Neutronic calculations of reactor PIK using SERPENT code

Size: px
Start display at page:

Download "Neutronic calculations of reactor PIK using SERPENT code"

Transcription

1 National Research Centre "Kurchatov Institute" PETERSBURG NUCLEAR PHYSICS INSTITUTE Neutronic calculations of reactor PIK using SERPENT code M.S. Onegin 8 th International Serpent UGM 29 May 1 June

2 PETERSBURG NUCLEAR PHYSICS INSTITUTE Content Reactor PIK - introduction Serpent model of reactor PIK Criticality calculations Burnup of PIK fuel Doppler effect Temperature dependence of reactor reactivity Steady state calculations 2

3 Reactor PIK PETERSBURG NUCLEAR PHYSICS INSTITUTE 2011 Criticality reached 2013 Construction finished Licensing and neutron stations and installations construction 2018 Power operation scheduled The maximum heat output Heat transfer agent Reflector Number of horizontal experimental channels Number inclined experimental channels Number of vertical experimental channels 100 MW water heavy water

4 Vertical cut of reactor PIK PETERSBURG NUCLEAR PHYSICS INSTITUTE 1. Fuel handling machine 2. Control rod disconnect driveline 3. Hydraulic lock 4. Central experimental channel 5. Transfer device cylinder 6. Cold neutron source 7. Biological shielding 8. Control rod 9. Reactor core 10. Driving gear of channel gate 4

5 PIK core PETERSBURG NUCLEAR PHYSICS INSTITUTE 1. Hafnium central control rod 2. Water displacers 3. Fuel assemblies Zr case 4. Profiled Fuel elements 5. Fuel elements 6. Fuel assemblies with irradiation volumes 7. Volumes for samples irradiation Heat-transfer agent light water Presser 50 bar Inlet temperature 50 C Outlet temperature 90 C Inlet water velocity 10 m/s Power heat load 2 MW/l (mean) density 6.6 MW/l (max) 5

6 А - А А А 3 FA of reactor PIK PETERSBURG NUCLEAR PHYSICS INSTITUTE S cell = mm 2 S pin = mm 2 S meat = 7.23 mm Hexagonal lattice with 5.23 mm pitch 6

7 SERPENT model of reactor PIK 12 hexagonal FA 6 square FA First 2 layers of hexagonal FA are profiled (1/3 fuel load) 3858 fuel pins 10 Horizontal neutron channels 6 Vertical neutron channels Weight of channels ~ % The calculation time increased ~4 times! 7

8 Lattice calculations Shape #1 Shape #2 Parameter Shape #1 NEWT SERPENT ENDF/B-7.0 SERPENT ENDF/B-6.8 SERPENT-2 ENDF/B-6.8 k (8) (8) (6) ε p f η Parameter Shape #2 NEWT SERPENT-2 SERPENT-2 ENDF/B-6.8 ENDF/B-7.0 k (6) (6) ε p f η k pf NEWT deterministic 2d code from SCALE 6.2 package 8

9 , cm -2 s -1 Criticality Neutron data library Keff Shape #1 Shape #2 ENDF-B/VI (8) (7) -0,06(1) ENDF-B/VII (8) (8) -0,04(1) +0,11(1) +0,12(1) 6x10 7 5x10 7 4x10 7 3x10 7 2x10 7 SERPENT Experiment There was no difference in the calculation time of the variant when we used more complicated fuel pin crosssection form. 1x Z, см 9

10 Weight of control rods CR CR weight, CR weight, CR exp /CR calc experiment β eff calculation, β eff АЗ (2) 1.07 АЗ2 0.55(5) 0,56(1) 0.98 КС1 0,52 0,48(2) 1.08 КС2 0,53(5) 0,49(1) 1.08 КС3 0,52(5) 0,55(1) 0.95 КС4 0,47(5) 0,45(1) 1.04 КС5 0,49(5) 0,49(1) 1.0 КС6 0,58(5) 0,47(5) 1.23 Mean 0.54(5) 0.51(5)

11 Heat peaking factor а б в г д е ж з и к л м н о 2,00 2,21 2,42 2,58 2,65 2,60 2,70 2,51 2,32 2,32 2,43 2,39 1,89 1,38 1,52 1,561,57 1,68 1,64 1,69 1,69 1,64 1,68 1,57 1,56 1,52 1,38 2,14 2,25 2,39 2,48 2,46 2,53 2,53 2,72 2,49 2,47 2,53 2,38 2,48 2,23 2,12 1,71 1,70 1,72 1,85 1,78 1,88 1,82 1,92 1,92 1,82 1,88 1,78 1,85 1,72 1,70 1,71 1,57 1,45 1,55 1,54 1,53 1,54 1,58 1,57 1,55 1,57 1,58 1,54 1,53 1,54 1,55 1,45 1,57 1,44 1,36 1,38 1,33 1,39 1,41 1,41 1,35 1,45 1,45 1,35 1,41 1,39 1,33 1,38 1,38 1,36 1,44 1,43 1,37 1,40 1,36 1,42 1,32 1,32 1,35 1,39 1,391,39 1,35 1,32 1,32 1,42 1,36 1,40 1,37 1,43 1,44 1,33 1,33 1,29 1,33 1,30 1,29 1,28 1,30 1,30 1,30 1,30 1,28 1,29 1,30 1,33 1,29 1,33 1,33 1,44 1,59 1,37 1,34 1,31 1,26 1,27 1,29 1,26 1,30 1,25 1,28 1,25 1,30 1,26 1,29 1,27 1,26 1,311,34 1,37 1,59 1,77 1,46 1,30 1,25 1,27 1,21 1,25 1,26 1,25 1,22 1,30 1,30 1,22 1,25 1,26 1,25 1,21 1,27 1,25 1,30 1,46 1,77 1,76 1,531,40 1,36 1,32 1,27 1,25 1,25 1,26 1,30 1,28 1,30 1,26 1,25 1,25 1,27 1,32 1,36 1,40 1,53 1,76 1,62 1,44 1,25 1,37 1,25 1,21 1,22 1,22 1,21 1,21 1,22 1,22 1,21 1,25 1,37 1,25 1,44 1,62 1,62 1,44 1,32 1,27 1,24 1,27 1,27 1,19 1,27 1,27 1,24 1,27 1,32 1,44 1,62 1,47 1,35 1,25 1,26 1,26 1,31 1,27 1,26 1,26 1,25 1,33 1,47 K V K V K Z K Z (expe (calc) (experi (calc) riment) ment) 1 layer 2,41(1) 2,53(7) 1,68(1) 1,63(5) 2 layer 1,50(1) 1,65(3) 1,60(1) 3 layer 2,49(1) 2,51(3) 1,52(1) 1,57(4) 4 layer 1,78(1) 1,85(2) 1,44(1) 1,44(3) 5 layer 1,50(1) 1,55(1) 1,40(1) 6 layer 1,37(1) 1,38(2) 1,37(1) 7 layer 1,31(1) 1,36(2) 1,36(1) 1,33(3) layer 1,27(1) 1,30(1) 1,34(1) 1,33(3) 9 layer 1,25(1) 1,28(1) 1,33(1) 10 layer 1,24(1) 1,25(2) 1,32(1) 1,31(3) 11 layer 1,24(1) 1,29(2) 1,33(1) 12 layer 1,23(1) 1,25(2) 1,32(1) 13 layer 1,24(1) 1,25(2) 1,32(1) 14 layer 1,33(2) 1,27(2) 1,32(1) 11

12 Fuel burnup, % MCNP + MONTEBURNS SERPENT-2 MCU-REA t, days 8 burnable fuel material zones with division along height (10 layers) 10 MW reactor power As a result we get 80 burn-up material zones. To use burn-up FA again we need to include the axial division of the core explicitly in the reactor model and describe all 80 burn-up materials. So the profit from automatic division of fuel disappeared after fist operation cycle. But after that the user have a direct control over the fuel burning. 12

13 Doppler and temperature effects 0,0-0,5, % -1,0-1,5-2,0 water in central trap is hot water in central trap is cold -2, T water, o C Red curve NEWT code Green curve SERPENT-2 cell Circles SERPENT-2 full core calculations T = K: T = K: Experiment T= K: / T 1.50 cent / / T 1.14 cent / K K 13

14 Steady state calculations Material zones: Hexagonal inner hip 1 st profiled layer hip2 2 profiled layer hi3l 3 layer hi 4 14 layers Hexagonal outer ho 1-13 layers holl 14 layer Square outer box layers bll - 14 layer Axial 10 layers Total - 80 PC 16 cores; 32 Gb memory SUSE Linux; OpenMP 20 threads Cold state var. Memory 18.3 Gb 5x107 histories 1.42 hour 8-th International UGM; Espoo, May 29 14

15 Heat load calculations We couldn t use standard code interface for the fuel pins heat release data because of non standard form of our fuel pins. So we used detectors to calculate heat release Q i in every fuel division bin: det 2 du 2 dm fuelprof dr -8 void dz

16 T, K Water heating t i t Q i i1, Gcpi hi hip hip2 hi3l ho holl box bll cold hot ~ 0.6% (0.79 ) mat waterhi tft moder lwtr 1001 therm lwtr 0 lwj3.00t lwj3.01t lwj3.03t lwj3.05t eff layer 2 waterhi

17 2 fuelz Fuel heating t t clo t w q S Ko conv t t K q cli clo cl S fuel Nu d кон g 0, 11 0, 8 0, 4 в 3, 6 0, 023Re Pr 1 0, 357 w Fr Nu t K q cli fuel V Pr Pr cl cl 2 dt 16 fuel 17

18 Cold state var. Optimization level 3 Memory 18.3 Gb 5x10 7 histories 1.42 hour Hot state var. Fuel mat: tft Optimization level 1 Memory 0.6 Gb 5x10 7 histories 1.44 hour Summary Advantages: SERPENT -2 correctly predict all important neutronic parameters of the reactor It can be used for steady state calculations of the reactor Code correctly reproduce parameters significant for reactor safety Good FOM Need to improve: - neutron tracing in heavy reflector with neutron channels - steady state interface for thermohydraulic calculations 18

19 Thank you for the attention! 19