Sven Lataire. Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain

Size: px
Start display at page:

Download "Sven Lataire. Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain"

Transcription

1 LNG Training The LNG Trade Course Sven Lataire Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain 1

2 AT A GLANCE Nº1 WORLD LEADER 90,000 EMPLOYEES 2000 OFFICES AND LABORATORIES 11 GLOBAL INDUSTRIES GLOBAL SERVICE LOCAL EXPERTISE 2

3 Global LNG Coverage Gas Competence Center LNG LPG/Chemical Gasses Gas Competence Center Americas Gas Competence Center EAME Gas Competence Center Asiapacific France Spain Portugal Libya Algeria Das Island Oman UK Belgium Greece Eq.Guinea Egypt Dubai Qatar Italy Norway Russia Nigeria Angola Yemen Turkey Netherlands UAE 3

4 Global LNG Coverage Gas Competence Center LNG LPG/Chemical Gasses Gas Competence Center Americas Gas Competence Center EAME Gas Competence Center Asiapacific USA Canada Mexico Trinidad Argentina Baltimore Lake Charles Freeport D. Republic Brasil Boston Cameron Sabine Pass Chile Savannah Golden Pass 4

5 Global LNG Coverage Gas Competence Center LNG LPG/Chemical Gasses Gas Competence Center Americas Gas Competence Center EAME Gas Competence Center Asiapacific Australia Indonesia Malaysia Korea India PNG Thailand China Japan Taiwan 5

6 Knowledge and Talent required to minimalise the economical exposures along the Custody transfer chain Agenda Application area Large Scale the pitfalls Small scale the pitfalls LNG bunkering the pitfalls Knowledge and talent required 6

7 LNG Application area 3 main area s LNG large scale LNG Small Scale LNG bunkering SPA Legal aspect Financial/commercial aspect Technical Aspect General Avoiding disputes Loading vs unloading FOB vs DES International Standards Terminal regulations vs Contractual regulations 7

8 LNG Large Scale 8

9 LNG Large Scale 9

10 The Pitfalls Inaccuracy of the custody transfer system: financial exposure

11 Inaccuracy Gauging Devices Volume Level Trim List Temperature Liquid Temperature Vapour Temperature Pressure 11

12 Sensitivity analysis: Vapour Pressure Sensitivity Analysis P vap BTU] Net Energy [MM Vapour Pressure [mbar] * For a m³ vessel 12

13 Sensitivity analysis: Vapour Pressure Sensitivity Analysis P vap Energy [MMB BTU] Vapour Pressure [mbar] * For a m³ vessel 13

14 Sensitivity analysis: Liquid Temperature Sensitivity Analysis T liq Net Energy [MM MBTU] ,2-160,1-160,0-159,9-159,8-159,7-159,6 Temperature LNG [ C] * For a m³ vessel 14

15 Sensitivity analysis: Liquid Temperature Sensitivity Analysis T liq Energy [MMB BTU] ,2-160,1-160,0-159,9-159,8-159,7-159,6 Temperature LNG [ C] * For a m³ vessel 15

16 LNG Large Scale 16

17 Gas Chromatography: Round Robin Case Study Round Robin: 1 Sample: 40 labs Quality of ANALYSIS (excluding sampling) 40 Labs 40 different results 17

18 Gas analysis: commercial exposure Calculate energy for typical LNG cargo: Volume: m³ Tliq: C Tvap: -140 C Pvap= 1150 mbar Composition: results RR Calculate GHV (ISO 6976, 15 C) Calculate Density (ISO 6578) Calculate Energy 18

19 Gas Chromatography: Round Robin Energy [MMB BTU] Lab N 19

20 Gas analysis: commercial exposure Minimum Maximum Difference Methane (mol%) Nitrogen (mol%) C (MJ/kg) C (kg/m³) C (MMBTU)

21 Role of Gauging Devices in Custody Transfer 21

22 The Pitfalls The economical consequences in using different LNG standards

23 Typical values m³ tons of LNG MMBTU 23

24 Transferred Energy E transferred = D LNG * V * GHV LNG LNG E gas displaced E transferred = energy transferred from loading facilities to LNG carrier of from LNG carrier to unloading facilities D LNG = Density of LNG loaded or unloaded (kg/m³) V LNG = Volume of LNG loaded or unloaded (m³) GHV = Gross Heating Value of LNG loaded or unloaded (MJ/kg or MMBTU/kg): quantity of heat produced by complete combustion in air of a unit of volume or mass of the gas, at a constant absolute pressure of 1,01325 bar and at a temperature T E gas displaced = quantity of energy in gaseous form displaced during loading or unloading 24

25 Using different LNG standards International standards GPA 2145 ISO 6578 ISO 6976 NBS IR NBS TN 1030 Etc. G.I.I.G.N.L. LNG Custody Transfer Handbook 25

26 Using different LNG standards: Density Σ ( Xi * Mi ) Density = Σ ( Xi * Vi ) [(k1 + (k2 k1)*xn) * Xm] Xi, Xn, Xm determined by analysis in gas chromatograph Xi: Molar fraction of the i th component Xn: Molar fraction of Nitrogen Xm: Molar fraction of Methane Mi by standard Molecular mass of the i th component Vi by standard and dependent on T liq Molecular volume of the i th component K1, k2 by standard and dependent on T liq and molar mass Correction factors for Nitrogen and Methane 26

27 Using different LNG standards: Density Density (kg/m³) 456, , , , , , , , ,734 Difference between min and max = kg/m³ +/- 900 MMBTU 27

28 Using different LNG standards: GHV H m = ( Xi * Hmi* Mi) ( Xi * Mi) Xi determined by analysis in gas chromatograph Hmi by standard Molecular Gross Heating Value Mi by standard Molecular mass of the i th component 28

29 Using different LNG standards: Hmi (15 C) GHV (MJ/kg) 54, , ,3914 Difference between min and max = 0,015 MJ/kg +/- 980 MMBTU 29

30 Using different LNG standards: Energy Qnet (MMBTU)

31 Using different LNG standards: Energy Qnet (MMBTU)

32 Using different LNG standards: Energy Combination of D and GHV to calculate E transferred 27 different results between MMBTU and MMBTU 1850 MMBTU 32

33 Using same standard under different Reference conditions Calculation of GHV according ISO C 15 C 60 F 20 C 25 C Difference in energy value is MMBTU 33

34 LNG SPA calculation review: Case Study 1

35 LNG SPA review: Case Study: Calculation Section Master agreement: Client wanted to know what method was more favourable: Terminal regulations or Calculation method specified in SPA SGS compared energy calculations A typical composition from LP was requested Calculations are done for typical cargo (+/ m³) Additional: SGS compares the calculations with other calculation methods using different standards, reference conditions Graphs show what calculation method is more favorable for clients 35

36 LNG SPA review: Case Study: Calculation Section Using a typical composition of the LP, the following calculations were performed using the different international accepted standards and reference temperatures E net (MMBTU)

37 LNG SPA review: Case Study: Calculation Section E net (MMBTU)

38 LNG SPA review: Case Study: Calculation Section E net (MMBTU)

39 LNG SPA review: Case Study: Calculation Section E net (MMBTU)

40 LNG SPA review: Case Study: Calculation Section Energy (MMBTU) minimum SPA calculations Terminal Regulations maximum Calculation Method 40

41 LNG SPA review: Case Study: Calculation Section Energy (MMBTU) minimum SPA calculations Terminal Regulations maximum Calculation Method 41

42 LNG SPA review: Case Study: Calculation Section Calculation was done for both SPA calculation section and terminal regulations and the following results were found: Terminal Regulations: MMBTU SPA agreement: MMBTU Difference = 3217 MMBTU By accepting Terminal regulations client gained on average around 3200 MMBTU per shipment when selling the cargo 42

43 LNG SPA review: Case Study: Calculation Section Analysis of difference between calculation sections Different reference temperatures this case SPA: 25 C vs terminal regulations: 15 C vapour return included: yes/no Difference might be around MMBTU/cargo Other standards used Roundings 43

44 LNG SPA calculation review: Case Study 2

45 LNG SPA review: Case Study: Calculation Section Energy (M MMBTU) T&M calculations Terminal Regulations 45

46 LNG SPA review: Case Study: Calculation Section Energy (M MMBTU) T&M calculations Terminal Regulations 46

47 The Pitfalls - The Specs

48 Specifications : GHV influence reference conditions (1) I D E A L R E A L LP 1 LP 2 LP 3 LP 4 LP 5 LP 6 LP 7 LP 8 Min Spec 36,90 36,90 36,90 36,90 36,90 36,90 36,90 36,90 Max Spec 43,71 43,71 43,71 43,71 43,71 43,71 43,71 43,71 0/0 43,26 40,76 42,50 44,76 45,86 40,89 41,78 43,69 15/15 40,95 38,58 40,23 42,36 43,41 38,70 39,55 41,35 15/0 43,20 40,70 42,43 44,69 45,79 40,83 41,72 43,62 20/20 40,23 37,90 39,52 41,62 42,64 38,02 38,85 40,63 25/0 43,15 40,66 42,39 44,64 45,74 40,78 41,68 43,58 25/20 40,21 37,88 39,50 41,60 42,62 38,00 38,83 40,60 0/0 43,39 40,87 42,62 44,91 46,02 41,00 41,90 43,83 15/15 41,05 38,66 40,32 42,48 43,53 38,78 39,64 41,46 15/0 43,33 40,80 42,56 44,84 45,95 40,93 41,83 43,76 20/20 40,32 37,98 39,61 41,73 42,76 38,10 38,94 40,73 25/0 43,28 40,76 42,51 44,79 45,91 40,89 41,79 43,71 25/20 40,30 37,96 39,59 41,71 42,74 38,08 38,92 40,70 48

49 Specifications : GHV influence reference conditions (2) I D E A L R E A L LP 9 LP 10 LP 11 LP 12 LP 13 LP 14 LP 15 LP 16 Min Spec 36,90 36,90 36,90 36,90 36,90 36,90 36,90 36,90 Max Spec 43,71 43,71 43,71 43,71 43,71 43,71 43,71 43,71 0/0 42,85 41,67 41,55 43,68 43,89 42,33 44,05 42,27 15/15 40,56 39,44 39,32 41,34 41,55 40,06 41,69 40,01 15/0 42,79 41,61 41,48 43,61 43,83 42,26 43,98 42,21 20/20 39,85 38,75 38,63 40,62 40,82 39,36 40,96 39,31 25/0 42,74 41,57 41,44 43,57 43,78 42,22 43,94 42,16 25/20 39,83 38,73 38,61 40,59 40,79 39,34 40,94 39,29 0/0 42,98 41,79 41,66 43,81 44,03 42,45 44,19 42,39 15/15 40,66 39,53 39,41 41,45 41,65 40,16 41,80 40,10 15/0 42,91 41,72 41,59 43,75 43,97 42,38 44,12 42,33 20/20 39,94 38,83 38,71 40,71 40,92 39,45 41,06 39,40 25/0 42,87 41,68 41,55 43,70 43,92 42,34 44,08 42,28 25/20 39,92 38,81 38,69 40,69 40,90 39,43 41,04 39,37 49

50 LNG Small Scale 50

51 The Pitfalls along the custody transfer chain for small scale LNG

52 LNG Small Scale SPA Custody Transfer System Level Main and back up system Some of them are only equipped with one system Accuracies? Min measurable range? Temp and Pressure Accuracies might be different Number of temperature probes? 3 versus 6 Scale? Ref pressure semi pressurized vessels Hard to meet as the scale is to big Local governmental regulations rules should be requested! No gassing up cooling down tables 52

53 LNG Small Scale Ship Acceptance Previous Cargo was something different then LNG Butane LNG Can we load on top of Butane?» Melting point at atm Pressure: -140 C is this an issue?» What are the impurites? Ethylene LNG Chemical reaction? Ref LPG change over Chart Arrival Specs: realistic? Ref above % pure Nitrogen Ref 99.5% - remaining 5000 PPM O2 max pipeline spec is 5ppm will be uniformised to 10 ppm As to obtain those Arrival specs whose responsibility? Costs? Vapor return Possible contamination in tank or network 53

54 LNG Small Scale SPA Arrival Spec Compliance Analysis of arrival condition Capabilities? Temp & Press requirements on arrival Load port! Discharge port! Sampling What s the min flow rate as to take representative samples? Back up? Sulphur testing Diversification of downstream applications 54

55 LNG Small Scale SPA Operational Ship to Ship Where will the official measurements be taken How much deviation is allowed between the two vessels What in case vapor return is a different grade? Quality determination? Back up? Ageing? Shore to Ship Increase of pressure ( and hence temp ) due to The lines are smaller No high duty compressor to return the vapor The vessels they do have compressors and maybe little blowers but not designed to return vapour as we re used to the big scale LNG vessels? 55

56 LNG Small Scale SPA Calculation Density Calculation Application limit KMK 115K or C» What in case it s warmer ( ref semi pressurized ) Observed temperature before discharge -156,5 C -156,6 C -156,7 C -155,7 C -155,9 C -156,3 C -155,1 C -156,2 C -156,4 C -156,5 C 56

57 LNG Bunkering 57

58 The Pitfalls along the custody transfer chain for LNG bunkering

59 LNG bunkering Required Parameter are totally different MN Impurities Ammonia Particles content Fluorines and Chlorines Calculations Technology Sampling On the shore On the Ship Ageing? Metering Approved technologies Norms/standards and provers 59

60 Knowledge and Talent required 60

61 Knowledge and talent required Leadership Communication Interpersonal Skills Business Planning Personal Time Management Organization, Planning and Scheduling Innovation and Initiative Commitment Problem Solving Cultural, Political and Business Sensitivities Passion Safety (HSE) Ethics Trust and Integrity Negotiation Analytical Job Knowledge. Quality and Quantity 61

62 Knowledge and talent required Competencies are skills you can do and acquire through Study Training Work experience Life experience Having the right mentors! 62

63 WISH YOU A SAFE OPERATION Thank you Sven 63