Biofuel production using total sugars from lignocellulosic materials. Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide

Size: px
Start display at page:

Download "Biofuel production using total sugars from lignocellulosic materials. Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide"

Transcription

1 Biofuel production using total sugars from lignocellulosic materials Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide

2 scope of the presentation 1. Available lignocellulosic materials 2. Production of biofuels Design of a Biofuel factory. 3.

3 1. Available lignocellulosic materials Finland Norway Poland Spain Europe

4 a) Finland Land area: km2 - Forest area: 70 % 60 % privately owned, 25% state owned, 9% by companies, 5 % by other 20 % of the energy needs derived from wood logging residues and stumps

5 Haga clic para modificar el estilo de texto del patrón Segundo nivel Tercer nivel Cuarto nivel Quinto nivel

6 Haga clic para modificar el estilo de texto del patrón Segundo nivel Tercer nivel Cuarto nivel Quinto nivel

7 B) Norway Forestry residues: 4-5 Twh Pine Spruce Composition: % cellulose, % hemicellulose, % lignin Straw : tons dry material Wheat Composition: % cellulose, % hemicellulose, % lignin

8 Haga clic para modificar el estilo de texto del Largest production insegundo the nivel Tercer nivel south-eastern part, good nivel infrastructurecuarto Quinto nivel Forestry residues generated all throughout the year Wheat straw produced during the summer and autumn in relations with the harvesting, large storage space needed Maps and tables generated from statistisk sentralbyrå (Stat bank Norway):

9 3. Poland Straw 10 mill. tons Wood 0,56 mill. m3 Potatoes 0,9 mill. tons According to researches from Polish Institute of Soil Science and Plant Cultivation, 0.6 mill. ha can be used to produce bioethanol.

10 4. Spain - Quantity & Distribution Quantity: 87 Mt/year.

11 Spain - Seasons, storage &transportation 1. Seasonal distribution. Summer: hemp and sunflower Winter: oat, pea, rapeseed and triticale. 2. Storage. - Prefabricated storage. - Outer container and hopper. - Underground tank. 3. Transportation. Bags, tipper trailer, truck, rail.

12 Best raw material in Spain Current best raw material Glycerin, a major waste from the manufacture of biodiesel --- first 2nd generation biofuel of Spain Future: Lignocellulosic materials (made of wood of fast growing trees, urban wastes ) are about to be the future. 2nd generation biofuels

13 Europe Haga clic para modificar el estilo de texto del patrón Segundo nivel Tercer nivel Cuarto nivel Quinto nivel

14 Europe Europe in general: availability of lignocellulosic materials is largest in the South Western parts Norway: low to moderate amounts of both agricultural and forestry residues Finland: low in agricultural residues, much forestry residues Poland: much agricultural residues and relatively much forestry residues as well Of our regions, Spain has the largest amount of available lignocellulosic material with 87 Mt.

15 2.Production of biofuels Pretreatments Bioethanol Bio butanol Bio methane

16 a) Pretreatment Mechanical pretreatment to break down the biomass into smaller pieces Thermal, chemical or biological pretreatment Solubilise hemicellulose and lignin Reduce crystallinity, increase porosity and increase surface area of cellulose -> better hydrolysis yield Forming of inhibitory compounds, degradational products, precipitation of solubilised lignin

17 B) Ethanol - Fermentation Simultaneous saccharification and fermentation (SSF) Separate hydrolysis and fermentation (SHF) Consolidated Bioprocessing (CBP) Purification: distillation & pervaporation

18 Ideal microorganism? Ethanol yield and productivity Cellulolytic activity Ability to withstand high concentration of ethanol and high temperature Tolerance to inhibitors Saccharomyces cerevisae Escherichia coli Hansenula polymorpha Kluyveromyces marxianus

19 C) Methane- Anaerobic Digestion Enzymatic hydrolysis Amino-acids Glucose Acidogenesis Fatty-acids Hydrogen Acetic acid Methanogenesis CO2 CH4

20 D) Butanol - Fermentation Microorganism: Clostridium acetobutylicum. (P262 or ATCC 824). Industrial application & subproducts: ABE process. 2 different stages (different products): 1. Butyric and acetic acids (acidogenesis). 2. Butanol, acetone and etanol (solventogenesis). Inhibitory compounds: above all, syringaldehyde, ferulic and pcoumaric acids. Yields: normal clostridial processes produce concentration of 13 g l-1 (regarded as the natural limit). 0,411 g g-1 is the maximum

21 Butanol - upconcentration Usual methods: adsorption, liquid-liquid extraction, gas striping and pervaporation. Selected one: pervaporation: transport through the membrane of one compound, which is also desorbed to the permeate side as vapour

22 Butanol current and future sources Sources of butanol (1st generation). Agricultural byproducts (straw, corn stalks). Energy crops: sugar beets, sugar cane, wheat cassava and corn grain. Future: 2nd generation (forest biomass, urban wastes, etc.). HIGHER PROFITS!

23 3. Design of a Biofuel factory Alternatives Final selection

24 A) General Description Size reduction, to decrease the size of the particles in order to increase the surface area. Pre-treatment, to reduce the crystallinity of the cellulose, disrupting both lignin and hemicellulose. Enzymatic hydrolysis, in order to obtain monomeric sugars from the polymeric ones. Fermentation, to obtain ethanol or butanol from the monomeric sugars produced. Ethanol recovery, usually by distillation.

25 B) Detailed Description 1. Feed stream: The feed stream is straw, with a flow of kg/h and a composition (% dry weight) : cellulose, as glucose, 32.4 %; hemicellulose, as xylose, 19.1%; acid lignin, 21.3%; ash, 6.4 %; moisture, 6.9 %. 2. Size reduction: After this stage, the particles are 20 mm long. 3. Pretreatment: - Steam explosion (cheap process and does not use chemicals). - Specific characteristics of this process are 19 bar and 210ºC for 10 minutes. 4. Enzymatic hydrolysis : An enzymatic hydrolysis is also done, with a % of dry matter of 30%.

26 C) Prices of the different products Prices of the chemical products are always changing depending on the demand; current prices of the chemicals produced are: Butanol: 1,25 /L!! Ethanol & Acetone: 0,35 /L Methane: 0,1 0,3 /m3 = 0,2 m3 According to these prices, it is highly recommended to produce butanol above other products, as more benefit could be achieved.

27 Biofuel Production H2O 15 % loss Solid Feed: Straw Mechanical pretreatment Enzymes Enzymes Steam explosion Solid Hydrolysis Liquid Methane production Fermentation Ethanol, buthanol production

28 Ethanol production H2O kg/h C6 = kg/h ; 32,4 % C5 = kg/h ; 19,1 % Others = ; 48,5 % Mechanical pretreatment kg/h 15 % loss Steam explosion kg/h Enzymes Enzymes cellulase (NS50013) β-glucosidase (NS50010) Solid Hydrolysis Fermentation C6 Saccharomyces cerevisae Υ = 0,99 C6 = 4992 kg/h Fermentation C5 + C6 Liquid Pichia stipitis Ethanol = 3450 kg/h Υ = 0,82 C6 = 4992 kg/h C5 = 1319 kg/h C6 = 1893 kg/h C5 = 2740 kg/h C6H12O6 3 CH4 + 3 CO2 C5H10O5 2.5 CH CO2 CH4 = 1235,2 kg/h CH4 = 1729,67 m3/h Price, /m3 Income, /h Ethanol = 3294 kg/h Methane 0,2 346 S. cerevisae P. stipitis Price, /m3 0,35 0,35 Income, /h Total income, /h

29 Butanol production kg/h 15 % loss H2O kg/h C6 = kg/h ; 32,4 % C5 = kg/h ; 19,1 % Others = ; 48,5 % Mechanical pretreatment Steam explosion kg/h Enzymes cellulase (NS50013) β-glucosidase (NS50010) Solid Clostridium acetobutylicum Υ = 0,4 C6 = 4992 kg/h C5 = 1319 kg/h Fermentation Hydrolysis Acetone = 757 kg/h Butanol = 1515 kg/h Ethanol = 252 kg/h Liquid C6 = 1893 kg/h C5 = 2740 kg/h C6H12O6 3 CH4 + 3 CO2 C5H10O5 2.5 CH CO2 CH4 = 1235,2 kg/h CH4 = 1729,67 m3/h Price, /m3 Income, /h Methane 0,2 346 Acetone Butanol Ethanol Price, /m3 0,35 1,2 0,35 Income, /h Total income, /h 2691 Total income Price, /h 3037

30 Results Total income /h: EtOH (C6) + CH4 EtOH (C6+C5) + CH4 ButOH (C6+C5) + CH * Direct methane from raw material: 962 /h

31 Biofuel Production H2O 15 % loss Enzymes Feed: Straw Mechanical pretreatment Steam explosion Hydrolysis Enzymes Fermentation Buthanol production Methane production

32 Design Final Considerations Of all the processes, a combination of butanol and methane production is most cost effective. However: Inhibition compounds Cost of waste management Cost of enzymes Cost of wear on the equipment Purification cost will cause the total income to probably be around 50 % lower.

33 Thank you!

The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw

The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw nd International Conference on Sustainable Solid Waste Management The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw G. Antonopoulou 1, G. Dimitrellos 1, D.

More information

The Next Generation of Biofuels

The Next Generation of Biofuels The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil

More information

Biofuels Research at the University of Washington

Biofuels Research at the University of Washington Biofuels Research at the University of Washington 15 July 2008 Rick Gustafson Paper Science & Engineering College of Forest Resource University of Washington UW biofuels research agenda Vision: Cost effective

More information

Lignin Production by Organosolv Fractionation of Lignocellulosic Biomass W.J.J. Huijgen P.J. de Wild J.H. Reith

Lignin Production by Organosolv Fractionation of Lignocellulosic Biomass W.J.J. Huijgen P.J. de Wild J.H. Reith Lignin Production by Organosolv Fractionation of Lignocellulosic Biomass W.J.J. Huijgen P.J. de Wild J.H. Reith Presented at the International Biomass Valorisation Congress, 13-15 September 2010, Amsterdam,

More information

BIOFUELS: EUROPEAN EUROPEAN -- SPANISH OVERVIEW Mercedes Ballesteros Head of Biofuels Unit CIEMAT 3rd March,

BIOFUELS: EUROPEAN EUROPEAN -- SPANISH OVERVIEW Mercedes Ballesteros Head of Biofuels Unit CIEMAT 3rd March, BIOFUELS: EUROPEAN - SPANISH OVERVIEW Mercedes Ballesteros Head of Biofuels Unit CIEMAT 3rd March, 2011 1 OUTLINE CURRENT BIOFUELS PRODUCTION NEW OBJECTIVES FOR 2020 SECOND GENERATION BIOFUELS CIEMAT s

More information

Alternative Feed-stocks for Bioconversion to Ethanol: a techno-commercial appraisal

Alternative Feed-stocks for Bioconversion to Ethanol: a techno-commercial appraisal Alternative Feed-stocks for Bioconversion to Ethanol: a techno-commercial appraisal Subhash Chand Formerly, Professor & Head: Department of Biochemical Engineering & Biotechnology Indian Institute of Technology

More information

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2011 Number 31 OZONE PRETREATMENT OF WHEAT STRAW AND ITS EFFECT ON REDUCING SUGARS IN

More information

Optimization of the pretreatment of wheat straw for production of bioethanol

Optimization of the pretreatment of wheat straw for production of bioethanol Optimization of the pretreatment of wheat straw for production of bioethanol Eva-Lena Jakobsson Department of Chemical Engineering, Lund University Abstract Bioethanol has some advantages over petrol as

More information

Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals

Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals W.J.J. Huijgen, R. Van der Linden, J.H. Reith & H. den Uil Presented at the Netherlands Process Technology

More information

SECOND GENERATION BIOETHANOL FROM Eucalyptus globulus labill AND Nothofagus pumilio USING IONIC LIQUIDS. María Cristina Ravanal E.

SECOND GENERATION BIOETHANOL FROM Eucalyptus globulus labill AND Nothofagus pumilio USING IONIC LIQUIDS. María Cristina Ravanal E. SECOND GENERATION BIOETHANOL FROM Eucalyptus globulus labill AND Nothofagus pumilio USING IONIC LIQUIDS. María Cristina Ravanal E. Centro de Biotecnología y Bioingeniería Universidad de Chile mravanal@ing.uchile.cl

More information

Global Warming. Department of Chemical Engineering

Global Warming. Department of Chemical Engineering Global Warming How Can Biofuels Help? Clint Williford Department of Chemical Engineering Introduction ti Greenhouse emissions Reducing growth of GHG emissions Biofuels Why and why now? What they are? How

More information

Utilization of residues as bioethanol feedstock Case of Turkey

Utilization of residues as bioethanol feedstock Case of Turkey Utilization of residues as bioethanol feedstock Case of Turkey Asiye Gul BAYRAKCI OZDINGIS, Gunnur KOCAR Ege University Institute of Solar Energy Biomass Energy Systems and Technology Center - BESTMER

More information

Biomass production approximately 2x10 11 Mt per annum, of which between 8 and 20x10 9 Mt is potentially accessible for processing.

Biomass production approximately 2x10 11 Mt per annum, of which between 8 and 20x10 9 Mt is potentially accessible for processing. Plant biomass as source of renewable fuel, Cellulose, hemicellulose lignin degrading and bioethanol producing microorganisms. Technology, prospect, pros and cons to use biomass for production of bioalcohol,

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

TOWARDS SUSTAINABLE AND EFFICIENT BIOFUELS PRODUCTION USE OF PERVAPORATION IN PRODUCT RECOVERY AND SEPARATION

TOWARDS SUSTAINABLE AND EFFICIENT BIOFUELS PRODUCTION USE OF PERVAPORATION IN PRODUCT RECOVERY AND SEPARATION 1 TOWARDS SUSTAINABLE AND EFFICIENT BIOFUELS PRODUCTION USE OF PERVAPORATION IN PRODUCT RECOVERY AND SEPARATION POKE Summer School 10. 16.8.2014 Saaremaa, Estonia D.Sc.(Tech.) Johanna Niemistö FACULTY

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

Imagine a renewable world

Imagine a renewable world Conversion of Woody Biomass to Chemicals, Energy and Materials Shijie Liu and Thomas E. Amidon Biorefinery Research Institute Department of Paper and Bioprocess Engineering SUNY College of Environmental

More information

The CIMV organosolv Process. B. Benjelloun

The CIMV organosolv Process. B. Benjelloun The CIMV organosolv Process B. Benjelloun 2 BIOREFINERY CONCEPT THE CIMV PROCESS Based on the oil refining model. Promote 100% of the non-food Biomass in Biofuels and/or Bioproducts. High feedstocks fexilibility

More information

Production of Biofuels and Value-Added Products

Production of Biofuels and Value-Added Products Metabolically engineered microbial systems and the conversion of agricultural biomass into simple sugars Microbial for the production Systems of biofuels For and The valueadded products Production of Biofuels

More information

Improvements in Bioethanol Production Process from Straw

Improvements in Bioethanol Production Process from Straw Improvements in Bioethanol Production Process from Straw Heike Kahr,*, Alexander G. Jäger Upper Austria University of Applied Sciences Research and Development Ltd, Campus Wels Stelzhamerstrasse, A- Wels,

More information

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York Introduction to BIOFUELS David M. Mousdale CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents Preface Acknowledgments

More information

Challenges of Ethanol Production from Lignocellulosic Biomass

Challenges of Ethanol Production from Lignocellulosic Biomass Challenges of Ethanol Production from Lignocellulosic Biomass Maha Dakar Varieties of Carbohydrates Sugar Starch Cellulose/Hemicellulose What All Plants Have in Common Cellulose Glucose Why is it difficult

More information

Wood to Wheel: Process Improvement for the Production of Substituted Fuels from Renewable Biomass

Wood to Wheel: Process Improvement for the Production of Substituted Fuels from Renewable Biomass Wood to Wheel: Process Improvement for the Production of Substituted Fuels from Renewable Biomass POKE Symposium 10-16.08.2014, Ösel Venkata Prabhakar Soudham venkata.soudham@chem.umu.se The Problem: Our

More information

Optimization and improvement of bio-ethanol production processes

Optimization and improvement of bio-ethanol production processes Optimization and improvement of bio-ethanol production processes Dr. Kang Qian Prof. Jan Baeyens Date: 17/03/2017 Contents 1. Characteristics and worldwide potential 2. The uses of bio-ethanol 3. Bio-ethanol

More information

GHG savings with 2G Ethanol Industrial Plant. Pierluigi Picciotti BD Director North America & APAC July 26 th, 2017 Montreal

GHG savings with 2G Ethanol Industrial Plant. Pierluigi Picciotti BD Director North America & APAC July 26 th, 2017 Montreal GHG savings with 2G Ethanol Industrial Plant Pierluigi Picciotti BD Director North America & APAC July 26 th, 2017 Montreal 1 Beta Renewables Introduction Beta Renewables is a joint venture, created in

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction

More information

Agricultural Outlook Forum Presented: March 1-2, 2007 U.S. Department of Agriculture

Agricultural Outlook Forum Presented: March 1-2, 2007 U.S. Department of Agriculture Agricultural Outlook Forum Presented: March 1-2, 2007 U.S. Department of Agriculture DEVELOPMENT OF CELLULOSIC BIOFUELS Chris Somerville Carnegie Institution, Stanford University Lawrence Berkeley National

More information

Summary & Conclusion

Summary & Conclusion Summary & Conclusion CHAPTER 6 SUMMARY & CONCLUSIONS Concerns regarding the soaring cost of gasoline and the depleting petroleum reserves have led to an urge for a sustainable alternative to gasoline such

More information

Sugar Industry Restructuring by Implementing Biorefinery Technology

Sugar Industry Restructuring by Implementing Biorefinery Technology Sugar Industry Restructuring by Implementing Biorefinery Technology Dr. Maurizio Cocchi THE BIOREFINERY CONCEPT Biorefinery approach Integration of biomass conversion processes and technologies to produce

More information

Cellulosic Biomass Chemical Pretreatment Technologies

Cellulosic Biomass Chemical Pretreatment Technologies Life-changing Research and Development Cellulosic Biomass Chemical Pretreatment Technologies September 6, 2007 Keith Pauley Keith.Pauley@matricresearch.com 800-611-2296 Chemical and Environmental Technologies

More information

Butanol Fermentation from Low-Value Sugar-Based Feedstocks by Clostridia

Butanol Fermentation from Low-Value Sugar-Based Feedstocks by Clostridia Clostridium XII, 1 Sept. 2, Nottingham, UK Butanol Fermentation from Low-Value Sugar-Based Feedstocks by Clostridia Ye Ni, Zhihao Sun School of Biotechnology, Jiangnan University Wuxi, China 2.9.1 Clostridium

More information

The objective of this work was the production of ethanol

The objective of this work was the production of ethanol 1.12 Bioethanol from sugar cane bagasse Urribarrí, Lauris 1 * Ferrer, Alexis 2 Aiello, Cateryna 3 Rivera, Jhoandry 4 Abstract The objective of this work was the production of ethanol by simultaneous saccharification

More information

Lignocellulosic conversion to ethanol: the environmental life cycle impacts

Lignocellulosic conversion to ethanol: the environmental life cycle impacts Lignocellulosic conversion to ethanol: the environmental life cycle impacts Aiduan Li, Marcelle C McManus, Geoff P Hammond Sustainable Energy Research Team University of Bath United Kingdom Contents Sustainable

More information

Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004)

Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004) Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004) Petrochemical hydrocarbon sources are finite and many experts suggest that they will become exhausted within

More information

By Dr S.K.PURI Indian Oil Corporation Limited, R&D Centre, FARIDABAD 22 nd Jan., 2016

By Dr S.K.PURI Indian Oil Corporation Limited, R&D Centre, FARIDABAD 22 nd Jan., 2016 2 nd Generation Ethanol -A Prospective- By Dr S.K.PURI Indian Oil Corporation Limited, R&D Centre, FARIDABAD 22 nd Jan., 2016 BIO-FUELS Fuel produced from renewable biomass material, commonly used as an

More information

Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment

Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment Jim Frederick, Steve Lien, Chuck Courchene, Niko DeMartini, Art Ragauskas and Kristiina Iisa Georgia

More information

IBUS Integrated Biomass Utilisation Systems

IBUS Integrated Biomass Utilisation Systems IBUS Integrated Biomass Utilisation Systems Best Basis for Biorefineries Børge Holm Christensen Holm Christensen Biosystemer ApS, Denmark Charles Nielsen Dong Energy A/S Denmark IEA Workshop TheBiorefinery

More information

Process Synthesis for Fuel Ethanol Production from Lignocellulosic Biomass Using an Optimization-Based Strategy

Process Synthesis for Fuel Ethanol Production from Lignocellulosic Biomass Using an Optimization-Based Strategy Process Synthesis for Fuel Ethanol Production from Lignocellulosic Biomass Using an Optimization-Based Strategy Óscar J Sánchez 1,2 Eric S Fraga 2 Carlos A Cardona 3 1 Department of Engineering, Universidad

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

The New Generation of Biofuels:

The New Generation of Biofuels: The New Generation of Biofuels: How Europe and Latin America can Work Together Daniel Hayes Carbolea Research Group University of Limerick, Ireland www.carbolea.ul.ie daniel.hayes@ul.ie LLSCIL LUIMNIGH

More information

Emerging Markets: Biotechnology. MC Jarvis Glasgow University and IBioIC

Emerging Markets: Biotechnology. MC Jarvis Glasgow University and IBioIC Emerging Markets: Biotechnology MC Jarvis Glasgow University and IBioIC M.C. Jarvis. Forest and Timber Industry Leadership Group. Edinburgh, 30 Nov 2015 Biotechnology Plant biotechnology Tree improvement

More information

Chemical Process Design / Diseño de Procesos Químicos

Chemical Process Design / Diseño de Procesos Químicos Chemical Process Design / Diseño de Procesos Químicos Design Project. DefiniDon of the Design Project Javier R. Viguri Fuente Eva Cifrian Bemposta Department of Chemistry and Process and Resource Engineering

More information

ANALYSIS OF FUEL ETHANOL PRODUCTION PROCESSES USING LIGNOCELLULOSIC BIOMASS AND STARCH AS FEEDSTOCKS

ANALYSIS OF FUEL ETHANOL PRODUCTION PROCESSES USING LIGNOCELLULOSIC BIOMASS AND STARCH AS FEEDSTOCKS ANALYSIS OF FUEL ETHANOL PRODUCTION PROCESSES USING LIGNOCELLULOSIC BIOMASS AND STARCH AS FEEDSTOCKS C.A. Cardona *, O.J. Sánchez *,**, M.I. Montoya *, J.A. Quintero * * Department of Chemical Engineering,

More information

Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization

Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization Geng Anli*, Wang Zhankun, Lai Kok Soon and Tan Wei Yi Mark, Goh Kiow Leng

More information

Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011)

Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011) Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011) The use of ethanol as an alternative motor fuel has been steadily increasing around the globe

More information

Influence of harvesting time on biochemical composition and glucose yield from hemp

Influence of harvesting time on biochemical composition and glucose yield from hemp Agronomy Research 11 (1), 215 220, 2013 Influence of harvesting time on biochemical composition and glucose yield from hemp M. Tutt *, T. Kikas and J. Olt Institute of Technology, Estonian University of

More information

Microalgae as future bioresources for biofuels and chemical production

Microalgae as future bioresources for biofuels and chemical production Microalgae as future bioresources for biofuels and chemical production Jo Shu Chang Department of Chemical Engineering Center for Bioscience and Biotechnology Research Center for Energy Technology and

More information

Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification

Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification Zhiqiang LI Ph.D. lizq@icbr.ac.cn 55th International Convention of Society of Wood Science and Technology Main

More information

COMPARISON OF DIFFERENT PRETREATMENT METHODS ON DEGRADATION OF RYE STRAW

COMPARISON OF DIFFERENT PRETREATMENT METHODS ON DEGRADATION OF RYE STRAW COMPARISON OF DIFFERENT PRETREATMENT METHODS ON DEGRADATION OF RYE STRAW Marti Tutt, Timo Kikas, Juri Olt Estonian University of Life Sciences marti.tutt@emu.ee Abstract. This article investigates the

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

Bioethanol. CE 521 Shinnosuke Onuki

Bioethanol. CE 521 Shinnosuke Onuki Bioethanol CE 521 Shinnosuke Onuki 1. Introduction Bioethanol A biofuel produced by the fermentation of plants rich in sugar/starch renewable resources impact on air quality due to cleaner combustion reduced

More information

to-wheels Graduate Enterprise: Bioprocessing Initiatives

to-wheels Graduate Enterprise: Bioprocessing Initiatives A Wood-to to-wheels Graduate Enterprise: Bioprocessing Initiatives David R. Shonnard Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931 Presentation to MEDC and Other

More information

Ethanol From Cellulose: A General Review

Ethanol From Cellulose: A General Review Reprinted from: Trends in new crops and new uses. 2002. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA. Ethanol From Cellulose: A General Review P.C. Badger INTRODUCTION The use of ethanol

More information

Why diversify biomass production for biofuels

Why diversify biomass production for biofuels NJF seminar 405: Production and Utilization of Crops for Energy. 25-26 September 2007, Vilnius, Lithuania Why diversify biomass production for biofuels Henrik Hauggaard-Nielsen Mette Hedegaard Thomsen

More information

Ho Nam Chang. Bioenergy II

Ho Nam Chang. Bioenergy II Bioenergy II (RIO DE JANEIRO 8-13 March, 2009) Biofuels Production from Volatile Fatty Acid Platform Ho Nam Chang Biofuel Professor of Biochemical Engineering Department of Chemical & Biomolecular Engineering,

More information

Technical Barriers in Converting Lignocellulose to ethanol. Samson Hailemichael Introduction to Green Chemistry (CHEM 0671) Dec.

Technical Barriers in Converting Lignocellulose to ethanol. Samson Hailemichael Introduction to Green Chemistry (CHEM 0671) Dec. Technical Barriers in Converting Lignocellulose to ethanol Samson Hailemichael Introduction to Green Chemistry (CHEM 0671) Dec. 15, 2009 Outline Introduction Benefits Drawbacks Conventional process Pretreatment

More information

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d.

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d. Biomass for future biorefineries Anne-Belinda Bjerre, senior scientist, ph.d. Anne-Belinda Bjerre (Thomsen) Senior research scienist, B.Sc. Chem. Eng. Ph.d. in biotechnology 25 years of expertise within

More information

SENSE AND NO-SENSE OF PRETREATMENT FOR INCREASING BIOGAS YIELDS

SENSE AND NO-SENSE OF PRETREATMENT FOR INCREASING BIOGAS YIELDS SENSE AND NO-SENSE OF PRETREATMENT FOR INCREASING BIOGAS YIELDS HINRICH UELLENDAHL S E C T I ON F OR SUSTAINABLE B I OTECHNOLOGY AAL B O R G U N I V E R SITY COPENHAGEN A. C. M E Y E R S V Æ N G E 1 5,

More information

From Non-Food Feedstock to Fuel: Here and Now Kerry Nixon, Manager, Central Minnesota Ethanol Coop Fueling the Future: The Role of Woody Biomass for Energy Workshop March 26, 2009 Ponsford Sponsored by:

More information

Biofuels Research at Purdue

Biofuels Research at Purdue College of Agriculture College of Engineering Biofuels Research at Purdue Nathan Mosier and Otto Doering Agricultural and Biological Engineering Agricultural Economics Integrated, Multidisciplinary Approach

More information

Renewable Chemicals from the Forest Biorefinery

Renewable Chemicals from the Forest Biorefinery 11 th Annual Congress on Industrial Biotechnology May 12 15, 2014 Philadelphia, PA Renewable Chemicals from the Forest Biorefinery François Zasieczny, Mariya Marinova, Tom Browne, Michel Perrier The Forest

More information

Trash into Gas: Powering Sustainable Transportation by Plants

Trash into Gas: Powering Sustainable Transportation by Plants Trash into Gas: Powering Sustainable Transportation by Plants Jaclyn D. DeMartini Dr. Charles E. Wyman University of California Chemical and Environmental Engineering Department Center for Environmental

More information

INDUSTRIAL ENZYMES FOR CELLULOSIC SUGARS AND BEYOND

INDUSTRIAL ENZYMES FOR CELLULOSIC SUGARS AND BEYOND INDUSTRIAL ENZYMES FOR CELLULOSIC SUGARS AND BEYOND THE POWER AND SPEED OF TAILORED SOLUTIONS EuroNanoForum 2017 Malta, June 22 nd MATTI HEIKKILÄ CTO METGEN STRATEGIC FOCUS Lignocellulosic biomass conversion

More information

Effect Of Alkali Pretreatment and Enzymatic Saccharification on Bagasse Reducing Sugar For Bioethanol Production

Effect Of Alkali Pretreatment and Enzymatic Saccharification on Bagasse Reducing Sugar For Bioethanol Production 1). Technical Implementation Unit for Development of Chemical Engineering Processes GunungKidul, Yogyakarta, Indonesia. Effect Of Alkali Pretreatment and Enzymatic Saccharification on Bagasse Reducing

More information

Valorization of Olive Mill Solid Waste to Ethanol by Microwave Pretreatment and Enzymatic Saccharification

Valorization of Olive Mill Solid Waste to Ethanol by Microwave Pretreatment and Enzymatic Saccharification Valorization of Olive Mill Solid Waste to Ethanol by Microwave Pretreatment and Enzymatic Saccharification Yoram Gerchman; Hiba Abu Tayeh; Hassan Azaizeha Gerchman.Yoram@gmail.com 6 th International Conference

More information

Outline. A leading ethanol player. The SEKAB Group. Bioethanol from Cellulose - Technology status and Strategy for Commercialisation.

Outline. A leading ethanol player. The SEKAB Group. Bioethanol from Cellulose - Technology status and Strategy for Commercialisation. Outline SEKAB group Bioethanol from Cellulose - Technology status and Strategy for Commercialisation Technology status and SEKAB priorities in development of cellulose ethanol Integration Resources and

More information

Nordic Association of Agricultural Scientists

Nordic Association of Agricultural Scientists NJF Report Vol 3 No 4 Year 2007 Nordic Association of Agricultural Scientists NJF Seminar 405 Production and Utilization of Crops for Energy Vilnius, Lithuania, 25-26 September 2007 Straw biomass potential

More information

Applications of Molecular Biotechnology

Applications of Molecular Biotechnology Applications of Molecular Biotechnology Ethanol Production from Cellulosic Biomass David R. Shonnard CM4710 Biochemical Processes November 28, 2003 Environmental Issues in Ethanol Production and Use A.J.

More information

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 26 Energy production from Organic Wastes Through Anaerobic Digestion-1

More information

Fermentation of pretreated source separated organic (SSO) waste for ethanol production by different bacteria

Fermentation of pretreated source separated organic (SSO) waste for ethanol production by different bacteria Fermentation of pretreated source separated organic (SSO) waste for ethanol production by different bacteria by Bekmuradov Valeriy, Luk Grace and Luong Robin Ryerson University Toronto, Canada Montreal,

More information

The 3rd Generation Biorefinery; Conversion of Residual Lignocellulosic Biomass to Advanced Liquid Biofuels, Biochemicals, Biocoal and Fibres

The 3rd Generation Biorefinery; Conversion of Residual Lignocellulosic Biomass to Advanced Liquid Biofuels, Biochemicals, Biocoal and Fibres The 3rd Generation Biorefinery; Conversion of Residual Lignocellulosic Biomass to Advanced Liquid Biofuels, Biochemicals, Biocoal and Fibres Pasi Rousu; President, Chempolis Asia & Pacific pasi.rousu@chempolis.com;

More information

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood. Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass

More information

Requirements for characterization of biorefinery residues

Requirements for characterization of biorefinery residues COST FP0901 meeting Current needs in biorefinery analytics WG 3: Process Residues Requirements for characterization of biorefinery residues Ina Körner 1, Ron Janzon 2, Helmut Adwiraah 1, Jörn Heerenklage

More information

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d.

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d. Biomass for future biorefineries Anne-Belinda Bjerre, senior scientist, ph.d. Anne-Belinda Bjerre (Thomsen) Senior research scienist, B.Sc. Chem. Eng. Ph.d. in biotechnology 25 years of expertise within

More information

Effects of Liquid Hot Water Pretreatment on Enzyme Loading and Hydrolysis of Hardwood

Effects of Liquid Hot Water Pretreatment on Enzyme Loading and Hydrolysis of Hardwood 1 Effects of Liquid Hot Water Pretreatment on Enzyme Loading and Hydrolysis of Hardwood Michael Ladisch, Youngmi Kim, Ja Kyong Ko, Tommy Kreke, Eduardo Ximenes Laboratory of Renewable Resources Engineering

More information

Biofuels. Letizia Bua

Biofuels. Letizia Bua Biofuels Letizia Bua Biofuels What is a biofuel? What the European Community says about it? How we can produce it? (Technology options) eni and renewable energy 2 What is a biofuel? interesting! Life cycle

More information

Ethanol Production from Biomass - Optimization of Simultaneous Saccharification and Fermentation with Respect to Stirring and Heating

Ethanol Production from Biomass - Optimization of Simultaneous Saccharification and Fermentation with Respect to Stirring and Heating Ethanol Production from Biomass - Optimization of Simultaneous Saccharification and Fermentation with Respect to Stirring and Heating JESPER NÖRGÅRD Department. of Chemical Engineering, Lund Institute

More information

Comparison of pretreatments for ethanol production from softwood

Comparison of pretreatments for ethanol production from softwood DEPARTMENT OF CHEMICAL ENGINEERING LUND UNIVERSITY, LTH Comparison of pretreatments for ethanol production from softwood Comparison between the processes of steam explosion, organosolv, sulphite and ionic

More information

Effect of particle size on enzymatic hydrolysis of pretreated miscanthus

Effect of particle size on enzymatic hydrolysis of pretreated miscanthus Engineering Conferences International ECI Digital Archives BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals Proceedings Spring 6-13-2013 Effect of particle size on enzymatic

More information

XyloFerm - Yeast strains for efficient conversion of lignocellulose into ethanol

XyloFerm - Yeast strains for efficient conversion of lignocellulose into ethanol XyloFerm - Yeast strains for efficient conversion of lignocellulose into ethanol Nicklas Bonander, Ph.D Principal Scientist Taurus Energy AB, Lund, Sweden Taurus Energy AB, Lund, SWEDEN SEKAB, Biorefinery

More information

THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION

THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION Bioenergy- II: Fuels and Chemicals from Renewable Resources THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION Dr. Francesco La Cara Institute of Protein Biochemistry C.N.R. Naples - Italy THERMOPHILIC ENZYMES

More information

Development of Oil Palm Byproduct Utilization Technology (Ecofriendly Pretreatment) Hwa-Jee Chung

Development of Oil Palm Byproduct Utilization Technology (Ecofriendly Pretreatment) Hwa-Jee Chung 1 Development of Oil Palm Byproduct Utilization Technology (Ecofriendly Pretreatment) 2013. 11. 28 Hwa-Jee Chung Global trend of biofuel development 2 Amount of technically recoverable global resources

More information

PRETREATMENT METHODS FOR BIOETHANOL PRODUCTION. Alice Jeng University of Oklahoma Chemical Engineering, Class of 2013 UNICAMP, Brazil June 6, 2012

PRETREATMENT METHODS FOR BIOETHANOL PRODUCTION. Alice Jeng University of Oklahoma Chemical Engineering, Class of 2013 UNICAMP, Brazil June 6, 2012 PRETREATMENT METHODS FOR BIOETHANOL PRODUCTION Alice Jeng University of Oklahoma Chemical Engineering, Class of 2013 UNICAMP, Brazil June 6, 2012 ETHANOL PRODUCTION Ethanol can be produced from lignocellulose

More information

Biofuels: Renewable Transportation Fuels from Biomass

Biofuels: Renewable Transportation Fuels from Biomass National Renewable Energy Laboratory Biofuels: Renewable Transportation Fuels from Biomass Cynthia Riley Biotechnology Division for Fuels and Chemicals National Bioenergy Center Utility Federal Technology

More information

What is Bioenergy? William Robinson B9 Solutions Limited

What is Bioenergy? William Robinson B9 Solutions Limited What is Bioenergy? William Robinson B9 Solutions Limited Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion Introduction William Robinson B9 employee for nearly

More information

Cellulosic Biomass Systems. Tom Richard Penn State University Mark Laser Dartmouth College

Cellulosic Biomass Systems. Tom Richard Penn State University Mark Laser Dartmouth College Cellulosic Biomass Systems Tom Richard Penn State University Mark Laser Dartmouth College Comparative production costs U S $ / lit e r $0.60 $0.50 $0.40 $0.30 $0.20 $0.10 $0.00 Brazil- Cane US-Corn Ger-

More information

2.2 Conversion Platforms

2.2 Conversion Platforms 2.2 Conversion Platforms The strategic goal of the conversion element is to develop technologies for converting feedstocks into cost-competitive commodity liquid fuels, like ethanol, as well as bioproducts

More information

Niklas Berglin, Innventia

Niklas Berglin, Innventia New 2G process for ethanol from wood Niklas Berglin, Innventia 1 2 3 Energy density is a key issue for biofuels Chips 0.8 Wood pellets 3 Torrefied wood & Lignin powder 5 Ethanol 6 Slash 0.4 Our focus 4

More information

Activities in UW Forest Resources and Lignocellulosic Biorefineries

Activities in UW Forest Resources and Lignocellulosic Biorefineries Activities in UW Forest Resources and Lignocellulosic Biorefineries Rick Gustafson, Renata Bura, Bill McKean, Sharon Doty, Brian Marquardt, Rob Synovec, Joyce Cooper 3 May 2010 U.S. Renewable Fuel Standard

More information

Biomass conversion into low-cost and sustainable chemicals*

Biomass conversion into low-cost and sustainable chemicals* Biomass conversion into low-cost and sustainable chemicals Dr. Stephan Freyer Chemical Engineering Biotechnology Chemicals Research & Engineering BASF SE, Ludwigshafen, Germany Foto: R. Hromniak Biomass

More information

The Carboxylate Platform

The Carboxylate Platform The Carboxylate Platform Nigel Horan Lecture Outline The industry why it should innovate What is the carboxylate platform? Potential benefits Retrofitting and new build Conclusions AD Industry Now over

More information

Topics PROESA TECHNOLOGY. Commercial Scale Production of Fermentable Sugars from cellulosic biomass. Kota Kinabalu September 7 th, 2015

Topics PROESA TECHNOLOGY. Commercial Scale Production of Fermentable Sugars from cellulosic biomass. Kota Kinabalu September 7 th, 2015 PROESA TECHNOLOGY Commercial Scale Production of Fermentable Sugars from cellulosic biomass Kota Kinabalu September 7 th, 2015 Pierluigi Picciotti 1 2 3 4 Topics Group Overview: focus on Biochemtex and

More information

2G ethanol from the whole sugarcane lignocellulosic biomass

2G ethanol from the whole sugarcane lignocellulosic biomass Pereira et al. Biotechnology for Biofuels (21) 8:44 DOI 1.1186/s1368-1-224- RESEARCH ARTICLE 2G ethanol from the whole sugarcane lignocellulosic biomass Open Access Sandra Cerqueira Pereira 1, Larissa

More information

Ethanol from lignocellulosic biomass: a comparison between conversion technologies

Ethanol from lignocellulosic biomass: a comparison between conversion technologies 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Ethanol from lignocellulosic biomass: a comparison between

More information

A feasibility study on conversion of an ethanol plant to a butanol plant

A feasibility study on conversion of an ethanol plant to a butanol plant KET050 easibility Studies on Industrial Plants Dept of Chemical Engineering, Lund Institute of Technology A feasibility study on conversion of an ethanol plant to a butanol plant Presented to StatoilHydro

More information

Bioenergy: From Concept to Commercial Processes

Bioenergy: From Concept to Commercial Processes Bioenergy: From Concept to Commercial Processes Biorefinery Process Economics An in-depth, independent technical and economic evaluation by the PEP program Gregory M. Bohlmann gbohlmann@sriconsulting.com

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Syamsul Falah Suryani Azmi Azhari. Department of Biochemistry Faculty of Matemathics and Natural Sciences Bogor Agricultural University

Syamsul Falah Suryani Azmi Azhari. Department of Biochemistry Faculty of Matemathics and Natural Sciences Bogor Agricultural University Bioethanol Production from Falcata (Paraserianthes falcataria) Wood by Enzymatic Delignification and Simultaneous Saccharification Fermentation using Immobilized Cells Syamsul Falah Suryani Azmi Azhari

More information

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Ing. Paolo Corvo Biotech & Renewables Center

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Ing. Paolo Corvo Biotech & Renewables Center The sunliquid process - cellulosic ethanol from agricultural residues Dr. Ing. Paolo Corvo Biotech & Renewables Center Introduction to Clariant and the Biotech & Renewable Center Dr. Ing. Paolo Corvo Biotech

More information

Moving towards commercialization of lignocellulosic biomass to fuels to chemicals. How to deal with heterogeneous biomass?

Moving towards commercialization of lignocellulosic biomass to fuels to chemicals. How to deal with heterogeneous biomass? Moving towards commercialization of lignocellulosic biomass to fuels to chemicals. How to deal with heterogeneous biomass? Renata Bura, Shannon Ewanick, Erik Budsberg, Jordan Crawford, Brian Marquardt

More information