi Storeyed 3D - RC Frame Seismic Analysis of Earthquake Resistant Multi Bay Multi Storeyed 3D - RC Frame Rayyan-Ul-Hasan Siddiqui 1, H. S. Vidyadhara 1 Post Graduate Student, Department of Civil Engineering, Poojya Doddappa Appa

More information

Pushover Analysis of High Rise Reinforced Concrete Building with and without Infill walls

Pushover Analysis of High Rise Reinforced Concrete Building with and without Infill walls Pushover Analysis of High Rise Reinforced Concrete Building with and without Infill walls Phadnis P.P. 1, Prof. (Dr.) Kulkarni D. K. 2 1Research Scholar, Department of Technology, Shivaji University, Kolhapur,

More information

Effects of Building Configuration on Seismic Performance of RC Buildings by Pushover Analysis

Effects of Building Configuration on Seismic Performance of RC Buildings by Pushover Analysis Open Journal of Civil Engineering, 2015, 5, 203-213 Published Online June 2015 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/10.4236/ojce.2015.52020 Effects of Building Configuration on

More information

Effect of Diaphragm Openings in Multi-storeyed RC framed buildings using Pushover analysis

Effect of Diaphragm Openings in Multi-storeyed RC framed buildings using Pushover analysis Effect of Diaphragm Openings in Multi-storeyed RC framed buildings using Pushover analysis P.P. Vinod Kumar 1, Dr. V.D. Gundakalle 2 1 M.Tech Student, Civil Engineering, KLEMSSCET - Belagavi, Karnataka,

More information

Study of seismic effect on buildings modified with shear wall

Study of seismic effect on buildings modified with shear wall Study of seismic effect on buildings modified with shear wall Hingkam Dada, Zuhail Bin Basheer T.P,Bullo Apo, Shaheel Ahammed 1234B.Tech Student, Civil Engineering, Mar Athanasius college of engineeringe,kerala,

More information

Miss. Sayli S Kamble. 1, Prof. Dr. D. N. Shinde 2 1 Department of civil Engineering, PVPIT Budhgaon, Shivaji university, Maharashtra, India.

Miss. Sayli S Kamble. 1, Prof. Dr. D. N. Shinde 2 1 Department of civil Engineering, PVPIT Budhgaon, Shivaji university, Maharashtra, India. Performance of RC Frame With and Without Bracing Pushover Analysis Miss. Sayli S Kamble. 1, Prof. Dr. D. N. Shinde 2 1 Department of civil Engineering, PVPIT Budhgaon, Shivaji university, Maharashtra,

More information

SEISMIC RESPONSE OF A MID RISE RCC BUILDING WITH SOFT STOREY AT GROUND FLOOR

SEISMIC RESPONSE OF A MID RISE RCC BUILDING WITH SOFT STOREY AT GROUND FLOOR SEISMIC RESPONSE OF A MID RISE RCC BUILDING WITH SOFT STOREY AT GROUND FLOOR 1 DHARMESH VIJAYWARGIYA, 2 Dr. ABHAY SHARMA, 3 Dr. VIVEK GARG 1 Post Graduate Student, Civil Engineering Department, MANIT,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Seismic analysis of RC Building Frame with Different Bracing Systems Mohammed Ali Khan

More information

PERFORMANCE BASED EVALUATION OF FRAMED REINFORCED CONCRETE SHEAR WALLS BY PUSHOVER ANALYSIS

PERFORMANCE BASED EVALUATION OF FRAMED REINFORCED CONCRETE SHEAR WALLS BY PUSHOVER ANALYSIS PERFORMANCE BASE EVALUATION OF FRAME REINFORCE CONCRETE SHEAR WALLS BY PUSHOVER ANALYSIS Jyoti Patil 1, r..k.kulkarni 2 1 M.tech student, civil engineering, SMCET harwad, Karnatak, India 2 Professor, civil

More information

Seismic Analysis of Open Ground Storey Building

Seismic Analysis of Open Ground Storey Building International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 8, Number 2 (2017), pp. 69-79 Research India Publications http://www.ripublication.com Seismic Analysis of Open Ground Storey

More information

SEISMIC RESPONSE OF VERTICALLY IRREGULAR RC FRAME WITH MASS IRREGULARITY

SEISMIC RESPONSE OF VERTICALLY IRREGULAR RC FRAME WITH MASS IRREGULARITY International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 5, September-October 2016, pp. 257 264, Article ID: IJCIET_07_05_028 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=5

More information

Seismic Response of Vertically Irregular RC Frame with Stiffness Irregularity at Fourth Floor

Seismic Response of Vertically Irregular RC Frame with Stiffness Irregularity at Fourth Floor Seismic Response of Vertically Irregular RC Frame with Stiffness Irregularity at Fourth Floor Shaikh Abdul Aijaj Abdul Rahman 1, Girish Deshmukh 2 1 PG Student ME (Structural Engineering) Final Year, Department

More information

NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS

NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS Polupalli Victor Paul 1, K Sampath Kumar 2 1 PG Student, Dept of Civil Engineering, Nova College of Engineering & Technology,

More information

Volume 1. HOW TO MAKE A DREAM HOUSE EARTHQUAKE RESISTANT Contents

Volume 1. HOW TO MAKE A DREAM HOUSE EARTHQUAKE RESISTANT Contents Preparation of Seismic Design Manuals for Earthquake Disaster Mitigation Volume 1 HOW TO MAKE A DREAM HOUSE EARTHQUAKE RESISTANT Contents Part I: A house and its behavior during earthquake A House? How

More information

SEISMIC BEHAVIOUR OF CAPACITY DESIGNED MASONRY WALLS IN LOW SEISMICITY REGIONS

SEISMIC BEHAVIOUR OF CAPACITY DESIGNED MASONRY WALLS IN LOW SEISMICITY REGIONS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1801 SEISMIC BEHAVIOUR OF CAPACITY DESIGNED MASONRY WALLS IN LOW SEISMICITY REGIONS Ekkehard Fehling

More information

Seismic Analysis of Multi Storey Building with Flat Slab Resting on Plain and Sloping Ground

Seismic Analysis of Multi Storey Building with Flat Slab Resting on Plain and Sloping Ground Bonfring International Journal of Man Machine Interface, Vol. 4, Special Issue, July 216 2 Seismic Analysis of Multi Storey Building with Flat Slab Resting on Plain and Sloping Ground P. Manjunath and

More information

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System

A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System A Comparative Study on Non-Linear Analysis of Frame with and without Structural Wall System Dr.Binu Sukumar #1, A.Hemamathi *2, S.Kokila #3 C.Hanish #4 #1 Professor &Head, Department of Civil Engineering,

More information

EXPERIMENTAL STUDY OF THE DEFORMATION CAPACITY OF STRUCTURAL MASONRY

EXPERIMENTAL STUDY OF THE DEFORMATION CAPACITY OF STRUCTURAL MASONRY 12 th Canadian Masonry Symposium Vancouver, British Columbia, June 2-5, 213 EXPERIMENTAL STUDY OF THE DEFORMATION CAPACITY OF STRUCTURAL MASONRY A. Salmanpour 1, N. Mojsilović 2 and J. Schwartz 3 1 PhD

More information

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 7, July 2017, pp. 581 593, Article ID: IJCIET_08_07_062 Available online at http:// http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=7

More information

MASONRY INFLUENCE IN SEISMIC PERFORMANCE OF BUILDINGS - CASE STUDY IN PERU. DANIEL QUIUN Professor, Pontifical Catholic University of Peru, Lima, Peru

MASONRY INFLUENCE IN SEISMIC PERFORMANCE OF BUILDINGS - CASE STUDY IN PERU. DANIEL QUIUN Professor, Pontifical Catholic University of Peru, Lima, Peru MASONRY INFLUENCE IN SEISMIC PERFORMANCE OF BUILDINGS - CASE STUDY IN PERU DANIEL QUIUN Professor, Pontifical Catholic University of Peru, Lima, Peru ANGEL SAN BARTOLOMÉ Professor, Pontifical Catholic

More information

Council on Tall Buildings

Council on Tall Buildings Structure Design of Sino Steel (Tianjin) International Plaza Xueyi Fu, Group Chief Engineer, China Construction Design International 1 1 Brief of Project 2 Location: Tianjin Xiangluowan Business District

More information

Study on Effect of Openings in Seismic Behavior of Masonry Structures

Study on Effect of Openings in Seismic Behavior of Masonry Structures Study on Effect of Openings in Seismic Behavior of Masonry Structures Nila. N. D 1, Sivan P. P 2, Ramya K. M. 3 1PG Student, M-tech Structural Engineering, Sreepathy Institute of Management and Technology,

More information

CE 6071 Structural Dynamics and Earthquake Engineering UNIT -5 2 MARKS

CE 6071 Structural Dynamics and Earthquake Engineering UNIT -5 2 MARKS CE 6071 Structural Dynamics and Earthquake Engineering UNIT -5 2 MARKS 1. What is strong column weak beam design concept (N/D-16) The design philosophy for frames is to avoid failure of column from both

More information

Repair and Retrofit of a 17 th Century Library Structure in Istanbul

Repair and Retrofit of a 17 th Century Library Structure in Istanbul Repair and Retrofit of a 17 th Century Library Structure in Istanbul Sesigur, H. & Cili, F. Istanbul Technical University, Turkey SUMMARY: In the present study a heavily damaged 17th century library structure

More information

SEISMIC REHABILITATION OF A COMMON TYPE OF URM BUILDING IN IRAN

SEISMIC REHABILITATION OF A COMMON TYPE OF URM BUILDING IN IRAN SEISMIC REHABILITATION OF A COMMON TYPE OF URM BUILDING IN IRAN A. Mahdavi 1, F. Arbabi 2, M. Ghafory-Ashtiany 2 1 Graduate Student, Structural Research Center, International Institute of Earthquake Engineering

More information

ENG.ACA.0001F Madras. New Zealand significant. (a) spandrel 2010) were solid

ENG.ACA.0001F Madras. New Zealand significant. (a) spandrel 2010) were solid ENG.ACA.0001F.111 Figure 5.15 137 Manchester Street, pull out of the canopy supports 5.4 Clay brick URM building that have been partially or fully demolished 5.4.1 192 Madras Street This building was designed

More information

DESIGN AMPLIFICATION FACTOR FOR OPEN GROUND STOREY RC STRUCTURE WITH INFILL OPENINGS IN UPPER STOREYS

DESIGN AMPLIFICATION FACTOR FOR OPEN GROUND STOREY RC STRUCTURE WITH INFILL OPENINGS IN UPPER STOREYS DESIGN AMPLIFICATION FACTOR FOR OPEN GROUND STOREY RC STRUCTURE WITH INFILL OPENINGS IN UPPER STOREYS by Swajit Singh Goud, Pradeep Kumar Ramancharla in 16th World Conference on Earthquake (16WCEE 2017)

More information

Non Linear Static Analysis of Multi-storeyed Special Moment Resisting Frames

Non Linear Static Analysis of Multi-storeyed Special Moment Resisting Frames Non Linear Static Analysis of Multi-storeyed Special Moment Resisting Frames Aswathi O K #1, Anita S *2 # P.G. Research Scholar, Civil Engineering, Vimal Jyothi Engineering College, Kannur, Kerala, India

More information

SEISMIC VULNERABILITY OF EXISTING RC BUILDINGS IN INDIA

SEISMIC VULNERABILITY OF EXISTING RC BUILDINGS IN INDIA 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1207 SEISMIC VULNERABILITY OF EXISTING RC BUILDINGS IN INDIA Prathibha S 1 and A Meher Prasad 2 SUMMARY

More information

ANALYSIS AND EVALUATION OF STRUCTURAL SYSTEMS WITH BRACING AND SHEAR WALL

ANALYSIS AND EVALUATION OF STRUCTURAL SYSTEMS WITH BRACING AND SHEAR WALL ANALYSIS AND EVALUATION OF STRUCTURAL SYSTEMS WITH BRACING AND SHEAR WALL S. Praveen kumar 1, G. Augustine Maniraj Pandian 2 1 M. Tech. Student, structural Engineering, Department of Civil Engineering,

More information

Study of Shear Walls in Different Locations of Multistoried Building with Uniform Thickness in Seismic Zone III

Study of Shear Walls in Different Locations of Multistoried Building with Uniform Thickness in Seismic Zone III Study of Shear Walls in Different Locations of Multistoried Building with Uniform Thickness in Seismic Zone III Ambreshwar 1, Mahesh D 2, Nithinchary 3, Satish Baag 4, Sachin 5 1,2 Assistant Professors,

More information

SEISMIC STRENGTHENING OF PARTIALLY INFILL RC BUILDINGS USING BRICK INSERTS - EXPERIMENTAL INVESTIGATION ON 3D MODEL STRUCTURE

SEISMIC STRENGTHENING OF PARTIALLY INFILL RC BUILDINGS USING BRICK INSERTS - EXPERIMENTAL INVESTIGATION ON 3D MODEL STRUCTURE SEISMIC STRENGTHENING OF PARTIALLY INFILL RC BUILDINGS USING BRICK INSERTS - EXPERIMENTAL INVESTIGATION ON 3D MODEL STRUCTURE R. Suresh Babu 1, R. Venkatsubramani 2 and G. S. Venkatasubramani 2 1 Anna

More information

Contents. 1.1 Introduction 1

Contents. 1.1 Introduction 1 Contents PREFACE 1 ANCIENT MASONRY 1 1.1 Introduction 1 1.2 History of Masonry Materials 1 1.2.1 Stone 2 1.2.2 Clay Units 2 1.2.3 Calcium Silicate Units 4 1.2.4 Concrete Masonry Units 4 1.2.5 Mortars 5

More information

VOLUNTARY - EARTHQUAKE HAZARD REDUCTION IN EXISTING HILLSIDE BUILDINGS (Division 94 Added by Ord. No. 171,258, Eff. 8/30/96.)

VOLUNTARY - EARTHQUAKE HAZARD REDUCTION IN EXISTING HILLSIDE BUILDINGS (Division 94 Added by Ord. No. 171,258, Eff. 8/30/96.) DIVISION 94 VOLUNTARY - EARTHQUAKE HAZARD REDUCTION IN EXISTING HILLSIDE BUILDINGS (Division 94 Added by Ord. No. 171,258, Eff. 8/30/96.) SEC. 91.9401. PURPOSE. (Amended by Ord. No. 172,592, Eff. 6/28/99,

More information

PUSHOVER ANALYSIS FOR THE RC STRUCTURES WITH DIFFERENT ECCENTRICITY

PUSHOVER ANALYSIS FOR THE RC STRUCTURES WITH DIFFERENT ECCENTRICITY PUSHOVER ANALYSIS FOR THE RC STRUCTURES WITH DIFFERENT ECCENTRICITY Sharmila H C 1, Prof. Mahadeva M 2 Assistant professor 1, Department of Civil Engineering, Dr. S M C E, Bangalore, (India) Assistant

More information

Modelling for Seismic Analysis of RC Frame Buildings with Infill Wall and Special Shear Wall

Modelling for Seismic Analysis of RC Frame Buildings with Infill Wall and Special Shear Wall Modelling for Seismic Analysis of RC Frame Buildings with Infill Wall and Special Shear Wall Kaustubh Dasgupta Department of Civil Engineering Indian Institute of Technology Guwahati Seismic behaviour

More information

MODAL PUSHOVER ANALYSIS OF RC FRAME BUILDING WITH STAIRCASE AND ELEVATOR CORE

MODAL PUSHOVER ANALYSIS OF RC FRAME BUILDING WITH STAIRCASE AND ELEVATOR CORE 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska MODAL PUSHOVER ANALYSIS OF RC FRAME BUILDING WITH STAIRCASE AND ELEVATOR

More information

EARTHQUAKE ANALYSIS OF A G+12 STOREY BUILDING WITH AND WITHOUT INFILL FOR BHUJ AND KOYNA EARTHQUAKE FUNCTIONS

EARTHQUAKE ANALYSIS OF A G+12 STOREY BUILDING WITH AND WITHOUT INFILL FOR BHUJ AND KOYNA EARTHQUAKE FUNCTIONS EARTHQUAKE ANALYSIS OF A G+12 STOREY BUILDING WITH AND WITHOUT INFILL FOR BHUJ AND KOYNA EARTHQUAKE FUNCTIONS Jyothi. C. Hawaldar, Dr. D. K. Kulkarni Student, 4 th sem, M.Tech(CADS), Department of Civil

More information

Shake-table test on a four-storey structure with reinforced concrete and unreinforced masonry walls

Shake-table test on a four-storey structure with reinforced concrete and unreinforced masonry walls Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) C. Adam, R. Heuer, W. Lenhardt & C. Schranz (eds) 28-30 August 2013, Vienna, Austria Paper No. 346

More information

S. Gandhi *1, Syed Rizwan 2

S. Gandhi *1, Syed Rizwan 2 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis and Design of Tall Building (G+21) Using ETABS S. Gandhi *1, Syed Rizwan

More information

Seismic Performance of Multistorey Building with Soft Storey at Different Level with RC Shear Wall

Seismic Performance of Multistorey Building with Soft Storey at Different Level with RC Shear Wall Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Seismic

More information

Evaluation of Shear Demand on Columns of of Masonry Infilled Reinforced Concrete Frames

Evaluation of Shear Demand on Columns of of Masonry Infilled Reinforced Concrete Frames Evaluation of Shear Demand on Columns of of Masonry Infilled Reinforced Concrete Frames S.H. Basha & H.B. Kaushik Dept. of Civil Engineering, Indian Institute of Technology Guwahati,Guwahati 78139, India.

More information

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE SECTION 1. mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 1.1 Overview of IS 456:2000 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE IS 456:2000 is the current Indian

More information

EXPERIMENTAL INVESTIGATION OF THE JACK ARCH SLAB RETROFITTED BY CONCRETE LAYER

EXPERIMENTAL INVESTIGATION OF THE JACK ARCH SLAB RETROFITTED BY CONCRETE LAYER CD02-030 EXPERIMENTAL INVESTIGATION OF THE JACK ARCH SLAB RETROFITTED BY CONCRETE LAYER Saeed Pourfallah 1, M. R. Maheri 2 and M. A. Najafgholipour 1, 1 Research student, Department of Civil Engineering,

More information

SEISMIC ANALYSIS OF MULTISTOREY BUILDING WITH BARE FRAME, BARE FRAME WITH SLAB ELEMENT AND SOFT STOREY OF THE BUILDING USING SOFTWARE ETABS

SEISMIC ANALYSIS OF MULTISTOREY BUILDING WITH BARE FRAME, BARE FRAME WITH SLAB ELEMENT AND SOFT STOREY OF THE BUILDING USING SOFTWARE ETABS SEISMIC ANALYSIS OF MULTISTOREY BUILDING WITH BARE FRAME, BARE FRAME WITH SLAB ELEMENT AND SOFT STOREY OF THE BUILDING USING SOFTWARE ETABS G SRAVANTHI 1*, M V NARASAIAH 2*, Dr. Y RAMESH BABU 3* 1. Student,

More information

International Journal of Advance Engineering and Research Development SEISMIC ANALYSIS ON BUILDING WITH HORIZONTAL AND VERTICAL IRREGULARITIES

International Journal of Advance Engineering and Research Development SEISMIC ANALYSIS ON BUILDING WITH HORIZONTAL AND VERTICAL IRREGULARITIES Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 9, September -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 SEISMIC

More information

Finite Element Modelling of Unreinforced Masonry (URM) Wall with Openings: Studies in Australia

Finite Element Modelling of Unreinforced Masonry (URM) Wall with Openings: Studies in Australia Finite Element Modelling of Unreinforced Masonry (URM) Wall with Openings: Studies in Australia Meillyta Department of Civil Engineering, Muhamaddiyah University, Bathoh Lueng Bata No.91, Banda Aceh, Indonesia.

More information

Seismic Analysis of Buildings Resting on Sloping Ground with Varying Number of Bays and Hill Slopes

Seismic Analysis of Buildings Resting on Sloping Ground with Varying Number of Bays and Hill Slopes Seismic Analysis of s Resting on Sloping Ground with Varying Number of Bays and Hill Slopes Dr. S. A. Halkude 1, Mr. M. G. Kalyanshetti 2, Mr. V. D. Ingle 3 (Civil Engg. Dept. W. I. T. Solapur, Solapur

More information

Seismic Response of RC Framed Structures Having Plan and Vertical Irregularities with and Without Masonry Infill Action

Seismic Response of RC Framed Structures Having Plan and Vertical Irregularities with and Without Masonry Infill Action Seismic Response of RC Framed Structures Having Plan and Vertical Irregularities with and Without Masonry Infill Action T.Sruti Sai¹, Dr.T.Chandrasekhar Rao², B.Vasudev 3 ¹M.Tech Structural student, Department

More information

Influence of Masonry Infill Walls on Seismic Performance of RC Framed Structures a Comparision of AAC and Conventional Brick Infill

Influence of Masonry Infill Walls on Seismic Performance of RC Framed Structures a Comparision of AAC and Conventional Brick Infill International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-4, April 2013 Influence of Masonry Infill Walls on Seismic Performance of RC Framed Structures a Comparision

More information

Seismic behavior of Structures with Different Diaphragms and Infill Walls

Seismic behavior of Structures with Different Diaphragms and Infill Walls IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 12 June 2017 ISSN (online): 2349-784X Seismic behavior of Structures with Different Diaphragms and Infill Walls Onkar A.

More information

Static Analysis of Multistoreyed RC Buildings By Using Pushover Methodology

Static Analysis of Multistoreyed RC Buildings By Using Pushover Methodology IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 8 January 2015 ISSN (online): 2349-6010 Static Analysis of Multistoreyed RC Buildings By Using Pushover Methodology

More information

SEISMIC SOIL-STRUCTURE INTERACTION (SSI) EFFECTS FOR A DIFFERENT TYPE OF BUILDINGS IN DENSE URBAN AREA

SEISMIC SOIL-STRUCTURE INTERACTION (SSI) EFFECTS FOR A DIFFERENT TYPE OF BUILDINGS IN DENSE URBAN AREA SEISMIC SOIL-STRUCTURE INTERACTION (SSI) EFFECTS FOR A DIFFERENT TYPE OF BUILDINGS IN DENSE URBAN AREA Ovidiu BOGDAN 1, Dan M. GHIOCEL 2 and Dan CRETU 3 ABSTRACT The paper presents the results of a project

More information

Pushover Analysis of RC Frame for effective column design

Pushover Analysis of RC Frame for effective column design Pushover Analysis of RC Frame for effective column design Lekshmi Nair 1, Aswathy S Kumar 2 1 M.Tech Student, Sree Buddha College of Engineering for Women, Elavumthitta, Kerala, India 2 Staff, Sree Buddha

More information

HISTORICAL REVIEW OF MASONRY STANDARDS IN NEW ZEALAND

HISTORICAL REVIEW OF MASONRY STANDARDS IN NEW ZEALAND New Zealand Masonry Standards Page 1 HISTORICAL REVIEW OF MASONRY STANDARDS IN NEW ZEALAND Prepared by Peter C Smith and Jonathan W Devine of Spencer Holmes Ltd for the ROYAL COMMISSION OF INQUIRY BUILDING

More information

SEISMIC BEHAVIOR OF INFILL FRAMES

SEISMIC BEHAVIOR OF INFILL FRAMES SEISMIC BEHAVIOR OF INFILL FRAMES Unreinforced masonry (URM) infill walls are extensively used throughout the world, including seismically active regions. They often serve as partitions in reinforced concrete

More information

SEISMIC RETROFITTING OF EXISTING BUILDINGS

SEISMIC RETROFITTING OF EXISTING BUILDINGS SEISMIC RESILIENT SCHOOL BUILDING CONSTRUCTION OF SCHOOL BUILDINGS FOR SUB-ENGINEER SEISMIC RETROFITTING OF EXISTING BUILDINGS R.K. MALLIK Structural Engineer RND CENTRE PVT. LTD. OBJECTIVE KNOW RETROFITTING

More information

FINITE ELEMENT AND LIMIT ANALYSIS OF THE LARGE SCALE MODEL OF MUSTAFA PASHA MOSQUE IN SKOPJE STRENGTHENED WITH FRP

FINITE ELEMENT AND LIMIT ANALYSIS OF THE LARGE SCALE MODEL OF MUSTAFA PASHA MOSQUE IN SKOPJE STRENGTHENED WITH FRP Asia-Pacific Conference on FRP in Structures (APFIS 2007) S.T. Smith (ed) 2007 International Institute for FRP in Construction FINITE ELEMENT AND LIMIT ANALYSIS OF THE LARGE SCALE MODEL OF MUSTAFA PASHA

More information

4.6 Procedures for Connections

4.6 Procedures for Connections 4.6 Procedures for Connections This section provides Tier 2 evaluation procedures that apply to structural connections: anchorage for normal forces, shear transfer, vertical components, interconnection

More information

Analytical Study on Seismic Performance of Hybrid (DUAL) Structural System Subjected To Earthquake

Analytical Study on Seismic Performance of Hybrid (DUAL) Structural System Subjected To Earthquake Vol.2, Issue.4, July-Aug. 2012 pp-2358-2363 ISSN: 2249-6645 Analytical Study on Seismic Performance of Hybrid (DUAL) Structural System Subjected To Earthquake Nabin Raj.C 1, S.Elavenil 2 Department of

More information

Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building

Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building Seismic Performance Evaluation of an Existing Precast Concrete Shear Wall Building J. Sanchez, L. Toranzo & T. Nixon KPFF Consulting Engineers, Los Angeles, CA, USA SUMMARY: Nonlinear analysis has become

More information

BEHAVIOURAL STUDY OF STIFFNESS IN SOFT STOREY BUILDINGS WITH DIFFERENT INFILLS

BEHAVIOURAL STUDY OF STIFFNESS IN SOFT STOREY BUILDINGS WITH DIFFERENT INFILLS BEHAVIOURAL STUDY OF STIFFNESS IN SOFT STOREY BUILDINGS WITH DIFFERENT INFILLS Mohith Y S 1, Thejaswini R M 2 1. M Tech student, Department of Civil Engineering, G.S.K.S.J.T.I. Bengaluru-01. 2. Assistant

More information

Earthquake Resistant Design. Dr. S. K. PRASAD Professor of Civil Engineering S. J. College of Engineering, Mysore

Earthquake Resistant Design. Dr. S. K. PRASAD Professor of Civil Engineering S. J. College of Engineering, Mysore Earthquake Resistant Design Dr. S. K. PRASAD Professor of Civil Engineering S. J. College of Engineering, Mysore Email : skprasad@sjce.ac.in Natural Disasters Earthquake Tornado, Cyclone Floods Fire Natural

More information

Seismic Retrofitting of Building with Soft Storey and Floating Column

Seismic Retrofitting of Building with Soft Storey and Floating Column Seismic Retrofitting of Building with Soft Storey and Floating Column Ganesh Kumbhar 1, Anirudhha Banhatti 2 1Department of Civil Engineering, G. H. Raisoni College of Engineering and Management, Wagholi,

More information

The Vulnerability Assessment and Seismic Rehabilitation of the Historical Malek Zouzan Mosque

The Vulnerability Assessment and Seismic Rehabilitation of the Historical Malek Zouzan Mosque The Vulnerability Assessment and Seismic Rehabilitation of the Historical Malek Zouzan Mosque F. Alemi Sadjad Institute of Higher Education, Mashhad, Iran F. Nateghi-Alahi International Institute of Earthquake

More information

Figure 1 Swing Span Supported by Center Pivot Pier and Two Rest Piers

Figure 1 Swing Span Supported by Center Pivot Pier and Two Rest Piers Abstract SEISMIC RETROFIT OF UNREINFORCED STONE MASONRY BRIDGE PIERS AND DISCRETE ELEMENT ANALYSIS Jaw-Nan (Joe) Wang 1 ; Michael J. Abrahams 2 The seismic behavior of unreinforced stone masonry structures

More information

Parasiya et al., International Journal of Advanced Engineering Research and Studies E-ISSN

Parasiya et al., International Journal of Advanced Engineering Research and Studies E-ISSN Review Article A REVIEW ON COMPARATIVE ANALYSIS OF BRACE FRAME WITH CONVENTIONAL LATERAL LOAD RESISTING FRAME IN RC STRUCTURE USING SOFTWARE Ashik S. Parasiya 1 Paresh Nimodiya 2 Address for Correspondence

More information

Nonlinear seismic response of structural systems having vertical irregularities due to discontinuities in columns

Nonlinear seismic response of structural systems having vertical irregularities due to discontinuities in columns Nonlinear seismic response of structural systems having vertical irregularities due to discontinuities in columns N. Kara Selçuk University, Department of Civil Engineering, Konya, Turkey Z. Celep Istanbul

More information

PUSHOVER ANALYSIS OF A MODERN AGGREGATE OF MASONRY BUILDINGS THROUGH MACRO-ELEMENT MODELLING

PUSHOVER ANALYSIS OF A MODERN AGGREGATE OF MASONRY BUILDINGS THROUGH MACRO-ELEMENT MODELLING PUSHOVER ANALYSIS OF A MODERN AGGREGATE OF MASONRY BUILDINGS THROUGH MACRO-ELEMENT MODELLING Marques, Rui 1 ; Vasconcelos, Graça 2 ; Lourenço, Paulo B. 3 1 MSc, PhD Student, University of Minho, Department

More information

A Study on Seismic Analysis of High Rise Irregular Floor Plan Building with Different Position of Shear Walls

A Study on Seismic Analysis of High Rise Irregular Floor Plan Building with Different Position of Shear Walls International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-6 Issue-6, August 2017 A Study on Seismic Analysis of High Rise Irregular Floor Plan Building with Different

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Solution of Shear Wall Location

More information

International Journal of Advance Engineering and Research Development. Seismic Study of An E-Shaped building With and Without Infill Walls

International Journal of Advance Engineering and Research Development. Seismic Study of An E-Shaped building With and Without Infill Walls Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Seismic Study

More information

Analysis of Reinforced Concrete Building With Different Plan Shapes Resting on Sloping Ground

Analysis of Reinforced Concrete Building With Different Plan Shapes Resting on Sloping Ground Analysis of Reinforced Concrete Building With Different Plan Shapes Resting on Sloping Ground Haider Abdulazeez Ibrahim M.Tech, Structural Engineering, Department of Civil Engineering, College of Engineering,

More information

Seismic Performance of Residential Buildings with Staggered Walls

Seismic Performance of Residential Buildings with Staggered Walls Seismic Performance of Residential Buildings with Staggered Walls Hyungoo Kang and Joonho Lee Graduate Student, Department of Architectural Engineering, Sungkyunkwan University, Suwon, Korea Jinkoo Kim

More information

SEISMIC PERFORMANCE OF REINFORCED CONCRETE FRAME BUILDING WITH AND WITHOUT URM INFILL WALLS

SEISMIC PERFORMANCE OF REINFORCED CONCRETE FRAME BUILDING WITH AND WITHOUT URM INFILL WALLS SEISMIC PERFORMANCE OF REINFORCED CONCRETE FRAME BUILDING WITH AND WITHOUT URM INFILL WALLS R. Dey 1, M. A. R. Bhuiyan 2, R. K. Mazumder 3 & A. K. M. T. A. Khan 1 1 Structural Engineer, Building Design

More information

EARTHQUAKE DESIGN CONSIDERATIONS OF BUILDINGS. By Ir. Heng Tang Hai

EARTHQUAKE DESIGN CONSIDERATIONS OF BUILDINGS. By Ir. Heng Tang Hai EARTHQUAKE DESIGN CONSIDERATIONS OF BUILDINGS By Ir. Heng Tang Hai SYPNOSIS 1. Earthquake-Induced Motions 2. Building Configurations 3. Effectiveness Of Shear Walls 4. Enhancement Of Ductility In Buildings

More information

Seismic Analysis of Space Frame with T and Square Shaped Column

Seismic Analysis of Space Frame with T and Square Shaped Column Seismic Analysis of Space Frame with T and Square Shaped Column Sumayya M Kareem 1, Linda Ann Mathew 2 1 P G student, Computer Aided Structural Engineering, Sree Buddha College of Engineering, Pathanamthitta,

More information

RESPONSE STUDY OF MULTI-STORIED BUILDINGS WITH PLAN IRREGULARITY SUBJECTED TO EARTHQUAKE AND WIND LOADS USING LINEAR STATIC ANALYSIS

RESPONSE STUDY OF MULTI-STORIED BUILDINGS WITH PLAN IRREGULARITY SUBJECTED TO EARTHQUAKE AND WIND LOADS USING LINEAR STATIC ANALYSIS RESPONSE STUDY OF MULTI-STORIED BUILDINGS WITH PLAN IRREGULARITY SUBJECTED TO EARTHQUAKE AND WIND LOADS USING LINEAR STATIC ANALYSIS Ramesh Konakalla 1, Ramesh Dutt Chilakapati 2, Dr Harinadha Babu Raparla

More information

Structural Design of Super High Rise Buildings in High Seismic Intensity Area

Structural Design of Super High Rise Buildings in High Seismic Intensity Area Structural Design of Super High Rise Buildings in High Seismic Intensity Area Jianbo Zheng School of Architectural Engineering, Binzhou University, Binzhou, 256600, China zjb2006@163.com Abstract The structure

More information

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING B.B. Canbolat 1 1 Assistant Professor, Dept. of Civil Engineering, Middle East Technical University,

More information

Soil-Structure interaction effects on seismic response of a 16 storey RC framed building with shear wall

Soil-Structure interaction effects on seismic response of a 16 storey RC framed building with shear wall American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-2 pp-53-58 www.ajer.org Research Paper Open Access Soil-Structure interaction effects on seismic response of

More information

OPTIMUM LOCATION OF RC SHEAR WALL FOR A FIVE STOREY SYMMETRICAL FRAMED STRUCTURE FOR EFFICIENT SEISMIC DESIGN USING PUSHOVER ANALYSIS

OPTIMUM LOCATION OF RC SHEAR WALL FOR A FIVE STOREY SYMMETRICAL FRAMED STRUCTURE FOR EFFICIENT SEISMIC DESIGN USING PUSHOVER ANALYSIS OPTIMUM LOCATION OF RC SHEAR WALL FOR A FIVE STOREY SYMMETRICAL FRAMED STRUCTURE FOR EFFICIENT SEISMIC DESIGN USING PUSHOVER ANALYSIS M. K. Akhil Krishnan, Dr. C. Justine Jose Assistant Professor, Department

More information

Application of Discrete/Finite Element Algorithms to the Analysis of Masonry Buildings and Bridges

Application of Discrete/Finite Element Algorithms to the Analysis of Masonry Buildings and Bridges Industry Sector RTD Thematic Area Date Civil Construction Durability and Life Extension 13 11 01 Application of Discrete/Finite Element Algorithms to the Analysis of Masonry Buildings and Bridges Carl

More information

TO STUDY THE PERFORMANCE OF HIGH-RISE BUILDING UNDER LATERAL LOAD WITH BARE FRAME AND SHEAR WALL WITH OPENINGS

TO STUDY THE PERFORMANCE OF HIGH-RISE BUILDING UNDER LATERAL LOAD WITH BARE FRAME AND SHEAR WALL WITH OPENINGS TO STUDY THE PERFORMANCE OF HIGH-RISE BUILDING UNDER LATERAL LOAD WITH BARE FRAME AND SHEAR WALL WITH OPENINGS Shrinivas. M R 1, Dr. B.S Jayashankar Babu 2 1M.tech student, Civil Engineering Department,

More information

AN ASSESSMENT OF SAFETY OF A REAL SIX STORIED R.C.C FRAME STRUCTURE BY NON LINEAR STATIC PUSHOVER ANALYSIS

AN ASSESSMENT OF SAFETY OF A REAL SIX STORIED R.C.C FRAME STRUCTURE BY NON LINEAR STATIC PUSHOVER ANALYSIS Proceedings of the 3 rd International Conference on Civil Engineering for Sustainable Development (ICCESD 2016), 12~14 February 2016, KUET, Khulna, Bangladesh (ISBN: 978-984-34-0265-3) AN ASSESSMENT OF

More information