EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT

Size: px
Start display at page:

Download "EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT"

Transcription

1 Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU EU Power Plant Conceptual study Near Term models (A,B,AB) Presented by (EFDA Garching)

2 Contents PPCS Model A Model B Model AB Plant layout Maintenance Conclusions

3 Power Plant Conceptual Study (stage 3) Demonstration of: Credibility of fusion power plant design Safety and environmental advantages of fusion power Economic viability of fusion power Set of requirements issued by industry and utilities Safety Operational aspects Economic aspects Four models (+1) studied as examples of a spectrum of possibilities, ranging from near term to advanced Economic safety and environmental analyses of these models were made

4 Main specifications of models A, B and AB A small extrapolation from present-day knowledge is assumed for both physics and technology In order to maintain the steady state operation, current drive will be used Performances of the divertor: relatively high peak loads (up to 15 MW/m 2 )

5 PPCS : course of the studies Systems code varied the parameters of the possible designs, subject to assigned plasma physics and technology rules and limits, to produce economic optimum. Physics Neutron Source Input for PROCESS PROCESS output Conception Divertor DV Thermomechanics Blanket Radial Built Neutronics Power Repartition Blanket Thermomechanics Power Conversion System Balance of Plant

6 Fusion reactor

7 Key parameters 1500 Mw e Fusion power is determined by efficiency, energy multiplication and current drive power Given the fusion power, plasma size mainly driven by divertor considerations 8 A Z(m) 6 4 ITER D C B R(m)

8 Plants main features Model A Model B Model AB Net Electric Power (GW) Fusion Power (GW) Blanket Gain Plant Efficiency Bootstrap Fraction P add (MW) DV Peak load (MW.m -2 ) Average neutron wall load Major Radius (m) Structural material Eurofer Eurofer Eurofer Blanket Coolant Water Helium Helium Breeder LiPb Li4SiO4 LiPb TBR Structural material CuCrZr W alloy W alloy DV Armour material W alloy W alloy W alloy Coolant Water Helium Helium Conversion Cycle Rankine Rankine Rankine

9 WCLL Blanket Concept (model A) Eurofer as structural material, water as coolant, LiPb as breeder and neutron multiplier outboard inboard Outboard module Developed view Of a 20 sector

10 Model A: Segmentation

11 Model A: Water-cooled Divertor High temperature Dv Low temperature Dv

12 Model A: Power repartition and primary system Blanket Breeder Zone (MW) 3892 Blanket First Wall (MW) 1438 Divertor (MW) 984 Number of loops (blanket) 6 Number of loops (divertor) 2 Inlet/Outlet temperature (blanket) ( C) 285/325 Inlet/Outlet temperature (divertor) ( C) 140/167 Operating pressure (blanket) (MPa) 15.5 Operating Pressure (divertor) (MPa) 4.2 Heat Sink (blanket) Heat Sink (divertor) Steam Generator Preheater Maximum velocity in pipes (m/s) 20

13 Power conversion (model A) Reheater Moisture separator Steam Generator High Pressure Turbine Blanket cooling loop High Pressure Heaters Low Pressure Turbine Divertor Preheater Feedwater Tank Divertor cooling loop

14 Model A: R&D needs Development of a HHF water-cooled divertor concept operating at the same coolant temperature as the blanket cooling loop higher efficiency Optimization of the attachment system Materials

15 HCPB blanket concept (model B) Eurofer as structural material, He as coolant, Li4SiO4 as breeder, Be as neutron multiplier Be pebble bed Breeder pebble bed

16 Model B: Segmentation

17 Model B: He-cooled divertor Divertor concept using helium as coolant and W as structural material Peak load of 10 MW/m 2 necessity to optimize the heat exchange

18 Model B: Power repartition and primary system Blanket Breeder Zone (MW) 3596 Blanket First Wall (MW) 656 Divertor (MW) 604 LT Shield 189 Number of loops (blanket) 9 Number of loops (divertor) 9 Inlet/Outlet temperature (blanket) ( C) 300/500 Inlet/Outlet temperature (divertor) ( C) 540/720 Operating pressure (blanket) (MPa) 8 Operating Pressure (divertor) (MPa) 10 Heat Sink (blanket) Heat Sink (divertor) Heat Sink (LTS) Steam Generator Superheater Preheater

19 Power conversion (model B) STEAM REHEATER (DIVERTOR C. L.) SUPERHEATER (DIVERTOR C. L.) STEAM GENERATOR (BLANKET C. L.) PREHEATER (LT SHIELD C. L.)

20 Model B: R&D needs Development of a HHF Helium-cooled divertor Design update of the HCPB blanket with the aim of supporting blanket box pressurisation at full coolant pressure Open questions related to technology blanket fabrication issues the thermo-mechanical behaviour of the used pebble beds Tritium retention in irradiated Beryllium Beryllium material grade/alloy to use Materials

21 HCLL blanket concept (model AB) Eurofer as structural material, helium as coolant, LiPb as breeder and neutron multiplier

22 Model AB: segmentation

23 Model AB: Power repartition and primary system Blanket (+HTS) (MW) 4478 Divertor (MW) 983 Number of loops (blanket) 9 Number of loops (divertor) 9 Inlet/Outlet temperature (blanket) ( C) 300/500 Inlet/Outlet temperature (divertor) ( C) 540/720 Operating pressure (blanket) (MPa) 8 Operating Pressure (divertor) (MPa) 10 Heat Sink (blanket) Heat Sink (divertor) Steam Generator Superheater

24 DESSIN ppcs PPCS AB 4290,22 MW 1500,00 MW 35,0% Power conversion (model AB) sechblk echblk scompblk puis th 5144,83 MW 100,0% sechdiv echdiv scompdiv fus io n 4290,22 MW 10 0,0% mult+heat-lts BoucleBlk He 4070,18 kg/s 4218,76 MW -283,82 MW J / kg -6,7% 79,00 bar 500,00 C y = 1,000 ihxb lkc 4218,76 MW 10 0,0 % 4070,18 kg/s s IhxBlkC 82,50 bar 300,00 C y = 1,000 compblk 95,60 bar 717,00 C y = 1,000 ihxdivc 926,07 MW 10 0,0 % 1009,66 kg / s sihxdivc 100,00 bar 540,00 C y = 1,0 00 compdiv BoucleDiv He 1009,66 kg / s 926,07 MW -94,37 MW 9 17 J/kg -10,2% 854,61 MW 10 0,0% aux+heat -4496,90 MW 100,0% 4070,18 kg/s 78,50 b ar 287,06 C y = 1, ,14 MW 98,0% 4070,18 kg/s 87,0% x 1, ,56 MW 10 0,0 % 1009,66 kg / s 95,40 bar 522,60 C y = 1,000 92,49 MW 98,0% 1009,66 kg/s 87,0% x 1, ,29 MW 10 0,0% re s e a u 1500,00 MW 10 0,0% ihxb lk ihxdiv alt alt 4474,42 MW 99,5% 38,20 C 84,8% 1013,46 MW 99,5% 77,00 C 71,9 % 2384,98 MW 10 0,0 % 2384,98 MW 98,7% turbs 2416,40 MW 10 0,0% BoucleE H2 O 2068,01 kg/s 5487,88 MW 2386,89 MW 2654 J/kg 43,5% ihxb lkf s IhxBlkF ihxdivf sihxdivf turb1 sturb1 turb2 s Turb2 turb3 sturb3 4474,42 MW 100,0% 2068,01 kg/s x = 2,000 87,00 bar 443,00 C y = 1, ,46 MW 10 0,0% 2068,01 kg/s x = 2, ,00 bar 640,00 C y = 1, ,03 MW 10 0,0 % 2068,01 kg/s 87,0% x 17,2 00 x = 2,000 5,00 bar 260,59 C y = 0, ,66 MW 10 0,0 % 1550,81 kg/s 87,0% x 3,0 00 x = 2,000 1,67 bar 153,58 C y = 0, ,71 MW 10 0,0 % 1399,99 kg / s 87,0% x 20,833 x = 0,922 0,08 bar 41,50 C y = 0,677 eihxblkf x = -1, ,00 bar 248,86 C y = 1,0 0 0 re c ha uf erechauf x = 2,000 5,00 b ar 260,59 C y = 0,250 re c ha ufc ,77 M W 10 0,0% 517,20 kg /s s Rechauf x = 0,0 00 5,00 bar 151,83 C y = 0,2 50 ebach x = 2,0 00 1,6 7 b ar 153,58 C y = 0,0 73 cond -3100,40 MW 10 0,0 % 1399,99 kg / s re c ha uff 12 11,77 M W 10 0,0% 11,73 C 91,9% spomphp po mphp sbach bach spompbp po mpbp scond 12 11,77 M W 100,0% 2068,01 kg/s x = -1, ,00 bar 115,85 C y = 1, ,61 MW 98,0% 2068,01 kg/s 88,0% x 70,2 00 x = 0,000 1,67 b ar 114,53 C y = 1,000 0,00 MW 100,0% 2068,01 kg/s x = -1,000 2,00 bar 41,51 C y = 0,6 77 0,31 MW 98,0% 1399,99 kg/s 88,0% x 25,000 x = 0,000 0,08 bar 41,50 C y = 0,677

25 Model AB: R&D needs Development of a HHF Helium-cooled divertor Open questions related to technology blanket fabrication issues Materials

26 Plant general layout

27 Maintenance scheme Large sectors Minimize the number of items to be replaced Availability: 76.5 % % (12 days to replace one sector) Segmentation A too large number of modules (like in ITER: 420) would not allow to reach the availability target For the PPCS, the large modules maintenance concept has been considered

28 Handling Sequence

29 Handling device for large modules

30 Conclusions Models A, B and AB meet the overall objectives of the PPCS (design, safety, economics) R&D is needed Materials He cooled divertor Attachment system