Hydrothermal carbonization of biomass for production of densified solid fuel

Size: px
Start display at page:

Download "Hydrothermal carbonization of biomass for production of densified solid fuel"

Transcription

1 Hydrothermal carbonization of biomass for production of densified solid fuel sli Toptas Tag, Gozde Duman, Jale Yanik Ege University, Department of Chemistry, Izmir/ Turkey

2 What is biochar? Stable carbon rich product obtained from the thermochemical conversion of plant and animal based biomass in an oxygen limited environment Lower amount of volatile organic compounds (VOCs), No water Stored for many years without decay. The higher energy density 2

3 What is biochar made from? nimal wastes gro wastes Solid fuel Low cost adsorbent Carbon electrode Industrial wastes Forest wastes Soil amendment Carbon based catalyst lgal biomass 3

4 How is biochar made? Fuel Characteristics High Yield High energy density High combustion reactivity Low volatile matter Low ash content Pyrolysis High yield High ash content Pretreatment of wet biomass Hydrothermal Carbonization (HTC) Under development Pressure cooker principle Source: astarmathsandphysics.com High yield pplicable to wet biomass Relatively lower temperatures Smaller reactor volumes 4

5 Objective Investigation of biochar obtained from hydrothermal carbonization as energy feedstock. Comparison with biochars derived pyrolysis process 5

6 Feedstock Sunflower stalk (SS) Poultry litter (PL) Seaweed (B) SS PL B Ultimate analysis (wt.%, dry basis) C H N S O Proximate analysis (wt.%, dry basis) Volatile matter sh Fixed carbon High heating value (HHV ), MJ kg Inorganic content of biomass, % wt. SS PL B Na 2 O K 2 O CaO MgO SiO l 2 O

7 Methodology Hydrothermal carbonization (HTC) CO 2, H 2 O Seaweed Sunflower stalk HTC Hydrochar Poultry litter Parameters Temperature Duration Biomass: water ratio Liquid products (Water soluble organics) 7

8 Methodology Experimental conditions Objectives Maximum energy densified hydrochar with high yield Investigate the effect of parameters on HTC Results Optimization of experimental conditions Reduce # of experiments Variables Responses Experimental design Temperature Duration Biomass: water ratio Energy density Mass Yield Central composite design 20 Experiments Evaluation/ nalysis of Response Optimimum conditions Design Expert Software 8.0 Response Surface Methodology nova test 8

9 Methodology Low Temperature Pyrolysis CO 2, H 2 O Seaweed Sunflower stalk Pyrolysis Poultry litter Biochar Temperature, C o C Conditions Heating Rate 10 o C/min Duration= 60 min Duration, min. Vent Traps Reactor Furnace N 2 Liquid products (Water soluble organics) Tag et al. Journal of nalytical and pplied Pyrolysis 120 (2016)

10 Biochar nalyses HTC Reactor Content Filtration queous Phase Biochar (hydrochar) Dried at 105 o C for 24h Pyrolysis Reactor Proximate nalysis Van krevelen Diagram HHV calculation* Elemental nalysis FTIR Functional groups TG in air Combustion behavior Energy density= HHV biochar /HHV biomass 10 S.. Channiwala, P.P. Parikh, Fuel 81 (2002)

11 Results & Discussion Yield and Energy Density Factor Temperature ( o C)= X Duration (min)= X Biomass:water ratio =X Yield B C SS PL B C B C C B B B C C B C B SS PL B C C B B C B B C B C Energy Density

12 Results & Discussion Optimization conditions Maximize energy density Mass yield > 40 % SS PL B Temperature, C Duration, min Biomass:water ratio Energy density Mass yield, % wt

13 Results & Discussion nalyses of Biochars + 25 C Optimum Temperature 25 C Elemental analysis,wt % Proximate analysis,wt % C H N S O sh VM FC HHV, MJ.kg 1 Yield, %wt. Energy Density H SS H SS H SS T SS H PL H PL H PL T PL H B H B H B T B

14 Results & Discussion FTIR spectrum SS PL aliphatic C H stretching vibration alcohol C O stretching vibration aliphatic C=O stretching vibration aromatic ring vibration B 14

15 Results & Discussion Van Krevelen Diagram PL: Polultry litter SS: Sunflower stalk B: Seaweed H: HTC biochar T: Pyrolysis biochar 2 1,8 1,6 PL SS tomic H/C 1,4 1,2 1 0,8 H-PL-250 H-SS-250 T-SS-300 T-PL-300 H-B-225 T-B-300 B 0,6 0,4 Bituminous coal Lignite 0,2 0 nthracite 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 tomic O/C 15

16 Results & Discussion Combustion behavior Weight loss, wt. % 100 SS 80 H-SS-250 T-SS Weight loss, wt. % PL H-PL-250 T-PL-300 Weight loss, wt.% B H-B-225 T-B-300 Derivative weight, wt.%/min Temperature, o C 25 SS 20 H-SS-250 T-SS Temperature, o C Derivative weight, wt. %/min Temperature, o C PL 12 H-PL T-PL Temperature, o C Derivative weight, wt.%/min Temperature, o C 20 B H-B T-B Temperature, o C SS H SS 250 T SS 300 PL H PL 250 T PL 300 B H B 225 T B 300 Peak temperature, C 281; ; ; ; ; Combustion 7.27; ; ; ; ; Reactivity, %/min. C Burnout, %/min Ignition, C

17 Conclusion Hydrothermal carbonization is a promising method to produce biochar with high quality. The temperature is the main parameter effecting the yield and energy density pplication on wet biomass Lower ash content biochar Higher energy density than biochar obtained from pyrolysis 17

18 Thank you for listening! We would like to acknowledge the contribution of the COST ction TD1107 (Biochar as option for sustainable resource management) 18

19 The experiments designed by CCD Run Parameter 1 Temperature( 0 C) Parameter 2 Duration (min) Parameter 3 Biomass: water ratio

20 Thermogravimetric analysis dewatering volatilization and burning burnout, Conditions Heating rate: 20 C /min Combustion atmosphere: ir ir flow: 100 ml / min Sample amount: 5 10 mg char burning I, ignition temperature B, burnout temperature, the rate of weight loss become <1 wt.%/ min M, highest dm/dt value Reactivity = 100 x maximum combustion rate / peak temperature Wang C, et al. Biomass and Bioenergy 2009, 33(1),

21 Results & Discussion Quadratic models x 1 : Temperature x 2 : Duration x 3 : Biomass: water Y i : mass yield, energy yield y i B 0 B 1 B 2 B 3 B 12 B 13 B 23 B 11 B 22 B 33 B E Mass Yield PL SS Energy Density B E E 3 PL E E E E 4 SS E E E 3 21