Soil Dissolved Organic Carbon Decreased Follo wing 402year Grassland Afforestation

Size: px
Start display at page:

Download "Soil Dissolved Organic Carbon Decreased Follo wing 402year Grassland Afforestation"

Transcription

1 (), 45, 3, Acta Scientiarum Naturalium Universitatis Pekinensis, Vol. 45, No. 3 (May 2009) 40 g, ; g,e2mail : edu. cn,, cm,,40, ; ; ; S718 Soil Dissolved Organic Carbon Decreased Follo wing 402year Grassland Afforestation LIU Chang, REN Yanlin, HE Jinsheng g Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, ; g Corresponding Author, E2mail : edu. cn Abstract To determine the change of soil dissolved organic carbon ( DOC) following grassland afforestation, the authors compared soil DOC, soil organic carbon ( SOC) and soil total N ( STN) of top 30 cm soils under Leymus chinensis meadow steppe, Pinus sylvestris var. mongolica plantation, and Larix principis2rupprechtii. plantation in Saihanba, Hebei Province. DOC, SOC and STN of coniferous plantation soils were less than those of meadow steppe soils ; DOC, SOC, and STN decreased following 402year grassland afforestation. Soil heterogeneities of coniferous plantations were lower than meadow steppes. Key words afforestation ; dissolved organic carbon ; soil organic carbon ; soil total nitrogen ( dissolved organic carbon, DOC, ) 0145 m,, [1] [2], [3] [4], [5] [6],,,,,, [7], (soil microbial biomass carbon, SMBC) [8] (water soluble organic carbon, WSOC) [9] [10] [11],,, ( CO 2 ) [12217] ; ( SOC) ( SMBCΠSOC) [18] (2002CB412502) : ; :

2 () 45 SOC ), [19221],,,20 50 [22 ] 1962, (Larix principis2rupprechtii ) ( Pinus sylvestris var. mongolica), [23224 ],,, SOC,( ) SOC( STN), 40 SOC , ,94700 hm 2 ;,,,,- 114, mm,6915 % 2,, 7617 %,114 % [22] , 10 ( 1), 40 37, m5 20 m 20 m, 515 cm 0 10, cm 3,,,4 mm, 4, SOC,(0 10, cm),, SOC 2,,, K 2 SO 4 (015 molπl), SOC TOC (Analytikjena, Multi NΠC 3100), STN CΠN (2400 CHNSΠO Elemental Analyzer, Perkin2Elmer, USA),0 30 cm SOC 3 3 SOC t = SOC i = i = 1 i = 1 C i D i E i (1 - G i )Π10, C i SOC ( %), D i (gπm 3 ), E i (cm), G i 2 mm ( %),0 30 cm 113 SOC STN, LSD, SPSS 1310 SigmaPlot SOC STN SOC ( 1 (a) ) STN ( 1 (b) ) ( p < 0105 ; p < 0105), 1 ( 0 30 cm) Table 1 Site description and soil properties (0230 cm) Πm Π(g kg - 1 ) Π(g kg - 1 ) Π(g m - 3 ) Π(kg m - 2 ) Π(kg m - 2 ) CΠN (0172) a (0116) b 1136 (0102) b 0130 (0101) a 0102 (01001) a (1129) a (0173) b (0121) a 1131 (0102) c 0126 (0101) b 0102 (01001) a (0153) b (0149) c (0126) c 1144 (0102) a 0114 (0101) c 0101 (01001) b (0139) b : () ;(p < 0105) 512

3 3 : cm Fig11 Comparism of soil organic carbon, soil total nitrogen and soil dissolved organic carbon at the 0230 cm soil depth of different vegetation types 513

4 () 45 ( p > 0105 ; p > 0105) 0 30 cm SOC ( 1) : > >, ( p < 0105), SOC 8617 % 4617 % SOC Wu [25 ], 0 30 cm STN ( 1) : ( p < 0105 ; p < 0105),( p > 0105) CΠN ( 1 (c), p > 0105) 0 30 cm CΠN ( 1) : ( p < 0105) ( p < 0105),( p > 0105) ( SMBC) SMBCΠ SOC SMBC ( p < 0105 ; p = 0105) ( 1 (d) ) 0 30 cm SMBC : ( p < 0105 ; p < 0105) ; ( p > 0105) ( 2), SMBC 7217 % 4613 % SMBCΠSOC 1 % 3 % [26 ], ( 1 (e) ) 0 30 cm SMBCΠ SOC 1146 %, 1118 %1110 %, 1912 % 2417 %, ( p > 0105) ;( p > 0105) ( 1 (e) ) ( WSOC) WSOCΠSOC ( p < 0105 ; p < 0105) WSOC ( 1 (f) ) 0 30 cm WSOC : ( p < 0105 ; p < 0105) ( 2) ; ( p > 0105), 6718 % 6619 % WSOCΠSOC 0108 % 0195 % [26], 0 30 cm WSOCΠSOC (2184 %) (1110 %, p < 0105) (1100 %, p < 0105), ( p > 0105) ( p > 0105, 1(g) ) ΠSOC K 2 SO 4 ( K 2 SO 4 2C) SOC ( 3) ( p > 0105 ; p > 0105) ( 1 (h) ) ; 0 30 cm ( 2) 0 30 cm ΠSOC (2143 %) (1151 %, p < 0105) (1155 %, p < 0105), ( p > 0105) ; ΠSOC ( p > 0105, 1 (i) SMBC, WSOC K 2 SO 4,, ( p < 0105) ( p < 0105) ( 1 (j) ) 0 30 cm ( 2) : ( p < 0105) ( p < 0105), ( p > 0105) (0 10, cm),, cm Table cm soil dissolved organic carbon density under different vegetation types Π(g m - 2 ) Π(g m - 2 ) Π(g m - 2 ) Π(g m - 2 ) 4173 (0144) a 2146 (0118) b 3191 (0132) a (0159) a 3144 (0131) b 2143 (0121) b 3179 (0140) a 9112 (0153) b 2119 (0126) b 3163 (0141) a 2194 (0155) a 8129 (0151) b : () ; (p < 0105) 514

5 3 : cm Pearson Table 3 Pearson correlation coefficients between 0230 cm soil dissolved organic carbon and soil properties SWC WHC SBD SOC STN [ K 2 SO 4 2C] [ K 2 SO 4 2C]ΠSOC SMBC WSOC [ K 2 SO 4 2C] DOC SMBCΠSOC WSOCΠSOC [ K 2 SO 4 2C]ΠSOC DOCΠSOC : SWC :; WHC :; SBD :; 3 p < 0105 ; 33 p < ( 4) 0 10, cm 3, PCA 1 X, PCA 2 Y, (5 ) ; (3 ) (2 ),, 3 311, ;, [27 ], [21,28229 ], 1313 % ( p < 0105) 5313 % ( p < 0105), STN 218 % ( p > 0105) 4111 % ( p < 0105), 40, STN,, 1962,,,, [30 ], 4 Table 4 Loadings of principal component analysis of soil dissolved organic carbon after varimax rotation 0 10 cm cm cm PCA 1 PCA 2 PCA 1 PCA 2 PCA 1 PCA 2 SWC WHC SBD SMBC WSOC [ K 2 SO 4 2C] SOC STN Π% Π%

6 () cm Fig12 Principal component analysis of 0230 cm soil properties for meadow steppe and coniferous plantations [27 ],, STN Paul [29 ] 43, 10 ( ) ( ) ;,, 30, ;, 40,,, 312 ( SMBC) [31 ],,, [32 ], SMBC SMBCΠSOC [28 ],( 1 (d), 1 (e) ) [33235 ] ;,( < 2 mm ) [36 ], Guo [27 ] 36 %, 9, ( WSOC),, [37 ],, WSOC ( 1 (f) ), ( WSOC ) [38239 ] WSOC :, WSOCΠ SOC [26 ],WSOCΠSOC ( 1 (g) ), ( ),, 015 molπl K 2 SO 4,, ;,, [40 ] 3, ( ) ;,, [41 ] ( 3), ( 1 (h) (i) ) ΠSOC, 516

7 3 : 40 ( 1 (j) ), ;,40, [42 ] 313 ( 2), ;, 4, 0 30 cm STN,: 1), SOC, STN ; 2) ; 3), STN,,, [1 ] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils : A review. Soil Science, 2000, 165 (4) : [2 ] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46 (7) : [3 ] Huang W Z, Schoenau J J. Fluxes of water2soluble nitrogen and phosphorus in the forest floor and surface mineral soil of a boreal aspen stand. Geoderma, 1998, 81 (324) : [4 ] Zsolnay A. Dissolved humus in soil waters ΠΠ Piccolo A. Humic Substances in Terrestrial Ecosystems. Amsterdam : Elsevier, 1996 : [5 ] Williams B L, Edwards A C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils. Chemistry and Ecology, 1993, 8 (3) : [6 ] Uselman S M, Qualls R G, Lilienfein J. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil. Soil Science Society of America Journal, 2007, 71 : [7 ],,.., 1999, 18 (3) : [8 ] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 1992, 30 (2) : [9 ] Liang B C, Mackenzie A F, Schnitzer M, et al. Management2induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biology and Fertility of Soils, 1997, 26 (2) : [10 ] Michelsen A, Andersson M, Jensen M, et al. Carbon stocks, soil respiration and microbial biomass in fire2prone tropical grassland, woodland and forest ecosystems. Biology and Biochemistry, 2004, 36 (11) : Soil [11 ],,. :., 2004, 49 (13) : [12 ] Bastida F, Barber G G, Garc A C, et al. Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions. Applied Soil Ecology, 2008, 38 (1) : [13 ] Chantigny M H. Dissolved and water2extractable organic matter in soils : A review on the influence of land use and management practices. Geoderma, 2003, 113 (324) : [14 ] Hoyle F C, Murphy D V. Seasonal changes in microbial function and diversity associated with stubble retention versus burning. Australian Journal of Soil Research, 2006, 44 (4) : [15 ] Kalbitz K, Meyer A, Yang R, et al. Response of dissolved organic matter in the forest floor to long2term manipulation of litter and throughfall inputs. Biogeochemistry, 2007, 86 (3) : [16 ] Liao J D, Boutton T W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biology and Biochemistry, 2008, 40 (5) :

8 () 45 [17 ] Wang S P, Zhou G S, Gao S H, et al. Soil organic carbon and labile carbon along a precipitation gradient and their responses to some environmental changes. Pedosphere, 2005, 15 (5) : [18 ] Anderson J P E. Microbial eco2physiological indicators to assess soil quality. Agriculture, Ecosystems & Environment, 2003, 98 (123) : [19 ] Halliday J C, Tate K R, Mcmurtrie R E, et al. Mechanisms for changes in soil carbon storage with pasture to Pinus radiata land2use change. Global Change Biology, 2003, 9 (9) : [20 ],,,.., 2007, 26 (5) : [21 ],,,.., 2007, 18 (11) : [22 ],,.. :, 1996 : 128 [23 ],.., 2003, 58 (1) : [24 ],.. :, 2004, 40 (4) : [25 ] Wu H, Guo Z, Peng C. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 2003, 9 (3) : [26 ],,.., 2001, 7 (1) : [27 ] Guo L B, Cowie A L, Montagu K D, et al. Carbon and nitrogen stocks in a native pasture and an adjacent 162year2 old Pinus radiata D. Don. plantation in Australia. Agriculture, Ecosystems & Environment, 2008, 124 (324) : [28 ] Chen C R, Condron L M, Xu Z H. Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes : A review. Forest Ecology and Management, 2008, 255 (324) : [29 ] Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecology and Management, 2002, 168 (123) : [30 ] Turner J, Lambert M. Change in organic carbon in forest plantation soils in eastern Australia. Management, 2000, 133 (3) : Forest Ecology and [31 ],,,.. :, 2006 : [32 ] Ladd J N, Amato M, Veen H A V. Soil microbial biomass : Its assay and role in turnover of organic matter C and N. Soil Biology and Biochemistry, 2004, 36 (9) : [33 ] Yeates G W, Saggar S. Comparison of soil microbial properties and fauna under tussock2grassland and pine plantation. Journal of the Royal Society of New Zealand, 1998, 28 (3) : [34 ] Kourtev P S, Ehrenfeld J G, Huang W Z. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biology and Biochemistry, 2002, 34 (9) : [35 ] Yeates G W, Saggar S, Daly B K. Soil microbial C, N and P, and microfaunal populations under Pinus radiata and grazed pasture land2use systems. Pedobiologia, 1997, 41 (6) : [36 ] Chen C, Condron L, Davis M, et al. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant and Soil, 2000, 220 (122) : [37 ] Herbert B E, Bertsch P M. Characterization of dissolved and colloidal organic matter in soil solution : A review ΠΠ Kelly J M, Mcfee W W. Carbon Forms and Functions in Forest Soils. Madison : Soil Science Society of America, Inc, 1995 : [38 ] Chen C R, Condron L M, Davis M R, et al. Phosphorus dynamics in the rhizosphere of perennial ryegrass ( Lolium perenne L. ) and radiata pine ( Pinus radiata D. Don. ). Soil Biology and Biochemistry, 2002, 34 (4) : [39 ] Chen C R, Condron L M, Davis M R, et al. Effects of plant species on microbial biomass phosphorus and phosphatase activity in a range of grassland soils. Biology and Fertility of Soils, 2004, 40 (5) : [40 ] Scott2Denton L E, Rosenstiel T N, Monson R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology, 2006, 12 (2) : [41 ] Zsolnay A. Dissolved organic matter : Artefacts, definitions, and functions. Geoderma, 2003, 113 (324) : [42 ],,,. DOM., 2003, 23 (3) :