How drugs in wastewater enforce advanced drinking water treatment

Size: px
Start display at page:

Download "How drugs in wastewater enforce advanced drinking water treatment"

Transcription

1 Engineering Conferences International ECI Digital Archives Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies Proceedings Spring How drugs in wastewater enforce advanced drinking water treatment Bram Martijn PWN Water Supply Company Follow this and additional works at: Part of the Environmental Engineering Commons Recommended Citation Bram Martijn, "How drugs in wastewater enforce advanced drinking water treatment" in "Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies", Dr. Domenico Santoro, Trojan Technologies and Western University Eds, ECI Symposium Series, (2014). This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Wastewater and Biosolids Treatment and Reuse: Bridging Modeling and Experimental Studies by an authorized administrator of ECI Digital Archives. For more information, please contact

2 how drugs in waste water enforce advanced drinking water treatment Bram Martijn PWN Water Supply Company North Holland The Netherlands

3 drugs of abuse in (sources of) drinking water! surface waters drinking water sewage water Van der Aa, Dijkman, Bijlsma, Emke, van de Ven, van Nuijs, de Voogt (2010)

4 sorry, this presentation is about micropollutants

5 drugs of abuse, waste water and advanced drinking water treatment drugs, pharmaceuticals or pesticides in drinking water (sources) always give rise to media attention contribution via domestic waste water no longer to be ignored drinking water companies to address this in technology and communications

6 courtesy Dr. Snyder University of Arizona Source:

7 take home messages trace contaminants in drinking water sources via domestic waste water should not be a drinking water treatment problem only, anymore tailor available advanced drinking water treament technologies for complex waste water matrix modeling is essential in determining where to treat in the water cycle

8

9

10

11 TCA diuron atrazine bromacil bentazon 2,4-D

12

13

14

15

16

17 characteristics pretreated IJssel Lake water matrix constituents DOC 2.5 mg C/L nitrate 1-14 mg NO 3 /L trace chemical contaminants 0-10 µg/l pesticides endocrine disruptors algae toxins solvents, complexing agents pharmaceuticals, personal care products

18 pesticide atrazine in IJssel Lake water

19 solvent diglyme in IJssel Lake water

20 röntgen contrast media in IJssel Lake water

21 how to deal with micropollutants in the source awareness that waste water is our abundant fresh water source end-of-pipe; influence upstream users and dischargers in catchment quality of raw water source ideally only requires simple treatment for drinking water production in the mean time act provisionally salt discharge in Rhine by French mining activities enforced DESALINATION of fresh water advanced oxidation in combination wath GAC for organic micropollutant control

22 approach for organic contaminant control non selective multibarrier approach against organic micropollutants oxidative treatment: MP UV/H 2 O 2 restriction byproduct formation by removal matrix constituents in pretreatment restriction byproduct content by post treatment

23 UV/H 2 O 2 treatment for organic contaminant control direct UV photolysis, degradation determined by UV absorbance and quantum yield OH-radical oxidation, degradation determined by presence of unsaturated sites and H atoms

24 courtesy Trojan Technologies

25 courtesy Trojan Technologies

26 100 diglyme degradation by UV photolysis and UV/H 2 O 2 oxidation bench scale experiments degradation [%] /- 600/6 600/ /6 1200/15 UV / H 2 O 2 dose [mj/cm 2 / g/m 3 ]

27 UV absorption spectra 2,5 UV absorbance [cm -1 ] 2,0 CSF IJssellake NOM Nitrate 1,5 1,0 0,5 0, wave length [nm]

28 percentage photon flow absorbed in raw, CSF and IX-UF matrix by 6 mg/l H 2 O nm 240 nm raw 2.6% 4.5% CSF 5.3% 8.2% increase absorbance H 2 O 2 with extended pretreatment increase absorbance H 2 O 2 at lower wave length

29 radical exposure as a function of DOC and nitrate concentration in milliq water 2,0E-13 R OH, UV [M s m 2 J -1 ] milliq; 5.4 mg/l H2O2 1,0E-13 0,0E DOC / nitrate [mg/l]

30 radical exposure as a function of DOC and nitrate concentration in milliq water 2,0E-13 milliq; 5.4 mg/l H2O2 R OH, UV [M s m 2 J -1 ] nitrate in milliq; 6.0 mg/l H2O2 1,0E-13 0,0E DOC / nitrate [mg/l]

31 radical exposure as a function of DOC and nitrate concentration in milliq water R OH, UV [M s m 2 J -1 ] 2,0E-13 milliq; 5.4 mg/l H2O2 DOC in milliq; 6.8 mg/l H2O2 nitrate in milliq; 6.0 mg/l H2O2 1,0E-13 0,0E DOC / nitrate [mg/l]

32 impact matrix on radical exposure superior radical exposure in milliq water decrease radical exposure by matrix constituents NOM and nitrate example: robustness test with 2012 priority compounds

33 robustness test investigation in a 5 year cycle with priority compound selection selection 2012 herbicides pharmaceuticals industrial / other compounds perfluorated compounds pilot scale with multiple barriers UV/H 2 O kwh/m 3 ; 6 mg H 2 O 2 /L GAC Norit ROW 0.8, EBCT 20 min

34 herbicide degradation by MP UV/H 2 O 2 treatment removal [%] summer winter D atrazin chloortoluron chloridazon diuron isoproturon nicosulfuron S-Metolachlor

35 herbicide degradation by MP UV/H 2 O 2 treatment removal [%] summer winter D atrazin chloortoluron chloridazon diuron isoproturon nicosulfuron S-Metolachlor

36 herbicide control by MP UV/H 2 O 2 GAC treatment 100 removal [%] D atrazin chloortoluron chloridazon MP UV/H2O2 diuron isoproturon nicosulfuron S-Metolachlor MP UV/H2O2 - GAC

37 herbicide control by MP UV/H 2 O 2 GAC treatment 100 removal [%] D atrazin chloortoluron chloridazon MP UV/H2O2 diuron isoproturon nicosulfuron S-Metolachlor MP UV/H2O2 - GAC

38 pharmaceutical control by MP UV/H 2 O 2 GAC treatment 100 removal [%] carbamazepine diclofenac MP UV/H2O2 metoprolol pentoxifylline sotalol metformine guanylurea acesulfaam-k MP UV/H2O2 - GAC

39 pharmaceutical control by MP UV/H 2 O 2 GAC treatment 100 removal [%] carbamazepine diclofenac MP UV/H2O2 metoprolol pentoxifylline sotalol metformine guanylurea acesulfaam-k MP UV/H2O2 - GAC

40 perfluorated compound control by MP UV/H 2 O 2 GAC treatment 100 removal [%] PFBS PFHS PFOS PFBA PFHA PFOA PFNA MP UV/H2O2 MP UV/H2O2 - GAC

41 perfluorated compound control by MP UV/H 2 O 2 GAC treatment 100 removal [%] PFBS PFHS PFOS PFBA PFHA PFOA PFNA MP UV/H2O2 MP UV/H2O2 - GAC

42 technology in summary combined advanced oxidation, adsorption and biological treatment (MP UV/H 2 O 2 BAC) at a certain cost 0.54 kwh/m 3 6 mg H 2 O 2 /L 2 year reactivation frequency GAC can new classes of pollutants be treated equally succesful? are other technologies at other locations in the water cycle more efficient?

43 effect multiple barrier treatment on organic micropollutants non selective degradation trace chemical contaminants multibarrier approach with post treatment by (biological) GAC filtration very robust but does this match the precautionary principle of the EU?

44 take home messages trace contaminants in drinking water sources via domestic waste water should not be a drinking water treatment problem only, anymore tailor available advanced drinking water treament technologies for complex waste water matrix modeling is essential in determining where to treat in the water cycle

45 acknowledgements KWR Water Cycle Research Institute HWL laboratory University of New Hampshire USA Trojan Technologies Canada Collegues at the Amsterdam Water Supply, The Hague Water Supply and PWN Water Supply Company North Holland