Hydrothermal Biomass Conversion

Size: px
Start display at page:

Download "Hydrothermal Biomass Conversion"

Transcription

1 Hydrothermal Biomass Conversion Andrea Kruse, Eckhard Dinjus Institute for Technical Chemistry, Division of Chemical-Physical Processing KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

2 Content Properties of water Different hydrothermal processes Advantages of hydrothermal biomass gasification Primary challenge in supercritical water gasification: dry mater content dependence. Demonstration in larger scale Hurdles to overcome Summary and conclusion 2 Andrea Kruse: Hydrothermal Biomass Conversion

3 Goal: Development and optimization of the hydrothermal gasification process. Use of Biomass Why? The loss and increase in the price as well as a heavy, uncertain access to fossil resources. CO 2 -neutral; EU strategies for the reduction of CO 2 - emissions. 3 Andrea Kruse: Hydrothermal Biomass Conversion

4 Properties of Water g/l pk w Salts are solved 374 C Organic compounds and gases are solved Pressure: 25 MPa 55 MPa p krit :22,1 MPa Andrea Kruse: Hydrothermal Biomass Conversion / C Data: Steam tables

5 Hydrothermal Conversions of Biomass 35 p / MPa Chemicals Pretreatment CH 4 C H 2 "Oil" Critical Point / C H 2 Supercritical Water Gasification Catalysed near-critical gasification Hydrothermal Liquefaction / Hydrothermal Upgrading Hydrothermal conversion to platform chemicals Aqeous Phase Reforming Hydrothermal Carbonization 5 Andrea Kruse: Hydrothermal Biomass Conversion Hydrothermal Biomass Gasification A. Kruse, J. of Supercritical Fluids 47, , 2009.

6 Cellulose Glucose Fructose Different short Intermediates O Furfurales Phenols Gases: H 2, CO 2, CH 4, CO Char / Coke 6 Andrea Kruse: Hydrothermal Biomass Conversion

7 Supercritical Water Gasification to Hydrogen 7 Andrea Kruse: Hydrothermal Biomass Conversion

8 Advantages No drying of wet biomass necessary Very low amounts of tar and (no) coke High H 2 -yield, low CO content H 2 under pressure Easy CO 2 -separation under pressure High space-time-yield Inorganic ingredients are not volatile 8 Andrea Kruse: Hydrothermal Biomass Conversion

9 Water in SCWG Water is solvent: Intermediates are dissolved Less polymerization reactions Less tar and coke Water is reactant: -H 2 and CO 2 is formed instead of Syngas Very low CO content + CH 4 (C 6 H 12 O 6 ) + 6 H 2 O 6 CO H 2 - Fast hydrolysis of Cellulose Homogenous reaction 9 Andrea Kruse: Hydrothermal Biomass Conversion

10 The primary challenge: The relative gas yield decrease with dry matter content (tubular reactor). Antal 1,2 : Coke as catalyst. Antal: Catalyst bed is plugged by ash. 1. Yu, D.; Aihara, M.; Antal, M. J., Jr. Energy & Fuels 1993, 7, Xu, X.; Andrea Matsumura, Kruse: Hydrothermal Y.; Stenberg, Biomass Conversion J.; Antal, M. J., Jr. Ind. Eng. Chem. Res 1996, 35,

11 P. D'Jesus, C. Artiel, N. Boukis, B. Kraushaar-Czarnetzki, E. Dinjus, Ind. Eng. Chem. Res. 44 (2005) Andrea Kruse: Hydrothermal Biomass Conversion

12 Solutions: Use of a coke catalyst and avoiding of plugging (successfully done in Japan*). No use of a solid catalyst and understanding the effect to find an other solution. * A. Nakamura, E. Kiyonaga, Y. Yamamura, Y. Shimizu, T. Minowa, Y. Noda, Y. Matsumura, Journal of Chemical Engineering of Japan 41 (2008) Andrea Kruse: Hydrothermal Biomass Conversion

13 Wet biomass Industrial application Hydrogen Process engineering Pilot plant Kinetics Reaction pathways Optimization Lab.-scale plant Thermodynamics 13 Andrea Kruse: Hydrothermal Biomass Conversion

14 Alkali salts catalysis of the water-gas shift reaction CO + H 2 O CO 2 + H 2 Formation of active hydrogen D. C. Elliott, L. J. Sealock, Ind. Eng. Chem. Prod. Res. Develop. 22, 1983, Andrea Kruse: Hydrothermal Biomass Conversion

15 Influence of salts on gas compositon: Glucose 400 C Gases,.. Vol.- % Gas Composition Mit KHCO3 Ohne CH4 4 CO2 2 H2H 2 CO With KHCO 3 Without Gas component 1,5 % (g/g) Glucose; 0,2 % (g/g) KHCO 3 A. Sınağ, A. Kruse, V. Schwarzkopf, CIT 75, 2003, Andrea Kruse: Hydrothermal Biomass Conversion

16 Different reactor types: Tumbling batch reactor 500 C, 50 MPa, 1 L Tubular reactor 600 C, 30 MPa, 20 ml, 6 m long. Continuous stirred tank reactor (CSTR) 600 C, 100 MPa, 190 ml 16 Andrea Kruse: Hydrothermal Biomass Conversion

17 In the CSTR the relative gas yield increases! Model biomass Carbon content / % Gas Liquid Dry matter content / % Data: A. Kruse, T. Henningsen, J. Pfeiffer, A. Sınağ, Ind. Eng. Chem. Res. 42, , Andrea Kruse: Hydrothermal Biomass Conversion

18 Carbon Content in the Gas and Liquid wt.% Dry Mass Carbon Content / % in Aqueous Solution in the Gas 1.8 wt.% Dry Mass Reaction Time / min 18 Andrea Kruse: Hydrothermal Biomass Conversion

19 Relative gas yield dependence on dry mass Gas Yield / %? K + Dry Mass content / % 19 Andrea Kruse: Hydrothermal Biomass Conversion

20 Possible explanation: Simple reaction model Biomass Low reaction order Intermediates High reaction order K + Gases: CO, CO 2, CH 4, H 2 Polymers 20 Andrea Kruse: Hydrothermal Biomass Conversion

21 Experiments with deuterated glucose in normal water: Tumbling batch reactor OH 500 C, 50 MPa, 1 L D 2 C DC O HO DC CD OH DC CD HO OH H 2 O 21 Andrea Kruse: Hydrothermal Biomass Conversion

22 Deuterated products: (1) H 2 DC C O CH 2 D CH CH2 D HD 2 C CHD C OH DC O DC (2) (3) CH 2 D C CD CD CD DHC DHC O C CHD CHD DHC DHC O C CH 2 D CD CHD DHC DHC O C CHD CD CH 2 D (4) (5) (6) OH OH OH DC C CD DC C C CH 2 D DC C CD DC CD CD DC CD CD DC CD C CH 2 D (7) (8) (9) 22 Andrea Kruse: Hydrothermal Biomass Conversion

23 Consequence: In a lab-scale plant: Combination of two reactors 1. CSTR: Fast heating up Hydrogenation conditions Less phenols 2. Tubular reactor for complete conversion Biomass (25 MPa) Acids, Aldehydes, Phenols... H 2 H 2 (1) (2) CO 2, H 2, H 2 O N. Dahmen, E. Dinjus, A. Kruse, DE ( ); granted Andrea Kruse: Hydrothermal Biomass Conversion

24 Wet biomass Industrial application Hydrogen Process engineering Pilot plant Kinetics Reaction pathways Optimization Lab.-scale plant Thermodynamics 24 Andrea Kruse: Hydrothermal Biomass Conversion

25 Pilot plant VERENA 700 C 32 MPa 100 kg/h Feeding Reaction Separation 25 Andrea Kruse: Hydrothermal Biomass Conversion

26 100 kg/h, 5-20 % DM 35 L, 600 C, 30 MPa 26 Andrea Kruse: Hydrothermal Biomass Conversion

27 Pilot plant VERENA 27 Andrea Kruse: Hydrothermal Biomass Conversion

28 Hurdles to overcome Feeding? Materials Salts Fertilizer! Kawasaki, S. I., Oe, T., Itoh, S., Suzuki, A., Sue, K., Arai, K. The Journal of Supercritical Fluids. 2007, 42, Andrea Kruse: Hydrothermal Biomass Conversion

29 Summary 35 p / MPa Chemicals Pretreatment CH 4 C H 2 Critical Point "Oil" Gas Yield / % Coke as catalyst? / C H 2 Supercritical Water Gasification Catalysed near-critical gasification Hydrothermal Liquefaction / Hydrothermal Upgrading Hydrothermal conversion to platform chemicals Aqeous Phase Reforming Hydrothermal Carbonization Dry Mass content / % Materials and salt handling? 29 Andrea Kruse: Hydrothermal Biomass Conversion

30 Thank you very much! 30 Andrea Kruse: Hydrothermal Biomass Conversion